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Abstract
Detecting 3D objects from point clouds is a significant yet
challenging issue in many applications. While most existing
approaches seek to leverage geometric information of point
clouds, few studies accommodate the inherent semantic char-
acteristics of each point and the consistency between the geo-
metric and semantic cues. In this work, we propose a novel
semantic consistency network (SCNet) driven by a natural
principle: the class of a predicted 3D bounding box should
be consistent with the classes of all the points inside this box.
Specifically, our SCNet consists of a feature extraction struc-
ture, a detection decision structure, and a semantic segmen-
tation structure. In inference, the feature extraction and the
detection decision structures are used to detect 3D objects. In
training, the semantic segmentation structure is jointly trained
with the other two structures to produce more robust and
applicative model parameters. A novel semantic consistency
loss is proposed to regulate the output 3D object boxes and
the segmented points to boost the performance. Our model is
evaluated on two challenging datasets and achieves compara-
ble results to the state-of-the-art methods.

Introduction
Detecting 3D objects from point clouds is a significant is-
sue in numerous applications, such as autonomous driving,
domestic robots, and augmented reality. Compared with 2D
images, 3D point clouds provide more reliable geometric in-
formation. However, point clouds are usually sparse, irreg-
ular, and lacking in texture information, which makes 3D
object detection a challenging problem.

For the decent effectiveness and accessibility, neural net-
work models have been widely used in 3D object detec-
tion, such as DSS (Song and Xiao 2016), 3DSIS (Hou,
Dai, and Niessner 2019), VoxelNet (Zhou and Tuzel 2018),
MV3D (Chen et al. 2017), BirdNet (Beltrán et al. 2018),
PointNet (Qi et al. 2017a) , and VoteNet (Qi et al. 2019).
While these studies have made remarkable progress, most of
them mainly pay attention to the geometric properties (e.g.
center, edge, and corner) of point clouds but neglect the se-
mantic characteristics of each point and the inherent consis-
tency between geometric and semantic cues. These factors
limit the improvement of object detection performance.
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Figure 1: Illustration of the consistency between a 3D object
box and the corresponding points inside. It is natural that
the class of a correctly predicted bounding box should be
consistent with the classes of all the points inside. (a) Input
point clouds with an object bed to be detected. (b) High con-
sistency between a bounding box and the points inside. (c)
Class inconsistency. (d) Location inconsistency.

In fact, 3D object detection is closely related to seman-
tic segmentation of point clouds since a 3D box’s geometric
attributes (size and location) and it’s class are almost deter-
mined by the points inside the box. The more consistent the
3D box’s semantic label and the points’ labels inside the 3D
box, the more accurate the 3D box is, as shown in Fig. 1
(b). On the other hand, the inconsistency, whether geometric
or semantic, between the 3D box and the 3D points would
mean incorrect 3D object detection, as shown in Fig. 1 (c)
and (d). This phenomenon suggests that if a 3D object detec-
tion model was jointly trained with a semantic segmentation
model and supervised by the consistency mechanism, the 3D
object detection performance would be improved.

Inspired by this idea, in this paper, we propose a novel
semantic consistency network (SCNet) for 3D object detec-
tion. This network contains three major parts: a feature ex-
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traction structure, a detection decision structure, and a se-
mantic segmentation structure. The feature extraction struc-
ture takes the point clouds as inputs and aims to extract deep
features from the point clouds. The detection decision struc-
ture up-samples the deep features and combines the geomet-
ric and semantic cues to vote for the centers of 3D object
boxes and output 3D proposals. The semantic segmentation
structure is activated in training and jointly trained with the
feature extraction and detection decision structures end-to-
end. In this way, the learning of the network parameters is
supervised not only by object detection but also by semantic
segmentation, which makes the learned model more robust
and applicative and therefore improves the performance.

