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Abstract

Existing person re-identification (Re-ID) methods mostly
prepare all training data in advance, while real-world Re-ID
data are inherently captured over time or from different lo-
cations, which requires a model to be incrementally gener-
alised from sequential learning of piecemeal new data with-
out forgetting what is already learned. In this work, we call
this lifelong person Re-ID, characterised by solving a prob-
lem of unseen class identification subject to continuous new
domain generalisation and adaptation with class imbalanced
learning. We formulate a new Generalising without Forget-
ting method (GwFRelD) for lifelong Re-ID and design a
comprehensive learning objective that accounts for classifi-
cation coherence, distribution coherence and representation
coherence in a unified framework. This design helps to simul-
taneously learn new information, distil old knowledge and
solve class imbalance, which enables GwFRelD to incremen-
tally improve model generalisation without catastrophic for-
getting of what is already learned. Extensive experiments on
eight Re-ID benchmarks, CIFAR-100 and ImageNet show the
superiority of GwFRelD over the state-of-the-art methods.

Introduction

Person re-identification (Re-ID) aims at matching people
across non-overlapping camera views. The development of
deep learning and the availability of increasingly large-scale
Re-ID datasets have significantly advanced person Re-ID in
the past decade (Cheng et al. 2020; Song et al. 2019; Wu,
Zhu, and Gong 2020). Existing Re-ID methods (Xiao et al.
2016; Yu, Wu, and Zheng 2017; Song et al. 2019) mostly
assume that all training data can be prepared in advance
for model learning. However, real-world Re-ID data (per-
son images) are inherently captured over time or from differ-
ent locations/domains, which requires a Re-ID model to be
incrementally optimised from sequential learning of piece-
meal new data. Potential solutions for solving this problem
include fine-tuning a pre-trained model with sequentially in-
putted new data or assembling all the data (old and new) into
a large data pool for joint-training from scratch. Although
these solutions are easy to implement, the former leads to
forgetting most previously learned knowledge, whilst the
latter imposes a huge burden not only on data storage, but
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also on the need for learning from scratch over combined
old and new data many times. This is both wasteful and non-
scalable. In essence, a Re-ID model needs to continuously
incorporate piecemeal new information while preserving old
knowledge without assembling old data again in a lifelong
learning process. We call this lifelong person Re-ID.

Intuitively, lifelong person Re-ID is related to incremen-
tal learning (Li and Hoiem 2018; Zhao et al. 2020) (also
known as lifelong learning (Hou et al. 2018)), which aims
to incrementally increase a model’s capability by a flow of
data rather than training a model with a fixed dataset all at
once. However, in traditional incremental learning, all test
classes are usually seen during training and/or share a com-
mon class space as the training data, so the main challenge is
leveraging new and old information to optimise a model for
a common set of known (seen) classes. In contrast, lifelong
person Re-ID has significantly different and harder chal-
lenges: (1) Lifelong Re-ID is inherently a zero-shot learn-
ing problem (w/o semantic information) where training and
test classes (person identities) are non-overlapping, so test
classes are unseen in training; (2) Sequential data streams
are from different domains with entirely different and new
classes (person IDs), which increases the difficulty in bal-
ancing information from new and old domains; (3) Class im-
balance is more challenging in lifelong Re-ID as compared
to a shared common class space in conventional incremental
learning, as each Re-ID dataset contains different numbers
of person identities (non-overlapping) with different num-
bers of samples. Image classification datasets usually have
balanced class sampling distributions, e.g. 100 classes in
CIFAR-100 (Krizhevsky and Hinton 2009) all having 600
samples per class.

In this work, we propose a novel Generalising without
Forgetting method (GwFRelD) for lifelong person Re-ID.
In GwFRelD, we continuously optimise a Re-ID model to
extract more generalisable feature representations for Re-ID
at different domains without catastrophic forgetting. To im-
plement this generalising without forgetting principle, our
learning paradigm resembles the spirit of the human vision
perceptual process. In the human vision system, we nor-
mally store in memory a few exemplars of classes observed
so far. When we encounter new classes (unseen before), we
improve our understanding of these new classes by lever-
aging both new and old information. In the same princi-



ple, GwFRelD exploits both new data and memory exem-
plars (Rebuffi et al. 2017) of old data to simultaneously learn
new knowledge, distil old knowledge and solve class imbal-
ance with a comprehensive learning objective in a unified
framework for lifelong Re-ID.

