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Abstract

Human video motion transfer (HVMT) aims to synthesize
videos that one person imitates other persons’ actions. Al-
though existing GAN-based HVMT methods have achieved
great success, they either fail to preserve appearance de-
tails due to the loss of spatial consistency between synthe-
sized and exemplary images, or generate incoherent video re-
sults due to the lack of temporal consistency among video
frames. In this paper, we propose Coarse-to-Fine Flow Warp-
ing Network (C2F-FWN) for spatial-temporal consistent
HVMT. Particularly, C2F-FWN utilizes coarse-to-fine flow
warping and Layout-Constrained Deformable Convolution
(LC-DConv) to improve spatial consistency, and employs
Flow Temporal Consistency (FTC) Loss to enhance tempo-
ral consistency. In addition, provided with multi-source ap-
pearance inputs, C2F-FWN can support appearance attribute
editing with great flexibility and efficiency. Besides pub-
lic datasets, we also collected a large-scale HVMT dataset
named SoloDance for evaluation. Extensive experiments con-
ducted on our SoloDance dataset and the iPER dataset
show that our approach outperforms state-of-art HVMT
methods in terms of both spatial and temporal consistency.
Source code and the SoloDance dataset are available at
https://github.com/wswdx/C2F-FWN.

Introduction
Human Video Motion Transfer (HVMT) refers to the task
of synthesizing videos that one person imitates motions of
other persons, which has attractive potential applications in
movies, interactive games, virtual shopping, etc. With the
development of Generative Adversarial Networks (GANs)
(Goodfellow et al. 2014) and GAN-based image-to-image
translation techniques (Wang et al. 2018b,a; Park et al.
2019), HVMT works have achieved great success.

In general, existing HVMT methods have two main
streams: personalized HVMT and general-purpose HVMT.
Personalized methods (Chan et al. 2019; Liu et al. 2019a) fo-
cus on learning the mapping from motion inputs (e.g., body
poses or semantic layouts that describe the desired motions)
to video frames for a specific person, with a large number
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of frames from this person collected as the training data to
fit the model for his/her appearance. To generate videos for
another person, they have to perform a new round of data
collection and model training, which requires massive hu-
man resources and computation costs. The recent emergence
of general-purpose methods (Wang et al. 2019; Liu et al.
2019b; Wei et al. 2020) manages to solve this by providing
additional appearance inputs (e.g., exemplary images that
describe the desired appearances) for GANs. Thus they can
generate videos for new persons by altering the input exem-
plary images. However, most of these methods directly uti-
lize GANs to generate values for all the pixels from scratch
without preserving their spatial consistency with pixels in
the exemplary images, which results in the loss of appear-
ance details such as decorative patterns and colors of clothes.
Besides, they either don’t consider temporal consistency or
only focus on implicit temporal consistency among frame
images when synthesizing videos, which causes low tempo-
ral coherence in their video results. Moreover, most of them
don’t support HVMT with fully editable appearances, lack-
ing flexibility and efficiency for real applications.

In this paper, to address these limitations, we propose
Coarse-to-Fine Flow Warping Network (C2F-FWN) to en-
sure both spatial and temporal consistency for HVMT. For
spatial consistency, our C2F-FWN synthesizes motion trans-
fer videos through warping based on coarse-to-fine trans-
formation flows rather than direct generation based on
GANs. Thus we can precisely model geometric deforma-
tions caused by motions to preserve spatial correlations be-
tween synthesized and exemplary image pixels. Moreover,
Layout-Constrained Deformable Convolution (LC-DConv)
is utilized to extract deformable features for C2F-FWN, fur-
ther improving the spatial consistency. For temporal consis-
tency, we propose Flow Temporal Consistency (FTC) Loss
with optical flows as the constraints to enforce explicit tem-
poral consistency among transformation flows instead of
frame images, radically ensuring the video coherence.

In our experiments, we evaluate our method on both
iPER dataset (Liu et al. 2019b) and a large-scale SoloDance
dataset collected by ourselves. Both quantitative and qualita-
tive results demonstrate that videos generated by our method
have significantly better spatial and temporal consistency
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Figure 1: Overview of our method. Orange, green and blue rectangles specify processes in Stages 1, 2 and 3, respectively. Black
arrows denote ordinary data flows like pose detection, layout detection and body division. Orange, green and blue arrows denote
data flows of the layout GAN in Stage 1, our C2F-FWN in Stage 2, and the composition GAN in Stage 3, respectively.

than existing personalized and general-purpose methods. We
also show that our approach can utilize multi-source appear-
ance inputs to enable full appearance attribute editing (e.g.,
change identities, tops, bottoms, backgrounds) for HVMT,
which has promising application prospects.