We propose a novel semantic consistency loss which reg-
ulates the output 3D bounding boxes and the segmented se-
mantic points. This loss formulates the semantic consistency
mechanism that the class of a predicted 3D bounding box
should be consistent with the classes of all the points inside
this box. This inherent semantic consistency mechanism im-
poses effective constraints on both object classification and
location, and therefore tends to improve the 3D object de-
tection performance.

We test the proposed method on two challenging datasets:
SUN RGB-D (Song, Lichtenberg, and Xiao 2015) dataset
and ScanNetV2 (Dai et al. 2017) dataset. The experi-
ments show that our method achieves comparable results to
the state-of-the-art methods. Extensive ablation studies and
analyses prove the effectiveness of each proposed module.

This paper makes four major contributions:
1. It proposes an architecture which incorporates semantic

segmentation of point clouds to train the 3D object detec-
tion model and improves the model performance.

2. It proposes a semantic consistency mechanism and a cor-
responding loss function, which regulates the relations be-
tween the predicted 3D boxes and the inside points.

3. It proposes a novel voting module which combines geo-
metric and semantic cues to make detection decision.

4. The model achieves comparable results to the state-of-
the-art methods on two challenging datasets. Ablation
studies prove the effectiveness of each proposed module.

Related Work
3D Object Detection
With the rapid progress in deep convolutional neural net-
works (Krizhevsky, Sutskever, and Hinton 2012), many
state-of-the-art methods (Girshick 2015; Ren et al. 2015; He
et al. 2017; Liu et al. 2016) achieve remarkable improve-
ments for 2D object detection. However, 3D object detection
task is more complicated due to the sparse, unevenly dis-
tributed, and irregular point clouds. From the perspective of
how to organize the input point clouds, recent deep learning-
based methods for 3D object detection can be divided into
three categories: voxel-based methods, projection methods,
and pointnet-based methods. Voxel-based methods (Song
and Xiao 2016; Engelcke et al. 2017; Zhou and Tuzel 2018;
Lang et al. 2019; Yan, Mao, and Li 2018; Chen et al. 2019;
Song and Xiao 2014) convert point clouds into voxel grids
and then apply 3D CNN directly. Projection based meth-

ods (Chen et al. 2017; Beltrán et al. 2018; Li et al. 2019;
Liang et al. 2019; Xia et al. 2021) project point clouds into
2D format data (e.g. bird’s eye view and front view) to re-
duce the computational complexity of the network. These
two types of methods could not preserve all the information
from raw point clouds because of the irreversible data con-
version. Pointnet-based methods (Qi et al. 2017a,b, 2018,
2019; Yi et al. 2019; Shi, Wang, and Li 2019) extract fea-
tures directly from raw point clouds to efficiently utilize the
sparsity of 3D data and preserve the original geometry in-
formation. The PointNet++ model (Qi et al. 2017b) uses a
hierarchical network to extract point cloud features for clas-
sification and segmentation.

The most recent work VoteNet (Qi et al. 2019) combines
the traditional Hough voting (Hough 1959) with deep neu-
ral networks to vote for accurate object centers. It adopts
the PointNet++ (Qi et al. 2017b) to extract base features and
achieves quite good results on several 3D indoor datasets.
However, the neglect of semantic characteristics of point
clouds and inherent relations between geometry and seman-
tic cues may limit the detection performance.

Semantic Segmentation
The development of semantic segmentation for point clouds
is quite similar to 3D object detection. Voxel-based meth-
ods, projection methods, and pointnet-based methods are
three mainstream types. SONet (Li, Chen, and Lee 2018)
and Pointweb (Zhao et al. 2019) extract contextual fea-
tures from point neighborhood for better representation of
this local region. Some studies (Wang et al. 2019b; Shen
et al. 2018; Wang, Samari, and Siddiqi 2018; Wang et al.
2019a) adopt graph convolutional network (GCNN) to learn
points features jointly. ShapecontextNet (Xie et al. 2018)
and PCAN (Zhang and Xiao 2019) aggregate local features
of point clouds based on attention mechanism. SPLANet (Su
et al. 2018) uses sparse bilateral convolutional layers as
building blocks to maintain efficiency, and A-CNN (Ko-
marichev, Zhong, and Hua 2019) designs a new convolution
operator for better local geometry capture. These two are
kernel-based convolution methods.