Our contributions are: (1) We introduce lifelong person
Re-ID characterised by solving the problem of unseen class
identification subject to continuous new domain generalisa-
tion and adaptation with class imbalanced learning, and for-
mulate a novel Generalising without Forgetting (GwFReID)
framework for lifelong Re-ID. (2) To simultaneously learn
new information, distil old knowledge and solve class imbal-
ance in lifelong Re-ID, we incorporate classification coher-
ence, distribution coherence and representation coherence
into a comprehensive learning objective for model gener-
alisation learning. (3) Extensive experiments on eight per-
son Re-ID benchmarks, CIFAR-100 (Krizhevsky and Hin-
ton 2009) and ImageNet (Russakovsky et al. 2015) show the
superiority of GwFRelD against the state-of-the-art alterna-
tive methods.

Related Work

Lifelong Learning. Lifelong (incremental) learning is a
learning strategy capable of continually upgrading a system
with a flow of new data (stream), rather than learning once
from a fixed set of data (batch) (Rebuffi et al. 2017; Zhao
et al. 2020). A key challenge in lifelong learning is to min-
imise catastrophic forgetting, i.e. how to leverage new infor-
mation for model updating while preserving old knowledge
learned in the past. A popular solution is to distil existing
capabilities about old knowledge from a frozen model using
a modified cross-entropy loss (Li and Hoiem 2018; Rebuffi
et al. 2017). Some recent works focus on exploiting cosine
normalisation (Hou et al. 2019) for learning a unified classi-
fier or utilising bias correction for estimating the bias in the
last fully connected (FC) layer (Wu et al. 2019; Zhao et al.
2020). However, existing methods cannot be readily applied
to lifelong Re-ID, because they mainly focus on incremen-
tal classifier learning which assumes that training and test-
ing data cover the same class space (seen classes) largely
from the same domain, while lifelong Re-ID requires to ad-
dress unseen class recognition and classifiers are removed
during testing (only the feature embedding model is used).
In this work, we propose a new Generalising without For-
getting method for lifelong Re-ID. We formulate a unified
framework with a comprehensive learning objective to in-
crementally optimise the feature embedding space for Re-ID
matching without catastrophic forgetting of what is already
learned.

Person Re-Identification. In the past decade, the devel-
opment of deep learning and the emergence of large-scale
datasets have significantly advanced person Re-ID (Song
et al. 2019; Wei et al. 2018; Wu, Zhu, and Gong 2019). Ex-
isting Re-ID methods mostly assume that all training data
(labelled or unlabelled) are prepared in advance for model
learning. For example, in (Song et al. 2019), Song et al. as-
semble multiple Re-ID benchmarks to optimise a domain
invariant mapping network for deployment. In (Xiao et al.
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2016), Xiao et al. pretrain a Re-ID model using all avail-
able datasets and fine-tune this model on a target domain for
deployment. However, real-world Re-ID data are inherently
captured over time or from different locations, which poses
new challenges to the conventional Re-ID learning. This re-
quires a Re-ID model to be incrementally generalised with-
out forgetting knowledge already learned. In (Sugianto et al.
2019), Sugianto et al. apply the learning without forgetting
method (LwF) (Li and Hoiem 2018) for continuous learning
in Re-ID, but their method is a straightforward application
of LwF, failing to address the inherent challenge of domain
incremental generalisation in Re-ID. In this work, we char-
acterise the lifelong Re-ID problem by unseen class recog-
nition, domain generalisation and class imbalanced learning.
To address these problems, we propose a novel Generalising
without Forgetting method and formulate a comprehensive
learning objective to continuously optimise a generalised
Re-ID model with sequential input data without forgetting
knowledge already learned.

Knowledge Distillation. Knowledge distillation is an ef-
fective solution to transfer knowledge between models with
different capabilities. In (Hinton, Vinyals, and Dean 2015),
Hinton, Vinyals, and Dean compress the information in a
large teacher model into a small student model using a distil-
lation loss. In (Romero et al. 2015), Romero et al. use inter-
mediate representations to compress a wider and shallower
teacher model into a deeper and thinner student model. In (L1
and Hoiem 2018), Li and Hoiem further demonstrate that the
modified cross-entropy loss in knowledge distillation can be
used for learning without forgetting in multi-task incremen-
tal learning. In our work, to regularise the distribution co-
herence between the new and old models, we also employ
a modified cross-entropy loss. But different from existing
methods, the proposed GwFRelD aims at continually opti-
mising a generalised Re-ID embedding model without for-
getting knowledge already learned, rather than learning an
incremental classifier or model compression. We formulate
a new comprehensive learning objective through a unified
collaborative training procedure for lifelong Re-ID.

