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Abstract
Predicting actions from partially observed videos is challeng-
ing as the partial videos containing incomplete action execu-
tions have insufficient discriminative information for classifi-
cation. Recent progress has been made through enriching the
features of the observed video part or generating the features
for the unobserved video part, but without explicitly model-
ing the fine-grained evolution of visual object relations over
both space and time. In this paper, we investigate how the in-
teraction and correlation between visual objects evolve and
propose a graph growing method to anticipate future object
relations from limited video observations for reliable action
prediction. There are two tasks in our method. First, we work
with spatial-temporal graph neural networks to reason object
relations in the observed video part. Then, we synthesize the
spatial-temporal relation representation for the unobserved
video part via graph node generation and aggregation. These
two tasks are jointly learned to enable the anticipated future
relation representation informative to action prediction. Ex-
perimental results on two action video datasets demonstrate
the effectiveness of our method.

Introduction
Action prediction refers to inferring action category labels
from partially observed videos that contain incomplete ac-
tion executions. It is very challenging since it is difficult to
exploit sufficiently discriminative information from partial
videos to make accurate prediction. Many existing studies
(Cai et al. 2019; Wang et al. 2019) learn an enriched feature
representation from the partial video by transferring discrim-
inative information from the full video. Several other meth-
ods (Zhao and Wildes 2019; Gammulle et al. 2019) gen-
erate a feature representation of the unobserved video part
to enhance the complete action representation for classifica-
tion. These methods have achieved promising performance
on action prediction, however, such considerable progress
has been made without exploring potentially valuable struc-
ture information within the video such as the interaction and
correlation between different object entities. It is a fact that
explicitly modeling the visual object relations in videos has
been demonstrated to play a pivotal role in action analysis
(Xiao et al. 2019; Zhou et al. 2018; Wang, Li, and Van Gool
2018; Tsai et al. 2019).
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In this paper, we investigate how the fine-grained visual
relations between objects evolve over both spatial and tem-
poral domains for action prediction. Inspired by the Gestalt
law in psychology that human beings have the innate ten-
dency to perceive the incomplete as complete and then they
unconsciously attempt to fill in the gap (Farahzad 1998;
Ehrenstein, Spillmann, and Sarris 2003; Spillmann 2006),
we devote to anticipating the visual relations for the unob-
served video part to enable a complete perception of the
video, thus facilitating action classification. With this in
mind, we propose a graph growing method that involves two
tasks: (1) reasoning relations in the observed video part via
graph neural networks and (2) synthesizing relations for the
unobserved video part via graph node generation and aggre-
gation.

In the relation reasoning task, we propose a spatial-
temporal relation reasoning model to extract the spatial rela-
tions between objects in still frames and explore how these
spatial relations dynamically change over time. Specifically,
we use gated graph neural network to perform the spatial
relation reasoning within video frames. Each video frame
is formulated as a spatial graph where the node denotes
an object and the directed edge denotes the spatial rela-
tion between two objects. For the temporal relation reason-
ing, we propose a long short-term graph convolutional net-
work (LST-GCN) to model both the short-term and long-
term temporal evolutions of the spatial relation with multi-
scale receptive fields. A spatial-temporal graph is built on
each video by formulating the spatial graph of each frame
as a super node and the temporal relations between frames
as directed edges. Consequently, the spatial-temporal rela-
tion reasoning is implemented by message propagation on
the spatial-temporal graph to learn the evolution of the struc-
tural information over both space and time.

In the relation synthesizing task, we propose a relation
synthesizing model to make the spatial-temporal graph built
in the reasoning task grow into representing the relations of
the complete video. The new grown part can be regarded as a
synthesized sub-graph to represent the relations of the unob-
served video frames. Then the built spatial-temporal graph
from the observed video part can be called observed sub-
graph. The observed sub-graph is grown in multiple tem-
poral scales to maintain the varying dynamics of relations
with different granularities. For the z-th scale, z nodes in
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the observed sub-graph are sampled with equal interval and
then fed into a graph auto-encoder to generate z unobserved
nodes in the synthesized sub-graph. The representations of
the forecasted z nodes are aggregated as the representation
of the synthesized sub-graph. Finally, the representations
of the observed sub-graph and the synthesized sub-graph
are concatenated to represent the visual relations within the
complete video for classification.