Related Work
Personalized HVMT
Personalized HVMT (Chan et al. 2019; Liu et al. 2019a;
Aberman et al. 2019; Yang et al. 2020) only learns the map-
pings from motion inputs to video frames, with appearances
learned individually in different models. Once trained, one
model can only generate videos with specific appearances.
To generate videos with new appearances, they need to train
new models. Although such approaches can generate high-
fidelity videos, they lack the efficiency for applications.

General-Purpose HVMT
General-purpose HVMT can be divided into direct gener-
ation methods (Wang et al. 2019; Wei et al. 2020) and
warping-based methods (Liu et al. 2019b; Dong et al. 2018;
Han et al. 2019). Both utilize additional appearance inputs to
control the synthesized appearances in addition to motions.

Direct Generation Methods leverage GAN-based image-
to-image translation techniques (Wang et al. 2018b,a; Park
et al. 2019) to generate video frames from appearance and
motion inputs directly. Wang et al. utilize several SPADE
blocks (Park et al. 2019) to adaptively propagate the appear-
ance information throughout the network, which can achieve
appearance control by altering the appearance inputs. Wei
et al. propose an appearance-consistency discriminator to
force the generator to generate appearances consistent with
the alterable appearance inputs, which also achieves the ap-
pearance control. However, these methods don’t consider
the spatial consistency between pixels in outputs and ap-
pearance inputs. Thus they can’t preserve appearance details
such as textures and colors well. Moreover, they only con-
sider temporal consistency among frame images, which is
implicit and hard to learn. On account of mode collapse and

over-fitting problems of GANs (Webster et al. 2019), these
methods often obtain low-fidelity results.

Warping-Based Methods focus on generating images
through warping to preserve spatial consistency. Dong et al.
utilize Thin-Plate-Spline (TPS) transformation for warping
to align features of appearance inputs with those of motion
inputs before GAN-based generation. Similar feature warp-
ing can also yield fancy facial animation results for face
video synthesis (Chen et al. 2020). Unfortunately, the TPS
transformation is decided by a few control points, which re-
stricts its warping capability due to the low degree of free-
dom. Thus it can’t precisely model the geometric deforma-
tions. Moreover, Liu et al. propose liquid warping based
on 3D SMPL models to achieve similar feature alignment.
However, the SMPL models (Loper et al. 2015) only de-
scribe naked human bodies. Thus they can’t model surface
deformations for clothes and hair. Instead of warping fea-
tures, Han et al. propose to warp images using flows, which
is similar to our approach in spirit. However, they directly
estimate the dense flow field from misaligned features of ap-
pearance and motion inputs, failing to model large deforma-
tions when the two inputs greatly differ from each other in
motion. Besides, none of these warping-based methods con-
siders the temporal consistency between warping operations
of neighbored frames, making them not capable of synthe-
sizing coherent videos. Moreover, these methods all adopt
standard convolutions in their networks, where the fixed re-
ceptive fields can’t accommodate shape variances. Hence
they can’t extract appropriate features for human subjects
with various shapes to estimate warping functions.

Method
Overview
The overview of our method is shown in Figure 1, which
contains three stages: layout synthesis (Stage 1), clothes
warping (Stage 2) and image composition (Stage 3). For
ease of discussion, the used symbols are presented as fol-
lows. Given an exemplary foreground image FG describ-
ing the desired human appearance and an exemplary back-
ground image BG describing the desired background ap-
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pearance, we aim at synthesizing videos that the exemplary
human foreground FG performs motions described by the
pose sequence P 1∼T in the exemplary background BG. For
the exemplary foreground FG, we detect its semantic lay-
out LO and divide it to further obtain layout LOC and fore-
ground FGC for the clothing parts (i.e., tops and bottoms),
as well as layout LOC̄ and foreground FGC̄ for the non-
clothing parts (i.e., hair, face, torso and shoes). Provided
with these processed inputs, we synthesize the correspond-
ing output video sequence Î1∼T by three stages described in
Figure 1. Since Î1∼T is generated frame by frame, we take
the synthesis of the t-th frame Ît as an example for brevity.