Considering that the semantic segmentation stream of our
model is utilized as an auxiliary structure to assist the pri-
mary object detection task, we only adopt the plain Point-
Net++ (Qi et al. 2017b) as the backbone of the segmentation
structure without using other complicated techniques.

Semantic Consistency Network
In this section, we will elaborate on our semantic consis-
tency network model and its modules.

Overall Architecture
The input of the model is a 3D point cloud matrix of size
N × 3, where each row of the matrix is a 3D location of a
point and N is the number of all points. Our semantic con-
sistency network contains three major structures: feature ex-
traction structure, detection decision structure, and semantic
segmentation structure, as shown in Fig. 2. In inference, the
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Figure 2: The architecture of our proposed SCNet. Given an input point cloud (N × 3), the feature extraction structure down-
samples and groups the points to learn deep representations. The detection decision structure utilizes the shared features to
produce the final 3D bounding boxes. The semantic segmentation structure is activated only in training to output per-point
semantic classes by processing these deep features through several up-sampling layers. In training, the semantic consistency
between 3D bounding boxes and the corresponding semantic points is leveraged to guide the learning of object detection.

feature extraction structure and the detection decision struc-
ture are jointly used to detect 3D objects from point clouds;
in training, all the three structures are jointly trained in an
end-to-end way.

Feature Extraction Structure This structure takes the 3D
point cloud matrix as inputs and aims to extract deep features
of point clouds. The output features are fed to both the detec-
tion decision structure and the semantic segmentation struc-
ture. We use the base architecture of PointNet++ (Qi et al.
2017b) as this feature extraction structure. It is composed
of five cascaded modules and each module contains three
layers: down-sampling, grouping, and feature mapping (Qi
et al. 2017b). The 3D points are down-sampled by the far-
thest point sampling method and all the points around each
sampled point are grouped as a cluster, as shown in Fig. 2. In
our model by down-sampling and grouping, the numbers of
points in the five modules are N , 2048, 1024, 512, and 256,
respectively. For each sampled point, a set of fully connected
neural network layers are used to extract deep features, and
the dimensions are 128, 256, 256, and 256 in the last four
modules. Thus this feature extraction structure finally out-
puts a deep representation of 256× (256 + 3), where 3 indi-
cates the dimension of the 3D location.

Detection Decision Structure This structure takes the
learned base features from feature extraction structure as

input and outputs predicted 3D bounding boxes. We adopt
VoteNet (Qi et al. 2019) as the pipeline. It consists of five
cascaded modules, and the first two modules up-sample the
points to 512 and 1024 sequentially. Then these up-sampled
points and their corresponding features are fed to the seman-
tic voting module which outputs 1024 votes with geometric
and semantic information. Feature dimensions of these three
modules are 256, 256, and 256+K+1, whereK is the class
number. The next proposal module groups these votes and
produces Q initial proposals through a set of fully connected
layers. We obtain the final q predicted bounding boxes after
the 3D NMS module.

Semantic Segmentation Structure This structure is only
used in model training to assist the object detection task by
adjusting the model parameters. It receives the deep fea-
tures from the feature extraction structure and outputs the
semantic segmentation map of size N × (K + 1) repre-
senting the class scores of each point, where K is the class
number. We adopt the base segmentation structure in Point-
Net++ (Qi et al. 2017b) as the pipeline. Four up-sampling
layers are applied to recover the features to the original N
points, and each up-sampling layer is linked to its corre-
sponding down-sampling layer for the feature interpolation.
We choose the inverse distance weighted average based on k
Nearest Neighbors (kNN) as in PointNet++ (Qi et al. 2017b)

2863



Geometric

Concatenation

MLP

Semantic

Figure 3: Structure of our proposed semantic voting module.

to interpolate the features. At the end of the semantic seg-
mentation structure, a softmax layer is adopted to produce
the class probabilities for each point.