These two tasks are jointly learned in an end-to-end man-
ner to enable the synthesized sub-graph coupled with the
observed sub-graph discriminative and informative for ac-
tion prediction. A local graph alignment loss is proposed to
constrain the anticipated visual relations of the unobserved
video part as close to the corresponding realistic relations as
possible. A global graph alignment loss is designed to make
the grown whole graph that consists of the observed sub-
graph and the synthesized sub-graph sufficiently expressive
the structure information within the complete video.

The main contributions are summarized as follows:

• We propose a graph growing method to anticipate future
visual relations from limited video observations for action
prediction.

• We propose a joint learning of relation reasoning and re-
lation synthesizing via combining both local and global
graph alignment losses to capture the discriminative struc-
ture information.

• Extensive experiments on two video datasets demonstrate
the effectiveness of the proposed method.

Related Work
Action Prediction
Earlier methods formulate action prediction as a probablistic
model (Ryoo 2011; Cao et al. 2013; Lan, Chen, and Savarese
2014; Li and Fu 2014). Ryoo (Ryoo 2011) calculates max-
imum likelihood after video segmentation to make predic-
tion. Li et al. (Li and Fu 2014) apply probablistic suffix tree
to action prediction. Kong et al. (Kong, Kit, and Fu 2014;
Kong and Fu 2016) constrain the label consistency between
video segments and their corresponding full video. With the
success of deep learning, many recent methods (Hu et al.
2018; Kong et al. 2018; Cai et al. 2019; Pang et al. 2019;
Wang et al. 2019) resort to transferring knowledge from full
videos to partial videos by using the long short-term mem-
ory (LSTM) to model the temporal information in videos.
Wang et al. (Wang et al. 2019) propose a teacher-student
learning based framework to transfer the action knowledge
from the recognition model to the prediction model. Kong
et al. (Kong et al. 2018) augment the bi-direction LSTM
with a memory module to match characteristics of testing
videos with training videos for action prediction. Rather than
transferring the knowledge from the full video to enrich the
representation of the partial video, our method forecasts the
representation of the unobserved video part to generate the
representation of the complete video for action prediction,
thus imitating the perceptual process of human beings that
innately tend to perceive the incomplete as complete.

Several other methods (Vondrick, Pirsiavash, and Torralba
2016; Pang et al. 2019; Zhao and Wildes 2019) focus on
anticipating future representations from the observed video
part for prediction. Vondrick et al. (Vondrick, Pirsiavash, and
Torralba 2016) propose to generate visual representations of
unlabeled videos to make action prediction. Pang et al. (Pang
et al. 2019) predict future action features and use them to re-
construct the features of partially observed videos. Zhao et
al. (Zhao and Wildes 2019) propagate residuals of features
to anticipate future representations and exploit Kalman fil-
ter to make correction. Different from these methods that do
not explicitly model the visual relations, our method based
on the graph growing captures the spatial-temporal evolution
of visual relations to synthesize the future relation represen-
tation for action prediction.

Spatial-temporal Relation Reasoning
Spatial-temporal relation reasoning has been widely used in
video understanding (Wang and Gupta 2018; Qi et al. 2018;
Tsai et al. 2019; Xiao et al. 2019; Sun et al. 2019; Liu et al.
2019; Zhang et al. 2020). Qi et al. (Qi et al. 2018) exploit
multi-layer perceptrons to learn the human-object interac-
tion in videos for fine-grained action recognition. Xiao et
al. (Xiao et al. 2019) introduce a dual attention mechanism
and combine object attributes to represent and reason the
relationship between objects and actions. Sun et al. (Sun
et al. 2019) propose the relational recurrent network by com-
bining a detection model and a recurrent neural network to
jointly learn the feature extraction and relation reasoning.
Several other methods build the graphs to learn different re-
lations in videos. Zhang et al. (Zhang et al. 2020) design a
multi-head temporal adjacency matrix to model various tem-
poral relations in different granularities for action recogni-
tion. Tsai et al. (Tsai et al. 2019) regard actions as relations
between visual objects and apply conditional random fields
to model the video as a fully connected spatial-temporal
graph to make relation reasoning. Liu et al. (Liu et al. 2019)
construct three kinds of relation graphs to model the vari-
ations of human appearance, human-object interaction and
human-human interaction to recognize social relationship.
The aforementioned methods mainly focus on visual rela-
tion reasoning in videos. In contrast, our method does not
only reason relations in the observed video part, but also
synthesizes relations for the unobserved video part to pre-
dict actions.