In Stage 1, we utilize a layout GAN to generate the
semantic layout L̂O

t
, which has the same motion as P t

and the same appearance as LO. We further divide L̂O
t

to obtain the clothing layout L̂O
t

C . In Stage 2, taking
χ1 = {LOC , FGC} as the appearance input and taking
χ2 = L̂O

t

C as the motion input, our C2F-FWN computes
the transformation flow F̂ t to warp the exemplary clothing
foreground FGC into the foreground F̂G

t

C , which precisely
aligns with the generated clothing layout L̂O

t

C . In Stage 3,
we utilize a composition GAN to generate the remaining
parts including the non-clothing foreground and the back-
ground, and compose them with the clothing foreground
F̂G

t

C from Stage 2 to generate the full frame image Ît. Note
that we don’t generate the non-clothing parts through warp-
ing for two reasons. First, the appearance of the non-clothing
parts varies sharply in different views, making it extremely
hard to model their appearance changes through warping.
Second, texture and color patterns of the non-clothing parts
are simple and easy to generate using GANs. Therefore, we
utilize the composition GAN to synthesize the non-clothing
parts.

Particularly, the layout GAN and the composition GAN
follow the Vid2Vid design presented in (Wang et al. 2018a).
Vid2Vid is a general image-to-image translation backbone
consisting of two encoders and two decoders (E1,E2,D1,D2

for brevity). E1 and E2 aim to encode features for two in-
puts I1 (i.e., current conditional inputs) and I2 (i.e., pre-
vious generated results), respectively. D1 and D2 aim to
decode the added features of I1 and I2 to output O1

(i.e., a raw result) and O2 (i.e., an optical flow). Then
we can obtain the current frame result by using O2 to
warp the last frame result and add it to O1. For the lay-
out GAN, I1 denotes the concatenated {P t, LO}. I2 de-
notes the concatenated {L̂O

t−1
, L̂O

t−2
}. Thus we can uti-

lize the Vid2Vid backbone to generate L̂O
t
. Besides, to

better synthesize the one-hot semantic layouts rather than
RGB images, we replaced image reconstruction losses of
Vid2Vid with a structure-sensitive pixel-wise softmax loss
introduced in human parsing works (Liang et al. 2018). Sim-
ilarly, for the composition GAN, I1 denotes the concate-
nated {L̂O

t
, F̂G

t

C , LOC̄ , FGC̄ , BG}. I2 denotes the con-
catenated {Ît−1, Ît−2}. The Vid2Vid backbone learns to au-
tomatically attach non-clothing parts to clothes synthesized
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Figure 2: Illustration of C2F-FWN. We use feature maps in
different colors to differentiate the three FPNs, where blue,
green, and orange feature maps specify FPN-A, FPN-M, and
FPN-F, respectively. Each FPN has two pathways connected
by lateral connections (horizontal arrows), where we use
light and dark colors to differentiate the features of bottom-
up and top-down pathways, respectively. Steps 1∼5 drawn
in gold describe the procedure of our coarse flow warping.

in Stage 2, and thus obtain the full image Ît.
In the following, the details of our C2F-FWN includ-

ing coarse-to-fine flow warping, Layout-Constrained De-
formable Convolution (LC-DConv) and Flow Temporal
Consistency (FTC) Loss are presented. At last, the unique
characteristic of our C2F-FWN, multi-source appearance at-
tribute editing is discussed.

Coarse-to-Fine Flow Warping
Before diving into details of the coarse-to-fine flow warping,
we first explain its motivation and mechanism. In cases that
LOC greatly differs from L̂O

t

C in motion, there would be
far distances between pixels in the appearance input χ1 and
their correlated pixels in the motion input χ2. If we estimate
the whole transformation flow directly based on the concate-
nation of misaligned appearance and motion features, we
would fail because standard convolutions with limited kernel
sizes can’t build correlations between pixels far away from
each other in position. Differently, our C2F-FWN first esti-
mates a coarse Thin-Plate-Spline (TPS) flow F̂ t

coarse based
on the smallest bottom-up features to coarsely warp the ap-
pearance features into the desired motion, where the effects
of far distances w.r.t. the size of inputs can be ignored due
to the large receptive fields of small-size features. Thus the
appearance and the motion features are aligned. Then we
can concatenate the largest top-down appearance and mo-
tion features to further compute the refinement flow F̂ t

fine

for fine warping, where the effects of far distances have been
eliminated after preliminary feature alignment.