The motivation of building this segmentation structure is
that the relations between 3D object detection and seman-
tic segmentation can be utilized to learn better base features
from the point clouds. The produced high-level semantic
features can be used in the consistency mechanism.

Semantic Voting

Traditional Hough voting (Hough 1959) is widely used for
detecting simple patterns (e.g. lines). VoteNet (Qi et al.
2019) combines Hough voting with deep neural networks
and utilizes geometric information (3D coordinates) of point
clouds to vote for the object bounding box centers. How-
ever, the geometry-based voting method ignores the seman-
tic information of each point which could be used to further
improve the detection results. We propose a semantic vot-
ing method which combines geometric and semantic cues
to make the decision. The proposed voting module is com-
posed of the geometric voting sub-module and semantic vot-
ing sub-module, as shown in Fig. 3.

The input of the voting module is denoted as f = {fi |
fi = [xi; ai], i = 1, ...,M}, where M is the number of
points. xi ∈ R3 is the 3D coordinates of point fi and
ai ∈ RD is the corresponding deep features, where D is the
dimension of the feature. The geometric voting sub-module
predicts the coordinate offset ∆xi and the feature offset ∆ai
for each fi and finally outputs g = {gi | gi = [xi+∆xi; ai+
∆ai], i = 1, ...,M} as in VoteNet (Qi et al. 2019). The se-
mantic voting sub-module produces class scores s = {si |
si ∈ RK+1, i = 1, ...,M} for each point. By concatenating
these two sub-modules, the final voting result is formulated
as v = {vi | vi = [xi + ∆xi; ai + ∆ai; si], i = 1, ...,M}.
We implement each sub-module using a three-layer MLP
with ReLU activation function and batch normalization as
in VoteNet (Qi et al. 2019).

XX

ZZ

Y Y

Figure 4: Illustration of the consistency computation. Red
stands for object whereas blue denotes background. The 3D
bounding box and the ball share the same center.

Loss Function
Our proposed SCNet is trained end-to-end with a multi-task
loss function which includes three parts: semantic consis-
tency loss, semantic segmentation loss, and detection loss.
The loss function L is formulated as:

L = µ1Lcss + µ2Lseg + µ3Ldet, (1)

where Lcss, Lseg, and Ldet are the semantic consistency loss,
semantic segmentation loss, and detection loss, respectively.
µ1, µ2, and µ3 are hyper-parameters weighting the different
terms. In our experiment, µ2 = 0.5 and µ3 = 1. µ1 increases
linearly from 0 to 0.18 with the training epoch. The reason
of designing µ1 in this way is that both semantic segmenta-
tion and object detection produce poor outputs at the initial
training stage.

Semantic Consistency Mechanism and Loss The moti-
vation of the semantic consistency mechanism is that the
inherent consistency between 3D bounding boxes and their
corresponding semantic points could provide strong guid-
ance for the learning of object classes and locations. As
shown in Fig. 1, a well predicted 3D bounding box should
be highly consistent with the predicted semantic points. Ei-
ther class inconsistency or location inconsistency mean poor
object detection results.