Our Method
Our core idea of addressing action prediction is to forecast
the future spatial and temporal relations between objects
from the observed video part to generate the relation rep-
resentation of the complete video for action classification.
The proposed graph growing method consists of a relation
reasoning task that infers the visual relations from the partial
observations and a relation synthesizing task that generates
the visual relations of the unobserved part. In the relation
reasoning, a gated graph neural network (GGNN) is utilized
to perform spatial relation reasoning within video frames,
and a long short-term graph convolutional network (LST-
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Figure 1: Overview of our method.

GCN) is proposed for multi-scale temporal relation reason-
ing between sequential video frames. In the relation syn-
thesizing, a graph auto-encoder is introduced to generate
spatial-temporal relation representation of the unobserved
video part through node generation and aggregation. These
two tasks are jointly learned via both local and global graph
alignment losses. Figure 1 illustrates the overview of our
method.

Relation Reasoning
We build a spatial graph for each video frame, where each
node represents a detected object. The node feature is ex-
tracted by making ROI Pooling on the feature map of the
video frame. Each edge indicates the spatial relation be-
tween two objects and the edge feature is the representation
of the union bounding boxes of the two objects. The adja-
cency matrix A ∈ R|V |×|E| determines how nodes commu-
nicate with each other, where |V | and |E| denote the num-
bers of nodes and edges in the spatial graph, respectively.

We use the gated graph neural network (GGNN) (Li et al.
2016) to perform message propagation on the spatial graph.
To encourage the spatial relation reasoning in a broader re-
gion, the interaction between nodes in GGNN are replaced
by the interaction between nodes and its connected edges,
formulated by

an>vi = An
vi

[
h(n−1)
e1 . . .h(n−1)

e|Es|

]>
+ b (1)

where anvi indicates the interaction between the node vi
and its directly connected edges {e1, ..., e|Es|} at the n-th
timestep of propagation. An

vi ∈ R1×|Es| denotes the i-th
row of adjacency matrix at the n-th timestep, representing
the co-occurance relationship between the node vi and its
connected edges. h(n−1)

eq represents the state of edge eq at
the (n−1)-th timestep of propagation. b is a bias parameter.
The recurrence of node propagation is performed by a gated
recurrent unit (GRU). The edge feature is updated through
a fully connected layer. After the spatial relation reasoning,

a graph-level representation is generated by aggregating all
the node features via a soft attention mechanism:

gl(H
N ) = tanh

 |V |∑
i=1

αi tanh(h
N
vi)

 (2)

where gl(H
N ) ∈ Rdv×1(l = 1, ..., L) is the output graph-

based representation by aggregating all the node features.
HN = [hN

v1
, . . . ,hN

v|V |
] denotes the concatenation of node

features. hN
vi represents the feature of node vi after the last

timestep N . We have the attention constraint:
∑|V |

i=1 αi =
1, αi ≥ 0.

We build a spatial-temporal graph for the observed video
part, which is called observed sub-graph. Each node of the
spatial-temporal graph denotes a video frame and is repre-
sented by the spatial graph feature of the video frame. Each
edge denotes a temporal relation between pairwise frames
and is represented by a set of different scales of connections.
Different connections mean temporal relations with different
granularities.

To capture both long-term and short-term temporal varia-
tions in videos, we propose a long short-term graph convo-
lutional network (LST-GCN) for multi-scale message propa-
gation to perform temporal relation reasoning with different
scales of receptive fields in the temporal domain. The multi-
scale refers to sampling different numbers of video frames
as nodes of the spatial-temporal graph to propagate infor-
mation. It enables the spatial-temporal graph to update the
information of each node and edge in both the short-term
and long-term duration. Specifically, for the z-th scale, z
nodes are orderly sampled with equal intervals and their fea-
tures are concatenated into a vector that is used for temporal
relation reasoning. A spectral convolutional neural network
(Kipf and Welling 2017) is utilized for message propagation
and the node features of the spatial-temporal graph are up-
dated by

F = AobsX
>W (3)
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where Aobs ∈ Rz×z represents the adjacency matrix, of
which each element denotes the similarity score between
two nodes. The score is computed by a softmax function
that takes the concatenation of the two node features as in-
put. X ∈ RD×z represents the updated node features after
the spatial relation reasoning where D means the feature di-
mension. W denotes a weight matrix.