Methodology
Approach Overview

Fig. 1 shows an overview of GwFRelID. We formulate life-
long Re-ID learning as a multi-class classification problem,
i.e. each person identity is considered as a unique class.
GwFRelD incrementally learns discriminative information
of new classes whilst preserves learned knowledge of old
classes. Suppose we have a model M which is previously
trained on training datasets X ° (with C° classes). Based on
herding selection (Welling 2009; Rebuffi et al. 2017), we
construct an exemplar memory E™ by selecting representa-
tive exemplars from X ° using M°, When new datasets X"
(with C™ classes) are available, we use X = X"UE™ as
the input for model incremental training. We initialise the
new model M"=M° and add C™ new output neurons (C"
new classes) to the last classification layer of M ™. Here, M°
plays a role of an expert dedicated to old knowledge, which
is frozen during the learning process. As shown in Fig. 1, we
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Figure 1: An overview of the proposed Generalising without
Forgetting method for lifelong person Re-ID (GwFRelD).

compute the features {v°,v™} and logits {z°, 2"} of each
sample z in X using both M° and M™. Note that, {v°, 2°}
and {v™, 2™} denote outputs of {M°, M™} rather than out-
puts of old and new samples. To simultaneously learn new
information, distil old knowledge and solve class imbalance,
the learning objective consists of three components: (1) The
logit outputs z™ from M™ are employed to optimise a clas-
sification coherence loss L.; (2) The logit outputs {z°, 2"}
from both M° and M™ are utilised to learn a distribution
coherence loss L4; (3) The feature representations {v°, v}
from both M° and M™ are used to optimise a representation
coherence loss £,.. Thus, the overall training objective L is
formulated as:

L=L.ALg+L,. @)

In Re-ID deployment, we use the feature extractor to get
the feature representation of each person image and employ
a generic distance metric d(-) (e.g. L2 distance) for Re-ID
matching. In image classification, we use the latest model
with a Nearest-Mean-of-Exemplars (NME) classifier (Re-
buffi et al. 2017) to predict the label of each image based
on the distance between an image to its nearest class mean.

Classification Coherence

Exemplar Memory. The exemplar memory is analogous
to human memory in the vision perceptual process, which
helps to improve understanding of new classes via leverag-
ing both new and old information. In our work, we only re-
serve a tiny number of samples as the memory exemplars to
minimise the memory consumption. Based on herding selec-
tion (Welling 2009; Rebuffi et al. 2017), we compute mean
feature prototypes of each class and generate a sorted list of
X™ based on the distance of each sample to the prototype in
each class. Then, we select the top-K samples per class in
each list as representative exemplars to update .
Classification Coherence. To learn new information in a
new model with new samples and reserved exemplars, cross-
entropy loss L. is usually used for classification:

exp(z]')
DPi = " o ) (2)
ST eap(2)
c"+C°
Lee=— Y yilog(p:), 3)
=1
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where p; is the probability over class ¢, z]' is the logit outputs
over class ¢ from the new model, y; is the ground-truth la-
bel. However, in lifelong Re-ID, there are different numbers
of classes (person identities) with different numbers of sam-
ples in each dataset, which leads to inherent class imbalance,
especially when a tiny number of memory exemplars from
different datasets are continuously incorporated into X . This
problem can be aggravated when simultaneously learning
new information and distilling old knowledge. Thus, we re-
place L.. (Eq. (3)) with a classification coherence loss L. in
M™:

cr+ce
= > w1 =pi) " Diog(py),
i=1
where + is the focusing parameter (Lin et al. 2017), e is the
training epoch, w(e) is a coordinating factor defined as:

1, e<@o,
“(©) =10, ¢> 6.

where 6 is the epoch threshold for balancing new infor-
mation learning, old knowledge distillation and rebalanced
learning. When w(e) = 1, Eq. (4) becomes Eq. (3).
Remarks. This design results in a unified two-stage learning
procedure: The first stage is performed in the first # epochs
to incrementally generalise a model via learning new infor-
mation without forgetting old knowledge (continual gener-
alisation stage), while the second stage is performed in the
remaining epochs to further improve model generalisation
via rebalanced learning (rebalanced learning stage). Intu-
itively, we can set w(e) = 0 to use (1 — p;)” throughout
the whole training process. However, this will impair the
continual generalisation of M™, because large modulating
weights will be assigned to hard samples (mainly new sam-
ples) and small weights will be assigned to easy samples (in-
cluding memory exemplars), resulting in overfitting to hard
new samples and forgetting of old knowledge. Thus, we use
a coordinating factor w(e) for balancing new information
learning, old knowledge distilling and rebalanced learning.