As shown in Figure 2, C2F-FWN contains three feature

2854



pyramid networks (FPN) (Lin et al. 2017): FPN-A, FPN-
M and FPN-F, responsible for extracting pyramidal fea-
tures of appearance input χ1 = {LOC , FGC}, motion in-
put χ2 = L̂O

t

C and previously estimated transformation
flow χ3 = F̂ t−1. Each FPN has two symmetrical pathways
(bottom-up and top-down). Specifically, the top-down path-
way is built upon the bottom-up pathway via lateral connec-
tions, with sizes of the bottom-up features growing smaller
and sizes of the top-down features growing larger. Benefiting
from such symmetric design, both coarse and fine warpings
can be realized in the unified C2F-FWN.

Coarse Flow Warping The procedure of our coarse flow
warping is described in steps 1∼5 in Figure 2. First, we
compute the correlation map C with each position contain-
ing the pairwise similarities between the smallest bottom-
up features of FPN-A and FPN-M. The correlation map is
then fed into a regression layer to compute K×2 parameters
(θ), which represent positions of K control points (K=3×3
in this paper). Based on TPS interpolation (Rocco, Arand-
jelovic, and Sivic 2017), we can generalize the mapping be-
tween the estimated K control points and their correspond-
ing predefined grid points to all the pixels of FGC , and
hence move each pixel to its new position to obtain the
coarsely warped clothes F̂G

t

C,coarse. To enable the supervi-
sion of the coarse warping, we utilize a VGG loss (Johnson,
Alahi, and Fei-Fei 2016) Lcoarse

V GG to minimize the difference
between F̂G

t

C,coarse and the ground truth.
Then, to make the TPS transformation compatible with

our transformation flow, we convert it to a coarse flow
F̂ t
coarse by computing the position difference before and af-

ter transformation for each pixel. Let P = (x, y) denote the
position of a pixel in the warped clothes F̂G

t

C,coarse, and let
P

′
= (x

′
, y

′
) denote the position of the same pixel in the

exemplary clothes FGC . The coarse flow at position (x, y)

can be given by: F̂ t
coarse(x, y) =

−−→
PP

′
= (x

′ − x, y′ − y),
which is the same for all the other positions.

Then we downsample F̂ t
coarse to different sizes to warp

all the bottom-up features of FPN-A, roughly aligning them
with the generated layout L̂O

t

C , which represents the desired
motion. Thus we can compute the corresponding roughly-
aligned top-down appearance features via lateral connec-
tions, with pixels located at positions close to the correlated
pixels in the top-down motion features, facilitating the sub-
sequent estimation of the refinement flow.

Fine Flow Warping As shown in Figure 2, we predict
the refinement flow F̂ t

fine based on the concatenation of the
largest top-down features of the three FPNs, where we in-
clude features of FPN-F to allow for learning the tempo-
ral consistency with previous transformation flows. Specif-
ically, the refinement flow F̂ t

fine has the same size as the
coarse flow F̂ t

coarse, adding pixel-wise offsets to F̂ t
coarse to

precisely align with the generated layout L̂O
t

C . Thus our fi-
nal transformation flow is given by: F̂ t = F̂ t

coarse + F̂ t
fine.

√
√
√

√
√√

√

Input Feature Output Feature

𝑝 

Semantic Layout

Figure 3: Illustration of LC-DConv. Here we take the LC-
DConv in the first layer of FPN-M as an example, which is
the same for FPN-A expect FPN-A takes foregrounds in ad-
dition to layouts as its inputs. We let orange and dark green
represent semantic classes of tops and bottoms, respectively.
In the small patch, X in green and × in red denote valid and
invalid sampling positions, respectively.

Using F̂ t to warp the exemplary clothes FGC , we can ob-
tain the final warped clothes F̂G

t

C .
During training, we also utilize a VGG loss (2016) LV GG

to minimize the difference between F̂G
t

C and the ground
truth, which enables the supervision of the fine warping.