After the spatial and temporal relation reasoning, for each
scale, a graph-based representation Ez

obs of the observed
sub-graph is generated by feeding the concatenation of the
features of the sampled nodes into the function gl(·).

Relation Synthesizing
In the synthesizing task, a relation synthesizing graph model
is proposed to make the spatial-temporal graph built in the
reasoning task grow into representing the relations of the
complete video. The grown graph part is named synthesized
sub-graph. The relation synthesizing is performed in multi-
scale temporal ranges to generate the unobserved video re-
lations by preserving various structural information of the
video. The nodes in the synthesized sub-graph are generated
by a graph auto-encoder and then aggregated to a graph. For
the z-th scale, let Ez

syn denote the representation of the syn-
thesized sub-graph, generated by the node aggregation de-
fined in Eq. 2.

For the z-th scale, we firstly sample z nodes from the
observed sub-graph in the same way as described in the
temporal relation reasoning to generate the nodes of the
synthesized sub-graph. The adjacency matrix Asyn of the
synthesized sub-graph is initialized to an identity matrix
that represents every node only connects to itself. Then we
use the sampled node feature F ∈ RD×z to rebuild Asyn

by two graph convolution layers:

F
′
= GCN(F,Asyn) = D−1AsynFW1 (4)

Z = GCN(F
′
,Asyn) = D−1AsynF

′
W2 (5)

where D is the degree matrix of Asyn. W1 and W2 are
trainable weight matrixes. Z is a mean vector matrix. Then
we employ inner product decoder to update the adjacency
matrix by Âsyn = ϕ(ZZT ), where ϕ(·) is a Sigmoid func-
tion. After updating the adjacency matrix, the generated z
nodes in the synthesized sub-graph are formulated by

F∗ = GCN(F, Âsyn). (6)

The rebuilt Âsyn preserves the temporal relations in the ob-
served sub-graph and the features of the sampled nodes cap-
ture spatial relations in video frames. Thus the generated z
nodes maintain the structural information of the observed
sub-graph over both space and time. Finally, the graph-level
representation Ez

syn of the synthesized sub-graph at the z-th
scale is calculated by the node aggregation defined in Eq. 2.

Joint Learning
To enable the representation of the synthesized sub-graph
sufficiently realistic for action classification, we propose a

local graph alignment loss, given by

Losslocal =
I∑

i=1

Z∑
z=1

||Ez
syn,i � ω −Ez

gts,i � ω||
2

F
(7)

where Ez
syn,i ∈ Rd×z and Ez

gts,i ∈ Rd×z respectively in-
dicate the representations of the synthesized sub-graph and
the ground-truth sub-graph of the unobserved video part for
the i-th training video at the z-th scale. ω is a weight vector
and � represents element-level multiplication.

With the observed sub-graph representation Ez
obs,i and

the synthesized sub-graph representation Ez
syn,i for the i-

th training video at the z-th scale, we have a complete
graph representation Ez

gen,i = gl([E
z
obs,i,E

z
syn,i]) of the i-

th training video at the z-th scale.
To make the synthesized graph representation contain

global structure information for generating the spatial-
temporal relations of the fully observed video, we propose a
global alignment loss, formulated by

Lossglobal =
∑L

i=1

∥∥∥ 1
Z

∑Z
z=1 φ(E

z
gen,i)− 1

Z

∑Z
z=1 φ(E

z
gt,i)

∥∥∥2
F

(8)

where Ez
gt,i indicates the representation of the ground-truth

graph of the complete video for the i-th training video at the
z-th scale. φ denotes a mapping function that maps a graph
representation feature to the Reproducing Kernel Hilbert
Space (RKHS). In this paper, we use the Gaussian kernel:

k(x,y) = e
−‖x−y‖2

σ .

Loss Function
The generated complete graph representation at each scale
is used to produce the action category probability. All the
action category probabilities from all the scales are summed
up and fed into a softmax function to output the final ac-
tion category label. We use a cross-entropy loss to train the
classifier, given by

Losscls =
I∑

i=1

[−yi log ŷi − (1− yi)(1− ŷi)] (9)

where yi and ŷi are the ground-truth label and predicted la-
bel of the i-th training video, respectively.