L. “4)

®)

Distribution Coherence

When adapting a Re-ID model to a new dataset, a straight-
forward solution is fine-tuning the model with new samples.
However, this fine-tuned model usually performs poorly on
old classes because of catastrophic forgetting of what is al-
ready learned. To preserve already learned knowledge, the
new model should mimic the behaviours of the old model,
i.e. the output predictions about old classes should be consis-
tent between M©° and M™. In our work, we use a distillation
loss (Hinton, Vinyals, and Dean 2015; Li and Hoiem 2018;
Rebuffi et al. 2017) and the Kullback Leibler (KL) diver-
gence to generate soft probability distributions for the old
classes in M° and M™, so that we regularise the distribution
coherence L4 between M° and M™ as:

oo _ (/T enn(/T) o
b eap(zg/T) " S eap(22/T)
c° Q‘?
La=w(e)B)_ Qlogy, (7)
=1 g



where T is a temperature (Hinton, Vinyals, and Dean 2015),
3 is usually set to T2 as a compensation factor, Q° and P"
are soft probability distributions over old classes in the M°
and M™. w(e) is the coordinating factor as Eq. (5) for bal-
ancing continual generalisation and rebalanced learning.

Representation Coherence

Encouraging the distribution coherence between M™ and
M? helps to learn old knowledge, but as more classes are
incrementally incorporated into the model, the probability
distribution becomes softer, resulting in the ambiguity of
decision boundary and performance degradation. To solve
this problem, we further use a representation coherence loss
L, to align the feature embedding space of M™ and M°.
Specifically, we normalise the features of samples {v™, v°}
extracted by M™ and M?, and compute d?(v"™,v°) to mea-
sure the distance of features from new and old models. Since
M?¢ is frozen, the new model might overfit to the old feature
space, we therefore further regularise the new feature space
by pulling the feature representations of samples extracted
by M™ close to their hard positive counterparts and pushing
away their hard negatives. Thus, £,. is formulated as:
L, =w(e)maz(p(z)d*(v",v°), a+ d(z)d*(v", v°)
+d(o",0"P) = d(", "),
where « is a margin, v™-P and v™-" are hard positive and neg-
ative counterparts of v™ respectively, ¢(z) is used to control
representation coherence learning with reserved exemplars
and new samples. For lifelong Re-ID, to avoid overfitting to
the old feature embedding space with domain discrepancies,
we set ¢(x) = X\ if x€E™, else ¢(x) = 0 (where )\ is a
weight parameter).
Summary. We summarise the training process of GwFReID
in Algorithm 1: When training with the first dataset, we use
a classification coherence loss L. to optimise a new model;
Then, when sequential new datasets are available, we opti-
mise the model with a comprehensive learning objective L.

®)

Experiments

Datasets. We conducted extensive experiments on eight
person Re-ID benchmarks and two image classification
datasets. (1) Although our method is designed for life-
long person Re-ID, it would be interesting to evaluate our
method for non Re-ID tasks. Thus, we employed CIFAR-
100 (Krizhevsky and Hinton 2009) and ImageNet (Rus-
sakovsky et al. 2015) to evaluate the incremental learn-
ing performance for image classification. CIFAR-100 con-
sists of 60000 images in 100 classes, with 500 training im-
ages and 100 testing images per class. ImageNet with 1000
classes from ILSVRC 2012 (Russakovsky et al. 2015) con-
tains 1.2 million training images and 50000 validation im-
ages. On each dataset, we used half of classes as the first
dataset for initialisation in the first phase and evenly divided
the remaining classes into 5 splits to mimic the lifelong
learning process (6 phases in total). Following (Hou et al.
2019), an identical random seed (1993) by NumPy was used
for class splitting. (2) We used four large-scale Re-ID bench-
marks (Market-1501 (Zheng et al. 2015), DukeMTMC-
RelD (Zheng, Zheng, and Yang 2017), CUHK-SYSU person
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Algorithm 1 GwFRelD for Lifelong Person Re-ID.
Input: Sequential input datasets X"
1: if The first dataset then /*Without old knowledge™*/
2: Randomly initialise M "™
X=X"
for e = 1—e,q, do
Get classification coherence loss L. (Eq.(4))
Backward to update M™ with L,
end for