Layout-Constrained Deformable Convolution
Since both the coarse and the refinement flows are pre-
dicted based on FPN-A and FPN-M features, feature ex-
traction in these two FPNs directly affects the quality of
our warping results. In motion transfer tasks, clothes items
may change to various shapes along with body poses. Thus
the extracted features should be able to generalize to var-
ious shapes correspondingly. Unfortunately, standard CNN
features are transformation-invariant, which means recep-
tive fields remain fixed no matter how the shape changes
and hence can’t accommodate the geometric deformations
for different shapes. Besides, such fixed receptive fields are
not large enough to accommodate the misalignment between
appearance and motion features.

Therefore, we replace all the standard convolutions in
bottom-up pathway layers of FPN-A and FPN-M with De-
formable Convolutions (DConv) (Dai et al. 2017), which can
model geometric deformations adaptively with deformable
receptive fields. As shown in Figure 3, DConv learns addi-
tional 2D offsets to shift regular sampling locations of the
standard convolution, which enables deformable and larger
receptive fields. However, the unconstrained offsets may re-
sult in invalid sampling from positions not semantically re-
lated to the output position, causing the loss of semantic
information in the output feature. Therefore, our Layout-
Constrained Deformable Convolution (LC-DConv) utilizes
input semantic layouts as priors to set amplitudes of features
sampled from invalid positions to zero, precisely preserving
the layout boundaries and thus enhancing the semantic in-
formation in the output feature. Taking the convolution with
a 3x3 kernel of dilation 1 as an example, we explain how our
LC-DConv works. Let X(p) and Y (p) be the input and the
output features at position p respectively, and let wk, ∆pk
and pk∈{(−1,−1), (−1, 0), ..., (1, 1)}, k = 1∼9 represent
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Figure 4: Illustration of FTC loss. The first image is the ex-
emplary clothes FGC . The second image is a combination
of two warped clothes F̂G

t−l

C and F̂G
t

C . We take the posi-
tion P in the right arm region as an example, which moves
from Pt−l to Pt during time t− l∼t. Yellow, blue and green
solid arrows represent F̂ t, F̂ t−1 and U , respectively. Blue
dotted arrow denotes the resampled F̂ t−1.

the k-th kernel weight, the k-th sampling offset and the k-
th regular sampling position respectively, we can derive the
LC-DConv as follows:

Y (p) =

K∑
k=1

wk ·X(p+ pk + ∆pk) ·∆mk,

∆mk =

{
0, LO(p) 6=LO(p+ pk + ∆pk),

1, otherwise,

(1)

where K = 9, ∆mk is the modulation scalar determined by
the layout prior LO, deciding the validity of the k-th offset
sampling position. For FPN-A, LO refers to the exemplary
clothing layout LOC . For FPN-M, LO refers to the gener-
ated clothing layout L̂O

t

C . As depicted in Figure 3, we set
feature amplitudes to zero if they belong to semantic classes
different from the class at the output position, which can ef-
fectively avoid any invalid sampling.

Flow Temporal Consistency Loss
Compared to other methods (Chan et al. 2019; Wang et al.
2019) that only learn implicit temporal consistency among
frame images, our FTC loss uses optical flows to enforce
explicit temporal consistency among transformation flows,
also enabling direct supervision on transformation flows in-
stead of warped clothes. Specifically, benefiting from the
flow format of our transformation, we can build the corre-
lation between two transformation flows F̂ t and F̂ t−l using
the optical flow U between the corresponding two frames.
Let P = (x, y) denote the position of a pixel in the ex-
emplary clothes FGC , and let Pt = (xt, yt) and Pt−l =
(xt−l, yt−l) denote positions of the same pixel in the warped

clothes F̂G
t

C and F̂G
t−l

C . Thus, for this pixel, the transfor-
mation flow vectors at time t and t− l are given by:

F̂ t(xt, yt) = (x− xt, y − yt),
F̂ t−l(xt−l, yt−l) = (x− xt−l, y − yt−l).

(2)

Note that all the flows used in this paper are backward flows.
Therefore, the flow vectors at time steps t and t − l are ac-
tually located at the transformed positions Pt and Pt−l w.r.t.