Therefore, the relation reasoning task and the relation syn-
thesizing task are jointly learned through the whole loss
function:

Loss = Losscls + λ1Losslocal + λ2Lossglobal (10)

where λ1 and λ2 represent the balance parameters. In the
training stage, we firstly learn the relation reasoning task us-
ing Eq. 9 and then jointly learn the relation reasoning and
synthesizing tasks using Eq. 10.

Experiments
Datasets
We conduct experiments to evaluate our method on two
datasets: UCF101 (Soomro, Zamir, and Shah 2012) and
20BN-something-something (Goyal et al. 2017).
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Feature Method Observation ratio
0.1 0.2 0.3 0.5 0.7 0.9

ResNet-18

MSSC(Cao et al. 2013) 34.05 – 58.32 62.52 63.55 62.67
MTSSVM(Kong, Kit, and Fu 2014) 40.05 – 80.02 82.13 82.49 83.18
DeepSCN(Kong, Tao, and Fu 2017) 45.02 – 82.19 84.92 85.59 86.02

mem-LSTM(Kong et al. 2018) 51.02 – 86.75 88.37 89.22 89.97
MSRNN(Hu et al. 2016) 68.01 – 88.71 89.25 89.92 90.23

ours 75.85 81.72 87.78 88.69 89.42 90.15

ResNet-50

Context-aware + loss in (Jain et al. 2016) – 30.60 – 71.10 – –
Context-aware + loss in (Ma, Sigal, and Sclaroff 2016) – 22.60 – 73.10 – –

MS-LSTM (Hu et al. 2016) – 80.50 – 83.40 – –
AA-GAN (Gammulle et al. 2019) – 84.20 – 85.60 – –

ours 84.11 88.50 89.80 90.90 91.40 91.80

InceptionV4
RGN-KF(Zhao and Wildes 2019) 83.30 85.16 87.78 91.50 92.03 92.85
AAPNet(Kong, Tao, and Fu 2020) 59.85 80.44 87.12 86.65 88.34 90.92

ours 82.36 85.57 88.97 91.32 92.41 93.02

Table 1: Accuracies (%) of different methods on the UCF101 dataset using ResNet-18, ResNet-50 and InceptionV4 features

method observation ratio
0.1 0.2 0.3 0.5 0.7 0.9

mem-LSTM(Kong et al. 2018) 14.92 17.16 18.08 20.44 23.22 24.46
MS-LSTM(Sadegh Aliakbarian et al. 2017) 16.89 16.57 16.82 16.71 16.95 17.08

MSRNN(Hu et al. 2016) 20.62 20.47 21.02 22.45 24.05 27.13
ours 21.17 21.49 23.30 27.68 30.23 30.55

Table 2: Accuracies (%) of different methods on the 20BN-something-something dataset.

The UCF101 dataset has been widely used for action
recognition and prediction because of its wide range of ac-
tivities. It consists of 13,320 videos covering 101 action
categories. The actions in this dataset contain five types,
including human-object interaction, human-human interac-
tion, body-motion only, playing musical instruments and
sports. This dataset provides three official splits for train-
ing and validation and we report the average accuracy over
the three splits by following the standard practice.

The 20BN-something-something dataset is a large collec-
tion of 108,499 densely-labeled video clips across 174 la-
bels. These collected videos show more fine-grained actions
of human with everyday objects in real life, thus recogniz-
ing them requires a detailed understanding of actions and
scenes. We use the standard and official subset that con-
tains 21 action categories, including “Opening something”,
“Closing something”, “Turning something upside down”,
“Pretending to turn something upside down” and so on.
There are 11,101 short videos for training and 1,568 videos
for validation. We report the results by averaging classifica-
tion accuracies over all the classes.

Implementation Details
Feature Representation. For the UCF101 dataset, we
employ a Faster R-CNN model pre-trained on the ImageNet-
1k dataset to detect objects in video frames. Then we ex-
tract three kinds of Two-Stream CNN features to repre-
sent the objects and their relations: ResNet18 (He et al.
2016), ResNet50 (He et al. 2016) and InceptionV4 (Wang
et al. 2016). For the ResNet18 feature, we train two net-

works for the RGB and optical flow streams, respectively,
following (Hu et al. 2018). For the RGB stream, we fine-
tune ResNet-18 pretrained on ImageNet. For the optical flow
stream, we train ResNet-18 from scratch. For the ResNet50
feature, we finetune ResNet-50 pretrained on ImageNet for
both RGB and optical flow streams, following (Gammulle
et al. 2019). For the InceptionV4 feature (Wang et al. 2016),
we use TRN (Wang et al. 2016) trained on Kinectics (Kay
et al. 2017) with BN-Inception (Ioffe and Szegedy 2015) as
the backbone and finetune it for both GB and optical flow
streams, following (Zhao and Wildes 2019). For all the three
kinds of features, we use the feature map from the last con-
volutional layer and make ROI Pooling to extract the node
and edge features.