The semantic consistency loss is defined on top of the 3D
box proposals and the corresponding semantic points. Given
Q object box proposals from the detection decision struc-
ture, we filter out those proposals which are far away from
all the ground truth centers (distance threshold is 0.3m).
Then we map the remaining box proposals (Qr) to the se-
mantic points produced by the segmentation structure. As
shown in Fig. 4, considering the numbers of points inside
different boxes vary over a wide range, we use a ball with
the same center (radius is 0.2m) to query the points that are
close to the box center, which is more efficient than querying
all points. The classes of the queried points and the bounding
box are compared to compute the consistency loss Lcss:

Lcss =

∑Qr

i=1

∑n
j=1 ‖pi − sj‖1
n×Qr

, (2)

whereQr is the number of remaining positive proposals and
n is the number of the queried points. ‖ · ‖1 denotes the L1

norm. pi and sj are the probability vectors of bounding box
and corresponding semantic point respectively.
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By establishing the semantic consistency between 3D
bounding boxes and corresponding semantic points, our
model is able to properly accommodate the inherent rela-
tions between geometry and semantic cues, which is quite
important for the 3D object detection task.

Detection Loss We follow the VoteNet (Qi et al. 2019) to
define the detection loss as:

Ldet = Lvot + λ1Lobj + λ2Lbox + λ3Lcls, (3)

where Lvot, Lobj, Lbox, and Lcls are the semantic voting loss,
objectness loss, box regression loss, and semantic classifica-
tion loss, respectively. In our experiment λ1 = 0.5 , λ2 = 1,
and λ3 = 0.1.

Semantic Segmentation Loss We use the weighted cross-
entropy loss to define the semantic segmentation loss:

Lseg = − 1

N

N∑
i=1

K∑
j=0

1 [j = Ji]wj log pi [j], (4)

Where N is the total number of points, K is the number
of categories, pi and Ji denote the probability vector and
semantic label of the ith point respectively, and wj is the
weight of the jth category. The weights are set to 0.2 for
background points and 1 for other object points as default.

Experiments
Datasets
Our proposed SCNet is evaluated on two challenging
datasets for 3D object detection task.

SUN RGB-D (Song, Lichtenberg, and Xiao 2015) is an
indoor benchmark for 3D scene understanding. It consists
of 10,335 RGB-D image pairs and is densely annotated with
64,595 amodal oriented 3D bounding boxes. Following the
standard split, 5,285 RGB-D image pairs are used as the
training samples and the rest for testing. We convert the
original depth images to point clouds as the input of our
model by using the provided camera parameters. We follow
VoteNet (Qi et al. 2019) to evaluate our model on 10 classes
with the standard evaluation protocol.

ScanNetV2 (Dai et al. 2017) is a richly annotated indoor
dataset containing 2.5M views in 1,513 scenes. The training
set contains 1,201 samples and the test set contains 312 sam-
ples. The input point clouds of our model are generated from
the reconstructed meshes of ScanNetV2. Since the oriented
bounding box annotations are not available, we perform the
evaluation on 18 object categories with axis-aligned bound-
ing boxes instead, as in (Qi et al. 2019; Hou, Dai, and Niess-
ner 2019).

Implementation Details
The entire model is trained end-to-end for 180 epochs with
a mini-batch size of 8. We adopt Adaptive Moment Es-
timation (Adam) (Kingma and Ba 2015) for optimization
with the initial learning rate of 0.0015 for SUN RGB-D
and 0.01 for ScanNetV2. The learning rate decay steps are
set to [100, 130, 160] and the corresponding decay rates are
[0.1, 0.1, 0.1].

We organize the input of our model by sub-sampling a cer-
tain number of points (N = 40, 000) from original data. For
data augmentation, the point clouds are randomly flipped
in both horizontal directions, rotated by Uniform [−5◦, 5◦],
and scaled by Uniform [0.9, 1.1] as in VoteNet (Qi et al.
2019). No RGB images or data are used in our method.