Non-
Clothing 

Appearance
s

Background Tops Bottoms Background Tops Bottoms

Figure 5: Examples of our multi-source appearance synthe-
sis. Red-edged images describe the non-clothing foreground
appearances (hair, face, torso, shoes). Green-edged images
from left to right describe the appearances of background,
tops, bottoms. Black-edged images are our synthesized mo-
tion transfer results. Please zoom in for a better view.

the warped clothes, rather than the original position P w.r.t.
the exemplary clothes. Such backward format can ensure
each pixel in the warped clothes has a flow vector to indi-
cate its original position to be sampled from the exemplary
clothes, further ensuring the warping operation is valid.

In principle, if the frames at t and t−l are temporally con-
sistent, F̂ t(xt, yt)− F̂ t−l(xt−l, yt−l) should be equal to the
ground-truth optical flow vector U(xt, yt), which is from t
to t− l and equal to (xt−l−xt, yt−l−yt). As shown in Fig-
ure 4, to generalize this equation to the whole image rather
than a single pixel, we should resample F̂ t−l(xt−l, yt−l) at
Pt−l to the same position Pt as F̂ t(xt, yt), and do the same
to all the remaining pixels of F̂ t−l to make them share po-
sitions with those of F̂ t. We can realize this by using U to
warp F̂ t−l. Thus our FTC loss is given by:

LFTC,l = ‖F̂ t −WU (F̂ t−l)− U‖1, (3)

where W denotes the warping operation based on U . To
guarantee both short-term and long-term temporal consis-
tency, we set l = 1, 3, 9 to compute FTC losses at three time
scales and sum them together as our full FTC loss LFTC .

We further utilize a TVL1 loss (Fan et al. 2018) LTV L1 to
minimize the difference between flow vectors at neighbored
positions of F̂ t, which smooths the warping. Summarily, the
full objective is a weighted sum of several losses, given by:

Lfull = LV GG + Lcoarse
V GG + λ1LFTC + λ2LTV L1, (4)

where λ1 and λ2 denote the weights of FTC and TVL1
losses, respectively.

Multi-Source Appearance Attribute Editing
Compared with existing HVMT methods, C2F-FWN can
support multi-source appearance attribute editing when
transferring motions. As described above, we divide the ex-
emplary appearance into the background, clothing and non-
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Datasets Metrics EDN(2019) FSV2V(2019) LWGAN(2019b) SGWGAN(2018) ClothFlow(2019) w/o FTC loss w/o LC-DConv Ours
SSIM 0.811 0.721 0.786 0.763 0.843 0.849 0.850 0.879
PSNR 23.22 20.84 20.87 20.54 22.06 23.05 23.19 26.65

SoloDance LPIPS 0.051 0.132 0.106 0.124 0.072 0.065 0.063 0.049
FID 53.17 112.99 86.53 99.24 76.61 64.92 61.03 46.49
TCM 0.347 0.106 0.176 0.166 0.322 0.319 0.401 0.641
SSIM 0.840 0.780 0.825 0.818 0.814 0.824 0.822 0.849
PSNR 23.39 20.44 21.43 22.41 21.87 22.76 22.52 24.27

iPER(2019b) LPIPS 0.076 0.110 0.091 0.086 0.088 0.082 0.084 0.072
FID 56.29 110.99 77.99 101.99 71.21 64.40 63.72 55.07
TCM 0.361 0.184 0.197 0.260 0.422 0.411 0.499 0.687

Table 1: Quantitative results tested on our SoloDance dataset and iPER (2019b) dataset. SSIM, PSNR, TCM are similarity
metrics, the higher the better (SSIM and TCM range from 0 to 1). LPIPS and FID are distance metrics, the lower the better.
Note that TCM measures temporal consistency while other metrics measure spatial consistency.

clothing foregrounds. The clothing foreground can be fur-
ther divided into tops and bottoms, which decide how the ex-
emplary human subject is dressed in the synthesized videos.
The non-clothing foreground can be further divided into
hair, face, torso and shoes, with the first three parts decid-
ing the human identity. With the help of semantic layouts,
the background and each part of the foregrounds can be ex-
tracted from different sources to achieve the multi-source
exemplary appearance. For example, the background can be
replaced by arbitrary fixed images. Tops and bottoms in the
clothing foreground can be extracted from arbitrary fashion
or portrait images, which is the same for parts of the non-
clothing foreground. With such multi-source appearance in-
puts, our proposed method can generate the corresponding
multi-source appearance in the synthesized videos, which
enables full appearance attribute editing for motion transfer
as shown in Figure 5. Such capability can achieve rather high
flexibility and efficiency in real applications. For example,
users can arbitrarily change their clothes and backgrounds in
videos without really wearing these clothes or performing in
these backgrounds, enabling convenient video re-creation.