For the 20BN-something-something dataset, we train a
Faster R-CNN model with the ResNet-50-FPN backbone
(Lin et al. 2017). Since the ground-truth bounding boxes
of objects are not available on this dataset, we manu-
ally annoate bounding boxes of objects in 10 frames sam-
pled from each video and nearly 2,000 videos (about 20%
of the training videos) are annotated. The objects are ex-
tracted by the trained Faster R-CNN model and the thresh-
old of Intersection-over-Union(IoU) for proposals in non-
maximum suppression is set to 0.5. We extract the features
of bounding boxes from the last fully connected layer of the
Faster R-CNN model. In the spatial graph, the nodes are
initialized by the features of the detected object bounding
boxes and the edges are initialized by the union bounding
boxes of the two corresponding objects.
Model Setting. In the relation reasoning, the unit number
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method
UCF101 20BN-something-something

observation ratio observation ratio
0.1 0.2 0.3 0.5 0.7 0.9 0.1 0.2 0.3 0.5 0.7 0.9

w/o rea & syn 70.95 72.20 72.20 72.78 73.07 72.90 17.16 17.79 18.73 20.33 21.94 22.68
w/o synthesizing 78.58 82.27 82.26 82.64 86.37 86.80 14.80 19.20 20.22 24.36 27.74 28.06

w/o reasoning 76.63 81.22 83.60 85.52 86.30 86.80 19.98 19.32 20.11 22.06 25.32 27.28
w/o local loss 70.90 81.37 83.63 85.50 86.34 86.81 19.71 20.17 20.28 23.17 25.68 26.79

w/o global loss 74.90 85.30 88.50 90.70 91.80 92.02 18.43 18.75 20.16 22.83 24.75 24.40
ours 82.36 85.57 88.97 91.32 92.41 93.02 21.17 21.49 23.30 27.68 30.23 30.55

Table 3: Accuracies (%) of ablation studies on the UCF101 and 20BN-something-something datasets.

method
UCF101 20BN-something-something

observation ratio observation ratio
0.1 0.2 0.3 0.5 0.7 0.9 0.1 0.2 0.3 0.5 0.7 0.9

I-Matrix 80.05 84.93 86.16 87.22 87.92 88.40 17.16 18.11 18.73 20.33 21.94 22.68
S-Matrix (ours) 82.36 85.57 88.97 91.32 92.41 93.02 21.17 21.49 23.30 27.68 30.23 30.55

Table 4: Accuracies (%) of different relation matrix A on the UCF101 and 20BN-something-something datasets.

of GRU layers is set to 512 and the number of propagation
is set to 3. The feature dimensions of both initial nodes and
edges are reduced to 512 by a linear layer. In the relation
synthesizing, the dimension of graph representation feature
is set to 512. We use two graph convolutional layers to re-
build the adjacency matrix Asyn and one graph convolu-
tional layer to refresh the node feature F. The number of
scale is set to 5 for 20BN-something-something and 8 for
UCF101. The balance parameter λ1 is set to 0.125 and λ2
is set to 1. We randomly split 10% of the training set as
a validation set. All the networks are trained from scratch
with an initial learning rate of 0.00005. The Adam opti-
mizer (Kingma and Ba 2015) and the SGD optimizer are
employed with a batch size of 48 for optimization. We use
PyTorch 0.4.1 and train the model for 500 epochs on one
GTX-1080Ti GPU.

Comparison with State-of-the-art Methods
To evaluate the effectiveness of our method, we compare
our method with several state-of-the-art methods and report
the action prediction accuracies at the observation ratios of
{0.1,0.2,0.3,0.5,0.7,0.9}.