else /*Generalising without forgetting™/
9: X = X"UE™

A Al

10: Initialise M"=M?¢ and modify the last layer in M™
11: for e = 1—e,,4, do
12: Get classification coherence loss L. (Eq.(4))
13: Get distribution coherence loss £, (Eq.(7))
14: Get representation coherence loss £, (Eq.(8))
15: Backward to update M™ with Eq.(1)
16: end for
17: end if
18: M°+M™ and update exemplar memory E™
19: return: An up-to-date model M"
Types | Datasets | IDs | Imgs [ trainids | testids
Stream Market 1501 36036 751 750
Based Duke 1404 36411 702 702
Tnput Cuhk-Sysu | 8432 | 23435 5532 2900
MSMT17 | 4101 | 124068 1041 3060
Unseen CUHKO3 1467 14097 - 100
New iLIDS 119 476 - 60
Test VIPeR 632 1264 - 316
3DPeS 193 1012 - 96

Table 1: Re-ID evaluation setting statistics. Imgs: Images.

search (Xiao et al. 2017) and MSMT17 (Wei et al. 2018))
as sequential input datasets to mimic the lifelong learning
process (4 phases). On CUHK-SYSU, we modified the orig-
inal dataset by using the ground-truth person bounding box
annotation rather than using the original images which are
used for person search evaluation. For testing on CUHK-
SYSU, we fixed both query and gallery sets (w/o distractors)
rather than used variable gallery sets. We used 2900 query
persons and each person contains at least one image in the
gallery. (3) We further tested the model (after training with
all 4 phases) on four new Re-ID datasets (CUHKO3 (Li et al.
2014), iLIDS (Zheng, Gong, and Xiang 2009), VIPeR (Gray
and Tao 2008) and 3DPeS (Baltieri, Vezzani, and Cucchiara
2011)) to evaluate its lifelong generalised Re-ID perfor-
mance. On CUHKO3, we used the traditional training/testing
splits for 20 trials, while on the other benchmarks, we em-
ployed the random half training/testing splits for 10 trials.
The Re-ID evaluation statistics are summarised in Table 1.

Evaluation Metrics. On image classification evaluation, we
computed the classification accuracy, while on person Re-
ID evaluation, we computed the Rank-1 accuracy (R1) and
mean Average Precision (mAP). To evaluate the incremen-
tal learning performance (on both image classification and
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Figure 2: Incremental learning performance evaluation on CIFAR-100, ImageNet, and Re-ID benchmarks.

Re-ID), after each training phase, we tested the model on
all datasets/classes observed so far and plotted the accura-
cies in a line graph. The average incremental accuracy (Re-
buffi et al. 2017) was shown in the legend of each line graph.
To evaluate the lifelong generalised Re-ID performance, at
the end of the last phase, we tested the model on all Re-ID
benchmarks. Besides, at the end of the last phase, we com-
puted the difference between the accuracies (Agy /map) of
the last (Mj,s;) and the first models (M ;,4;) on the initial-
isation dataset, and measured the forgetting ratio (FR) for

lifelong Re-ID as (1 — A’iﬁ%ij;;iﬁmﬁﬁgﬁzri)) x 100%.

Implementation Details. We implemented the proposed
method using Python 3.6 and PyTorch 0.4, and trained it
on NVIDIA TESLA GPUs. On Re-ID, we used ResNet-
50 (He et al. 2016) (pretrained on ImageNet) as the back-
bone model. In each lifelong learning phase, we trained the
model with 60 epochs for continual learning and 30 epochs
for rebalanced learning (i.e. set 6 60 in Eq. (5) and
emaz = 90). We used SGD as the optimiser with momentum
0.9 and weight decay 5e-4. We set the initial learning rates
to 0.01 for the feature extractor and 0.1 for the classification
layers, which decayed by 0.1 after {40, 75} epochs. We set
batch size to 32, K=2 to construct the exemplar memory,
A=10 and a=0.5 in Eq. (8) to balance representation learn-
ing, v = 21in Eq. (4), T' = 2 in Egs. (6) and (7) to generate
soft distribution. On image classification, we used ResNet-
32 and ResNet-18 for CIFAR-100 and ImageNet, respec-
tively. We set batch size to 128, K=20, 5 = 0.172, and ap-
plied ¢(z) = A. For CIFAR-100, we trained the model with
6=160 epochs for continual learning and set €,,,,=200. We
set the initial learning rate to 0.1, which decayed by 0.1 after
{80,120, 180} epochs. For ImageNet, we trained the model
with =90 epochs for continual learning and set e,,,4,=112.
We set the initial learning rate to 0.1, which decayed by 0.1
after {30, 60, 100, 110} epochs.