Experiments
Dataset
SoloDance Dataset We built a large-scale SoloDance
dataset containing 179 solo dance videos with 53,700
frames. Specifically, 143 human subjects were captured
with each wearing various clothes and performing complex
dances (e.g., modern, street dances) in various backgrounds.
Compared to the iPER dataset (Liu et al. 2019b) that only
contains 30 subjects performing simple moves (e.g., random
actions, A-poses), our dataset offers more appearance vari-
ety and motion complexity. We utilized (Cao et al. 2017)
and (Gong et al. 2018) to detect body poses and semantic
layouts, and further obtained foregrounds and backgrounds
for each video. In our experiments, we randomly split the
dataset into 153 and 26 videos for training and testing.

iPER Dataset We also evaluated our method on the iPER
dataset (2019b). The data preprocessing of the iPER dataset
is the same as our SoloDance dataset. Following the original
protocal of iPER, we used 164 videos for training and the
remaining 42 videos for testing.

Implementation Details
All the frames were resized and cropped to 256x256 sizes
to train our models. Since backgrounds are fixed and easy
to generate compared to animated human foregrounds, we
further cropped the frames to central 192x256 body regions
during evaluation to focus on the quality of the synthesized
foregrounds. The design of the layout GAN in Stage 1 and
the composition GAN in Stage 3 followed (Wang et al.
2018a). The design of our FPNs in Stage 2 followed (Lin
et al. 2017) except that we replaced standard convolutions
in bottom-up pathways of FPN-A and FPN-M with our LC-
DConv to enhance the features. Particularly, the LC-DConv
was implemented based on (Dai et al. 2017) by employing
layout-constrained sampling locations. Moreover, to enable
the supervision of the proposed FTC loss, we utilized (Ilg
et al. 2017) to obtain the ground-truth optical flows. We
trained each stage for 10 epochs separately with Adam op-
timizers (Kingma and Ba 2014) (learning rate: 0.0002, β1:
0.5, β2: 0.999) on an Nvidia RTX 2080 Ti GPU, where we
set λ1 = 5 and λ2 = 0.5 in Eq. 4 to trade-off the two losses.

Baselines
To evaluate our proposed approach, we made comparisons
with state-of-art HVMT methods including a personalized
method EDN (Chan et al. 2019), a direct generation method
FSV2V (Wang et al. 2019), two feature warping methods
LWGAN (Liu et al. 2019b) and SGWGAN (Dong et al.
2018), and an image warping method ClothFlow (Han et al.
2019). In our implementation, we used 3000 frames for each
person to train personalized models for EDN, and used the
same data as ours to train models for other methods.

Quantitative Results
We utilized both traditional (SSIM and PSNR) and CNN-
based metrics (LPIPS (Zhang et al. 2018) and FID (Heusel
et al. 2017)) to measure the quality of synthesized frames,
which can assess the spatial consistency between synthe-
sized and exemplary images. We also utilized a Temporal
Consistency Metric (TCM) (Yao, Chang, and Chien 2017)
to evaluate the temporal consistency, which is an essential
factor in measuring the quality of videos rather than single
frames. Specifically, TCM measures temporal consistency
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Figure 6: Qualitative comparisons with other methods including EDN (2019), FSV2V (2019), LWGAN (2019b), SGWGAN
(2018), ClothFlow (2019), albated variants without FTC loss, LC-DConv. Yellow, blue and red circles point out blurry surfaces,
over-stretched clothes patterns, and black chinks (caused by misplacements), respectively. Please zoom in for a better view.

by calculating warping errors between successive synthe-
sized frames, where each frame is warped by the ground-
truth optical flow to compare with its neighbored frame. The
quantitative results of all the methods are summarized in Ta-
ble 1. We can see that our proposed C2F-FWN significantly
outperforms all the other methods including the personal-
ized method EDN (2019) for all the metrics (especially for
the TCM scores) on both of the two datasets, which indicates
that our approach can achieve HVMT with better spatial and
temporal consistency.