Comparison with State-of-the-art Methods
To prove the effectiveness of our model, we compare with
different types of previous methods on both SUN RGB-
D and ScanNet datasets. Deep sliding shapes (DSS) (Song
and Xiao 2016) and 3D-SIS (Hou, Dai, and Niessner 2019)
leverage the 3D CNN to extract features based on Faster
R-CNN (Ren et al. 2015) pipeline. 2D-driven (Lahoud and
Ghanem 2017) and F-PointNet (Qi et al. 2018) are cas-
caded detectors based on 2D detection. Cloud of gradi-
ents (COG) (Ren and Sudderth 2016) introduces an ori-
ented gradient descriptor to link the 2D appearance and 3D
pose. GSPN (Yi et al. 2019) is an instance segmentation
based method. We also compare with several newest meth-
ods (Chen et al. 2020; Zhao, Chua, and Lee 2020; Najibi
et al. 2020; Zhang et al. 2020).

The comparison results of the two datasets are shown in
Table 1 and Table 2, respectively. All these listed methods
adopt the same evaluation metrics. For SUN RGB-D dataset,
our method achieves an mAP@0.25 of 59.9%, which is
2.2% higher than the VoteNet baseline. The heavy occlusion
and points missing phenomenons of SUN RGB-D challenge
the geometry-based methods (e.g. VoteNet) that ignore the
semantic cues of point clouds. However, our proposed SC-
Net effectively utilizes the semantic information to guide the
learning of detection task and thus improves the detection
performance.

As for ScanNet dataset, our method achieves remark-
able performance with an mAP@0.25 of 63.3% and an
mAP@0.5 of 40.5%, which are 4.7% and 7% higher than
the VoteNet baseline. It is observed that for some certain
categories (e.g. bookshelf and shower curtain), the improve-
ment is even much higher. Other similar objects (e.g. win-
dow, door, and picture) also benefit more from our model.
We believe that these thin objects are under stronger super-
vision of the proposed consistency mechanism (a little trans-
lation along the width direction would cause huge inconsis-
tency), which results in the performance boost.

Ablation Studies
Our model consists of three major modules for 3D object de-
tection: semantic segmentation (SG), semantic voting (SV),
and semantic consistency (SC). To prove the effectiveness of
each module, we perform a set of ablation experiments with
different combinations as shown in Table 3. These modules
are added one by one to the baseline network (BaseNet).
We adopt the VoteNet (Qi et al. 2019) as the BaseNet. Ap-
plying the semantic segmentation structure to the baseline
alone contributes 1% and 2.1% increase on SUN RGB-D
and ScanNet respectively, which indicates that joint train-
ing of the two tasks generates more robust and general base
features. Adding the semantic voting module brings another
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Methods bath bed bkshf chair desk drser ntstd sofa table toilet mAP

DSS (Song and Xiao 2016) 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1
COG (Ren and Sudderth 2016) 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6

2D-driven (Lahoud and Ghanem 2017) 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1
F-PointNet (Qi et al. 2018) 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

VoteNet (Qi et al. 2019) 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7
H3DNet (Zhang et al. 2020) 73.8 85.6 31.0 76.7 29.6 33.4 65.5 66.5 50.8 88.2 60.1

SESS (Zhao, Chua, and Lee 2020) 76.9 84.8 35.4 75.8 29.3 31.3 66.9 66.4 51.8 92.3 61.1
HGNet (Chen et al. 2020) 78.0 84.5 35.7 75.2 34.3 37.6 61.7 65.7 51.6 91.1 61.6

SCNet (Ours) 78.4 87.0 33.5 74.8 25.9 29.1 64.5 67.5 50.1 88.5 59.9

Table 1: 3D object detection comparison (%) on SUN RGB-D V1 with 3D IoU threshold 0.25. The last five methods only use
point cloud data for 3D object detection, without using RGB data.