Compared Methods. iCaRL-Base: A baseline model
(e.g. ResNet-50 for Re-ID) with iCaRL (Rebuffi et al.
2017); WA-Base: A baseline with iCaRL plus weight align-
ing (Zhao et al. 2020); LUCIR-Base: A baseline with LU-
CIR (Hou et al. 2019); BiC-Base: A baseline with iCaRL
plus a bias correction layer (Wu et al. 2019); LwF-Base: A
baseline with LwF (Li and Hoiem 2018) (multi-class im-
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plementation with herding exemplars for the NME classi-
fier); RSFT-Base: A baseline with iCaRL plus rebalanced re-
sampling for fine-tuning (Castro et al. 2018); Expert-Base:
A baseline with iCaRL using an expert distillation loss to
replace classification loss (Hou et al. 2018); FineTune: A
baseline incrementally fine-tuned with new datasets. Joint-
Train-All: A baseline assembles all datasets/data in advance
for joint training once. Here, BiC-Base for lifelong Re-ID
used resampling to get the balanced validation data for bias
correction, because the 9:1 splitting ratio is not applicable
when using a tiny number of memory exemplars (e.g. K=2).

Incremental Learning Performance Evaluation

Evaluation on CIFAR-100 and ImageNet. To adapt our
method for non RelD tasks (i.e. image classification in this
work), we employed GwFRelD (used traditional FC layers
for classification) and GwFRelD+CN (used a Cosine Nor-
malisation (CN) classifier for classification and computed
distillation loss with the scores before softmax w/o the re-
balanced learning stage (Eq.(4)) as (Hou et al. 2019)). We
used a NME classifier for testing prediction in all competi-
tors (except FineTune and Joint-Train-All). As shown in
Figs. 2(a) and 2(b), GWFReID+CN (red line) and GwFRelD
(orange line) achieve competitive performance compared
with the state-of-the-art methods. Specifically, on CIFAR-
100 (Fig. 2(a)), GwWFReID+CN achieves the best average in-
cremental accuracy (63.5%), while LUCIR and GwFRelID
rank the second and the third, respectively. Besides, during
lifelong learning, the performance of FineTune drops dra-
matically, which indicates that FineTune suffers from catas-
trophic forgetting; By contrast, GwFReID achieves signif-
icantly better performance in each phase after the initiali-
sation, which shows the effectiveness of GwFReID for si-
multaneously learning new information and old knowledge.
Here, Joint-Train-All achieves 70.1% classification accu-
racy. On ImageNet (Fig. 2(b)), GwWFReID+CN, LUCIR and
GwFRelD still perform better than the other competitors,
where GwFReID+CN achieves the compelling average in-
cremental accuracy 63.4%. Here, Joint-Train-All achieves
69.1% classification accuracy.

Evaluation on Re-ID Benchmarks. To mimic lifelong
person Re-ID, we used four large-scale Re-ID bench-



Train: Market—Duke—Cuhk-Sysu—Msmt
Methods Market Duke Cuhk-Sysu MSMT17 Average FR
Rl mAP | Rl mAP | Rl mAP | Rl mAP | Rl mAP

Joint-Train-All 882 729 | 764 623 | 875 855 | 60.7 347 | 782 639 -
LwF-Base 56.0 306 | 428 26.6 | 794 762 | 321 140 | 52.6 369 | 452
iCaRL-Base 77.0 559 | 56.1 374 | 844 81.5 | 344 145 | 63.0 473 | 12.7
LUCIR-Base 76.6 528 | 4994 314 | 842 815 | 40.7 181 | 62.7 460 | 184
WA-Base 732 521 | 546 360 | 83.7 81.1 | 396 172 | 628 46.6 | 17.0
BiC-Base 75.8 534 | 554 377 | 842 814 | 33.0 13.1 | 62.1 464 | 153
Expert-Base 653 395 | 509 30.0 | 794 765 | 509 255 | 61.6 429 | 30.8
RSFT-Base 75.6 536 | 584 40.0 | 84.7 82.0 | 432 195 | 655 48.8 | 142
FineTune 526 265 | 460 292 | 751 713 | 591 311 | 582 395 | 474
GwFRelID 81.6 609 | 665 46.7 | 839 814 | 524 259 | 71.1 53.7 | 6.7

Table 2: Lifelong Re-ID generalised performance evaluation on stream-based source domains. The results are reported at the

end of the last training phase.