Qualitative Results
As shown in Figure 6, we randomly visualize some motion
transfer video frames synthesized by different methods for
qualitative comparisons, where our approach outperforms
all the other methods. Specifically, we achieve better spa-
tial consistency with exemplary images than others, espe-
cially the direct generation method FSV2V (2019), where
our method preserves the exemplary appearance details such
as decorative patterns and colors well. Besides, benefiting
from our coarse-to-fine flow warping, we can capture the
desired motions better than existing warping-based meth-
ods, with our warped clothes precisely aligned with the body
layouts. However, the feature warping method SGWGAN
(2018) can’t enable precise feature alignment with the de-
sired motions due to the limited warping capability, which
causes poor appearance details. Another feature warping
method LWGAN (2019b) results in blurry details on the sur-
face of bodies and clothes (e.g., circled in yellow in Figure

6) because of the low-precision SMPL models. The image
warping method ClothFlow (2019) can’t warp the exemplary
images to align with the desired motions, which results in vi-
sual artifacts such as over-stretching and misplacement near
the layout boundaries (e.g., circled in blue and red in Fig-
ure 6). Although the personalized method EDN (2019) can
generate comparable results to us, it often results in blurrier
textures. We also show some of our multi-source appearance
synthesis results in Figure 5, where we utilized fashion im-
ages dissimilar from our training data to extract tops and
bottoms. We can see that the multi-source exemplary appear-
ances are also well preserved, enabling flexible appearance
attribute editing for HVMT. Videos of the qualitative com-
parisons and our synthesized results can be found in our sup-
plementary materials, where we show that our method can
also achieve better temporal consistency.

Ablation Study
We also conducted ablation studies w.r.t. our FTC loss and
LC-DConv to demonstrate their effectiveness. Specifically,
we implemented two variant models for comparisons. One
was trained without our FTC loss, and another only adopted
standard convolutions to extract features. As shown in Ta-
ble 1, our full method outperforms the two variants for all
the metrics. As shown in Figure 6, without the two com-
ponents, the clothes are warped imprecisely (e.g., circled in
blue and red in Figure 6), which indicates the importance of
the LC-DConv as well as the FTC loss for enhancing our
flow warping and improving spatial consistency. Moreover,
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we observed that the variant without the FTC loss would re-
sult in much worse video coherence than our full method,
which shows our superiority in improving temporal consis-
tency. Please refer to our supplementary video for more
details: https://youtu.be/THuQN1GXuGI.

Conclusion
In this paper, we propose Coarse-to-Fine Flow Warping
Network (C2F-FWN) to achieve both spatial and temporal
consistency for HVMT, enabling us to preserve exemplary
appearances as well as improve video coherence. Specifi-
cally, our coarse-to-fine flow warping can precisely model
geometric deformations caused by motions to ensure the
spatial consistency, where we further utilize our Layout-
Constrained Deformable Convolution (LC-DConv) to en-
hance features for estimating the transformation flows. To
achieve the temporal consistency, we propose a novel Flow
Temporal Consistency (FTC) Loss to learn explicit tem-
poral consistency between successive transformation flows,
which significantly improves the video coherence. Experi-
mental results tested on our SoloDance dataset and the iPER
dataset show our superiority to other methods in terms of
both spatial and temporal consistency. Ablation studies w.r.t.
our FTC loss and LC-DConv demonstrate their effectiveness
in improving our synthesis quality. We also demonstrate that
our method can achieve flexible appearance attribute edit-
ing provided with alterable multi-source appearance inputs,
which shows promising application prospects.

Limitations and Future Work
Although our method works well in most cases, it may fail
(e.g., jitters, blurs) due to errors in poses and semantic lay-
outs, which would cause errors in our model inputs and fur-
ther result in artifacts in our output results. In the future, we
can utilize more accurate pose and layout estimation tech-
niques to eliminate these errors. Besides, we currently only
provide our model with one single exemplary image, which
might suffer from self occlusions and texture missings in
cases of extremely large motion changes. Thus, how to at-
tend and aggregate multiple exemplary images for warping
is also worth studying in future works.
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