Methods mAP mAP
@0.25 @0.5

DSS (Song and Xiao 2016) 15.2 6.8
MRCNN 2D-3D (He et al. 2017) 17.3 10.5

F-PointNet (Qi et al. 2018) 19.8 10.8
GSPN (Yi et al. 2019) 30.6 17.7

3D-SIS-5 (Hou, Dai, and Niessner 2019) 40.2 22.5
3D-SIS (Hou, Dai, and Niessner 2019) 25.4 14.6

VoteNet (Qi et al. 2019) 58.6 33.5
HGNet (Chen et al. 2020) 61.3 34.4

SESS (Zhao, Chua, and Lee 2020) 62.1 38.8
DOPS (Najibi et al. 2020) 63.7 38.2

H3DNet (Zhang et al. 2020) 67.2 48.1

SCNet (ours) 63.3 40.5

Table 2: 3D object detection performance (%) on Scan-
NetV2. The last seven methods only use point cloud data.

0.6% and 0.7% improvement, which demonstrates that com-
bining geometry with semantic cues improves the original
votes. Our model achieves the best performance with total
2.2% and 4.7% improvement by adding the last consistency
module. The strong supervision provided by the consistency
module effectively guides the learning of detection task and
leads to better detection results.

The semantic consistency between 3D bounding boxes
and corresponding points is an inherent property, which
means the consistency loss will decrease automatically with
the detection and segmentation results getting better, as the
red line shown in Fig. 5. However, the loss can not converge
to a low value without semantic consistency loss. Thus,
we propose the semantic consistency mechanism to provide
strong constraint, which leads to a lower converge value and
a faster converge speed, as the blue line shown in Fig. 5.

Qualitative Results
Fig. 6 shows several representative detection results of
VoteNet and our SCNet on ScanNet dataset. It is found
that VoteNet misclassifies the bookshelf (the red arrow) and
produces redundant or overlap boxes (bottom left) whereas
our SCNet predicts more reasonable and accurate objects.
We attribute this to the proposed consistency mechanism

Modules
mAP@0.25

SUN ScanNetRGB-D
BaseNet 57.7 58.6

BaseNet + SG 58.7 60.7
BaseNet + SG + SV 59.3 61.4

BaseNet + SG + SV + SC (Our SCNet) 59.9 63.3

Table 3: Ablation studies on SUN RGB-D and ScanNet (%).
SG: semantic segmentation; SV: semantic voting; SC: se-
mantic consistency.

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 20 40 60 80 100 120 140 160 180

C
o

n
si

st
en

cy
   

L
o

ss

Epochs

Supervised Unsupervised

Figure 5: Consistency loss with (blue line) or without (red
line) the semantic consistency regulation on ScanNet.

which effectively suppresses the production of these nega-
tive bounding boxes that lead to strong inconsistency. Fur-
thermore, our SCNet could successfully detect some par-
tially observed thin objects (e.g. door, the blue arrow).

Fig. 7 on SUN RGB-D also demonstrates the superiority
of our method. Though some objects are partially observed
(e.g. bed, the red arrow) or occluded (e.g. night stand, the
blue arrow), our model could still provide amodal bounding
boxes. Our method properly encodes the semantic informa-
tion of point clouds to help predict such objects.

Conclusion
In this paper, we propose a semantic consistency network
(SCNet) for 3D object detection based on an inherent se-
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Ground TruthSCNetVoteNet

Figure 6: Qualitative example comparison between VoteNet and our proposed SCNet on ScanNetV2. Different colors stand for
different classes. Top: library. Bottom: classroom.

Ground TruthSCNetVoteNetImage

Figure 7: Qualitative example comparison between VoteNet and our proposed SCNet on SUN RGB-D V1. Top: bedroom.
Bottom: restaurant.

mantic consistency between predicted 3D bounding boxes
and corresponding semantic points. Specifically, we build
an auxiliary semantic segmentation structure on top of the
shared features to assist the base object detection task. We
also propose a novel semantic voting module which uti-
lizes the semantic characteristics of point clouds to im-
prove the original geometry-based votes. We make full use
of the inherent consistency between geometry and semantic
cues to supervise the learning of our proposed model. SC-
Net achieves comparable performance to the state-of-the-art

methods on two challenging 3D datasets. Extensive ablation
experiments and qualitative analyses demonstrate the effec-
tiveness of our model.
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