Methods Train: Market—Duke—Cuhk-Sysu—Msmt
CUHKO3 | iLIDS | VIPeR | 3DPeS
Joint-Train-All 45.9 70.3 46.3 65.0
LwF-Base 32.7 64.0 33.6 514
iCaRL-Base 33.1 62.3 36.9 58.0
LUCIR-Base 37.2 66.7 39.3 56.7
WA-Base 30.5 65.8 39.8 58.9
BiC-Base 31.2 62.8 38.0 58.8
Expert-Base 333 63.0 37.8 56.0
RSFT-Base 332 67.0 38.8 58.6
FineTune 31.8 62.7 24.7 51.7
GwFRelD 40.2 69.5 43.2 64.9

Table 3: Lifelong Re-ID generalised performance evaluation
on new unseen domains. The results (R1) are reported at the
end of the last training phase. Here, we did not use any train-
ing data on new test domains.

marks as the sequential inputs: Market—Duke—Cuhk-
Sysu—MSMT17. As shown in Fig. 2(c), GwFRelD
achieves compelling performance compared with the state-
of-the-art alternative methods. Specifically, after the initial-
isation (phase:1), GwFRelD (red line) achieves the best re-
sults in each phase and gets the best average incremental ac-
curacy (78.0%), which significantly outperforms the alterna-
tive methods. This demonstrates that GwFRelD is effective
for learning new information without catastrophic forgetting
of old knowledge in lifelong Re-ID. Here, randomly select-
ing K samples per class at each phase for lifelong Re-ID can
only achieve 33.9% average incremental accuracy.

Lifelong Generalised Performance Evaluation

Evaluation on Source Domains. As shown in Table 2, after
training with four phases, on the first two source datasets,
GwFRelD achieves the best performance (81.6%/60.9% in
R1/mAP on Market and 66.5%/46.7% in R1/mAP on Duke),
which are significantly better than other incremental meth-
ods. This shows that GwFReID can preserve old knowl-
edge without catastrophic forgetting. On the third dataset
(CUHK-SYSU), most methods (e.g. RSFT-Base, iCaRL-
Base, LUCIR-Base and GwFRelD) achieve close perfor-
mance because this dataset is less challenging. RSFT-Base
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Components [ mMAP  RI

GwFRelD (full model) 53.7 711
GwFReID w/o {L¢, La, L }* 443 63.7
GwFRelID w/o {Lq4, L} 454  65.1
GwFRelID w/o L4 529 70.8
GwFRelD w/o L, 51.0 69.2
GwFRelD w/o L.* 49.8 64.7

Table 4: Evaluating comprehensive learning objective on
four sequential input Re-ID datasets. The average lifelong
generalised performance at the end of the last training phase
is reported. *: Use L. to replace L. and set to O after e > 6.

ranks the first but it requires to resample datasets for fine-
tuning, while GwFReID achieves 83.9%/81.4% in R1/mAP
which are close to the performance of RSFT-Base. On the
last dataset (MSMT17), FineTune performs significantly
better than the other methods because it mainly focuses on
learning information on the last dataset without distilling
old knowledge, while GwFReID achieves the second-best
R1/mAP (52.4%/25.9%) which are close to FineTune. This
shows that GwWFReID can simultaneously learn new infor-
mation and distil old knowledge. On average, GwFRelID
achieves the best R1 (71.1%) and mAP (53.7%), which are
significantly better than other incremental methods and are
close to the Joint-Train-All. Besides, GwWFRelID achieves the
best FR (6.7%), which shows the effectiveness of GwFRelID
for solving the catastrophic forgetting problem.

Evaluation on Unseen New Domains. As shown in Table 3,
on four new unseen datasets, GwFReID achieves signifi-
cantly better performance compared with other incremen-
tal methods. Specifically, GwWFReID achieves the best R1
accuracies on CUHKO3 (40.2%), iLIDS (69.5%), VIPeR
(43.2%) and 3DPeS (64.9%), which are close to the Joint-
Train-All. These results show that GwFRelD is capable of
generalising a model in lifelong Re-ID with good potential
for real-world domain transfer deployment.

Further Analysis and Discussion

Comprehensive Learning Objective. Table 4 shows the
evaluation on the comprehensive learning objective of



Components [ mAP  RI

GwFRelD (full model) 537 711
w(e) = 0in Eq.(4) 527  69.7
w(e) = 1in Eq.(4) 532 703
w(e) = 0in Eqs.(7) & (8) 454 651
w(e) = 1in Eqgs.(7) & (8) 504 654

Table 5: Evaluating the coordinating factor on four input
Re-ID benchmarks. The average lifelong generalised perfor-
mance is reported at the end of the last training phase.