Table 1 shows the comparison results on the UCF101
dataset. The results of all the compared methods are directly
copied from their original papers. For fair comparison, we
use the same visual features (i.e., ResNet-18, ResNet-50 and
Inception V4) as the other methods. From Table 1, it is note-
worthy to make several observations. First, when using the
ResNet-18 feature, our method achieves better performance
with a gain of 7% at the observation ratio of 0.1 and compa-
rable performance at the other observation ratios, which val-
idates the benefit of modeling the spatial-temporal evolution
of visual relations to the early prediction. Second, when us-
ing the ResNet-50 feature, our method achieves the best re-
sults at all the observation ratios. The closest to our method
is AA-GAN that generates visual representation of the un-
observed video part via GAN. Our method outperforms it by
4% and 5% at the observation ratios of 0.2 and 0.5, respec-

tively, clearly demonstrating the superiority of anticipating
future visual relations via graph growing. Third, when using
the Inception V4 feature, our method outperforms the state-
of-the-art methods for most observation ratios.

Table 2 shows the comparison results on the 20BN-
something-something dataset. All the methods use the same
feature for fair comparison. For the compared methods, the
extracted features of bounding boxes are concatenated to
represent each video frame. It can be observed that the per-
formance of our method is superior to that of other methods,
which demonstrates that reasoning observed relations and
anticipating future relations is beneficial to improving the
action prediction accuracy.

Ablation Studies
Evaluation on Each Component. Table 3 reports the
ablation study results of different individual components
on both UCF101 and 20BN-something-something datasets.
“w/o rea & syn” represents the model without relation
reasoning and relation synthesizing, which concatenates
the features of the detected object bounding boxes and the
features of the union bounding boxes of two objects as
input, and directly uses the cross-entropy loss for training.
“w/o synthesizing” means only performing relation rea-
soning from the observed video part without forecasting
future relations. “w/o reasoning” means performing synthe-
sizing future with the observed video part directly without
performing relation reasoning. We can observe that when
removing the relation reasoning or the relation synthesizing,
the results will substantially degrade at all the observation
ratios, which validates that both of them are critical to the
prediction performance.

Evaluation on Different Losses. To evaluate how the
local and global graph alignment losses affect the prediction
performance, we conduct experiments with different losses
on both UCF101 and 20BN-something-something datasets.
“w/o local loss” represents only using the global graph
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Figure 2: Prediction examples on the 20BN-something-something dataset. The ground-truth labels in green are given on the
left side and predicted labels at different observation ratios are under the video frames. The labels in blue represent correctly
predicted labels and the labels in red represent wrongly predicted labels.

alignment loss and the classification loss for training. “w/o
global loss” represents only using the local graph alignment
loss and the classification loss for training. From the result
in Table 3, we can observe that the two losses work together
to make a positive impact on the prediction performance.

Evaluation on Different Relation Matrices A. We com-
pare performances of different relation matrices A in the
spatial graph, as shown in Table 4. “I-Matrix” means the
elements in relation matrix A that represent nodes associ-
ated with edges are initialized to 1 and “S-Matrix” means
the elements in relation matrix A that represent the nodes
associated with edges is initialized by formulating the dot
similarity between the node pairs. In this paper, we initialize
A using dot similarity between node pairs to achieve better
results.

Qualitative Analysis
To qualitatively analyze how the relation synthesizing af-
fect the prediction results, we show several exemplars of
predicted action category labels at different observations ra-
tios on the 20BN-something-something dataset in Figure 2,
where “Only reasoning” represents only performing relation
reasoning from the observed video frames without antici-
pating future relations. It is interesting to observe that our

method is able to make accurate predictions earlier than the
model that only performs relation reasoning, which clearly
demonstrates the importance of synthesizing the relations of
the unobserved video frames to generate the complete rela-
tion representation for action prediction.

Conclusion

We have presented a spatial-temporal graph growing method
for action prediction from partial videos. A relation reason-
ing model based on a gated graph neural network and a long
short-term graph convolutional network have been designed
to infer the spatial and temporal relations between visual
objects of the observed video part. A relation synthesizing
model based on a graph auto-encoder has been proposed to
generate node and edge representations for the unobserved
video part. The relation reasoning and synthesizing mod-
els are jointly learned via an integration of the local and
global graph alignment losses. Our method can successfully
interpret the observed video content and anticipate the fu-
ture video representation with fine-grained relations to make
prediction decisions. Experiments have shown the superior
performance of our method.
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