Metric [ A=0 =10 =20 =50 | (@€E)=A = A
FR | 99 67 65 63 6.7 8.6
Aime | 770 780 775 772 78.0 74.9

Table 6: Evaluating representation coherence parameters on
four sequential Re-ID benchmarks. Forgetting Ratio (FR)
and Average incremental accuracy (A4;,.) are reported.

GwFRelID. We can see that GwFRelID with all the optimi-
sation component achieves the best performance (53.7% in
mAP and 71.1% in R1), while GwFReID w/o {L., L4, L}
performs the worst. These results show the importance of
distribution coherence, representation coherence and classi-
fication coherence in a unified framework for GwFRelID.
Coordinating Factor. From Table 5, we can see that: (1)
“w(e) = 0 in Eq.(4)” means using the rebalanced factor
throughout the whole training process, which leads to per-
formance degradation due to overfitting to hard samples;
(2) “w(e) = 1 in Eq.(4)” means using the standard cross-
entropy loss in the continual generalisation stage and then
further using it for the rebalanced learning stage, which
performs closely to GwFRelID (full model), indicating the
importance of the rebalanced stage for lifelong Re-ID; (3)
“w(e) = 0 in Eqgs.(7) and (8)” means without using dis-
tribution and representation coherence losses, which results
in the worst performance, while “w(e) = 1 in Egs.(7) and
(8)” means using distribution and representation coherence
losses throughout the whole training process, which results
in poor performance due to overfitting to old knowledge.
Representation Coherence Parameters. In Eq. (8), ¢(x)
and A\ control representation coherence among samples.
From Table 6, we can see that: (1) With the increase of A,
FR gradually decreases resulting in less catastrophic forget-
ting; (2) Setting A=0 brings inferior FR and A;,,., but using
a large A also decreases A;,c; (3) When using GwFReID w/
¢(x) = X (align feature representations for all samples), the
new feature embedding space overfits to the old one, result-
ing in inferior A;,,., but its FR is still better than GwFReID
w/o using feature distillation (A=0).

Exemplar Memory. Fig. 3 shows the impact of the num-
ber of memory exemplars on lifelong Re-ID and incremental
image classification. On Re-ID (Fig. 3(a)), GwWFReID with
K=ALL performs significantly better than GwFReID with a
few exemplars (/{=2 and K=4). On CIFAR-100 (Fig. 3(b)),
the performance of the GwFReID gradually improves when
more exemplars are used. Here, when using a fixed mem-
ory size (2000 exemplars in total) on CIFAR-100, GwFReID
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Figure 3: Evaluating exemplar memory on person Re-ID and
image classification (Incremental accuracies).
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Figure 4: Evaluating (a) exemplar selection on Re-ID (In-
cremental accuracies) and (b) sequential input orders of
Re-ID datasets (Average lifelong generalised results). In
(b), Order-1: Market—Duke— Cuhk-Sysu—Msmt. Order-2:
Cuky-Sysu—Msmt—Market—Duke.

still achieves 62.5% average incremental accuracy. Although
using more memory exemplars brings better performance,
it requires more storage and computational cost, so we set
K =2 for lifelong Re-ID and K'=20 for image classification.
Exemplar Selection. Fig. 4(a) compares herding selection,
random selection and easy-hard selection (select the first and
the last samples in the sorted list) for exemplar selection in
GwFReID. We can see that GwFRelID with herding selec-
tion performs slightly better than the other variants.
Sequential Input Order. In Fig. 4(b), we tested with two
different sequential input orders. As shown in Fig. 4(b),
GwFRelD outperforms FineTune by approximately 13% in
terms of average lifelong generalised R1 accuracy in both
orders, which indicates that GwFRelID is applicable to life-
long Re-ID not specific to the order of input datasets.

Conclusion

In this work, we addressed the problem of lifelong person
Re-ID, an incrementally generalisable learning approach to
more realistic deployment requirements. We characterised
lifelong Re-ID by incrementally learning on new domains
for unseen class recognition without forgetting old knowl-
edge whilst subject to class imbalanced data. We formulated
anovel Generalising without Forgetting method (GwFReID)
for lifelong Re-ID, which is accomplished using a compre-
hensive learning objective that accounts for classification
coherence, distribution coherence and representation coher-
ence in a unified framework. Extensive experiments on eight
Re-ID benchmarks, CIFAR-100 and ImageNet show the ad-
vantages of GwFRelD over the state-of-the-art methods.
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