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Abstract
Single-view 3D object reconstruction is a challenging fun-
damental problem in machine perception, largely due to the
morphological diversity of objects in the natural world. In
particular, high curvature regions are not always represented
accurately by methods trained with common set-based loss
functions such as Chamfer Distance, resulting in reconstruc-
tions short-circuiting the surface or “cutting corners.” To ad-
dress this issue, we propose an approach to 3D reconstruction
that embeds points on the surface of an object into a higher-
dimensional space that captures both the original 3D surface as
well as geodesic distances between points on the surface of the
object. The precise specification of these additional “lifted” co-
ordinates ultimately yields useful surface information without
requiring excessive additional computation during either train-
ing or testing, in comparison with existing approaches. Our
experiments show that taking advantage of these learned lifted
coordinates yields better performance for estimating surface
normals and generating surfaces than using point cloud recon-
structions alone. Further, we find that this learned geodesic
embedding space provides useful information for applications
such as unsupervised object decomposition.

Introduction
Reconstructing the 3D model of an object from a single im-
age is a central problem in computer vision, with many appli-
cations. For example, in computer graphics, surface models
such as triangle meshes are used for computing object appear-
ance. In robotics, surface normal vectors are used for grasp
planning, and in computer aided design and manufacturing,
complete object models are needed for production. Motivated
by such use cases, recent deep learning-based approaches
to 3D reconstruction have shown exciting progress by us-
ing powerful function approximators to represent a mapping
from the space of images to the space of 3D geometries. It
has been shown that deep learning architectures, once trained
on large datasets such as ShapeNet (Chang et al. 2015), are
capable of outputting accurate object models in various repre-
sentations including discrete voxelizations, unordered point
sets, or implicit functions.

These representations can generally produce aesthetically
pleasing reconstructions, but extracting topological informa-
tion from them, such as computing neighborhoods of a point

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on the surface, can be difficult. In particular, naively com-
puting a neighborhood of a point using a Euclidean ball or
Euclidean nearest neighbors can give incorrect results if the
object has regions of high curvature. Such mistakes can in
turn degrade performance on downstream tasks such as un-
supervised part detection or surface normal estimation. We
thus propose a new method for single-view 3D reconstruction
based on the idea of explicitly learning surface geodesics.

The key insight of our approach is to embed points sam-
pled from the surface of a 3-dimensional object into a higher-
dimensional space such that geodesic distances on the surface
of the object can be computed as Euclidean distance in this
‘lifted’ space. This embedding space is constrained such that
the 3D surface of the object lies in its first 3 dimensions
(Figure 1-left shows a 2D example of this constraint). The
remaining embedding dimensions can thus be interpreted as
a quantification of curvature. To test the efficacy of this ap-
proach, we present a neural network architecture and training
regime that is able to effectively learn this representation,
and our experiments demonstrate that using the learned sur-
face geodesics yields meaningful improvements in surface
normal estimation. Further, we find that this embedding en-
ables unsupervised decomposition of an object’s surface into
non-overlapping 2D sub-manifolds (i.e., charts), which can
be useful for texture mapping and surface triangulation (see
Figure 1-right).

Our contributions: We present Geodesic Higher Order
Function Networks (Geodesic-HOF) for surface generation
and provide several experimental evaluations to assess its
performance. In the Single View Reconstruction section, we
show that Geodesic-HOF exhibits reconstruction quality on
par with state-of-the-art surface reconstruction methods. Fur-
ther, we find that using the learned surface geodesics mean-
ingfully improves surface normal estimation. Finally, we
show how the learned representation can be used for decom-
posing the object surface into non-overlapping charts which
can be used for generating triangulation or explicit function
representations of surfaces. We hope that our results will
provide an effective method for reconstructing surfaces and
unfold new research directions for incorporating higher-order
surface properties for shape reconstruction.
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Figure 1: Left: Embedding a cut circle with Isomap (Tenenbaum, De Silva, and Langford 2000) vs. Geodesic-HOF. In contrast
to embedding methods such as Isomap, Geodesic-HOF preserves the original Euclidean coordinates and lifts the points to
the higher-dimensional space by adding extra "geodesic lifting coordinates". Right: Unsupervised Face Decomposition using
the (9-dimensional) geodesic lifting coordinates. Figure (a) shows the object of interest. Figure (b) shows a low-dimensional
projection of the geodesic lifting dimensions using t-SNE (Maaten and Hinton 2008). Figure (c) shows the same clustering
results by coloring the output 3D points. For clarity of correspondence, we retrospectively color the points in (b) to match the
clustering labels in (c). Best viewed in color.

Related Work
Several recently-developed object representations have
shown promise in the 3D reconstruction literature. With the
success of Convolutional Neural Network (CNN) in process-
ing image data, it is natural to extend it to 3D. Therefore,
many methods have been developed to directly output a
regular voxel grid in 3D (Choy et al. 2016a; Tatarchenko,
Dosovitskiy, and Brox 2017; Riegler, Osman Ulusoy, and
Geiger 2017; Wu et al. 2016). However, the naive voxel
representation requires the output to be the same resolution
during training and during inference and the computational
and memory usage of such methods grows cubically with
the resolution. More complex octree-style approaches have
been proposed to address these issues, but scaling to high
resolutions remains a challenge (Riegler, Osman Ulusoy, and
Geiger 2017).

In light of these resource demands, unordered point sets
have become a popular alternative to voxelization for rep-
resenting 3D shapes (Fan et al. 2017; Yang et al. 2018;
Lin, Kong, and Lucey 2018; Mitchell et al. 2019), as the
inherent sparsity of point sets scale more gracefully to high-
resolution reconstructions. However, unordered point sets
still lack intrinsic information about the topology of the un-
derlying surface; thus, some work has investigated the use of
implicit functional surface representations. Implicit functions
such as occupancy (Mescheder et al. 2019) or signed dis-
tance (Park et al. 2019), which are continuous by definition,
have shown promise as object representations, and can effec-
tively store detailed information about an object’s geometry.
One of the main drawbacks of such methods is the need for
a post-processing step such as running marching cubes to
generate the object, making extracting the underlying object
extremely time-consuming (Park et al. 2019). Furthermore,
generating training data for these methods is non-trivial since
they require dense samples near the surface of the object.
Finally, as noted in (Mescheder et al. 2019), in terms of

Chamfer score, implicit function methods are not as accurate
as direct methods such as AtlasNet (Groueix et al. 2018),
Pixel2Mesh (Wang et al. 2018), Mesh R-CNN (Gkioxari,
Malik, and Johnson 2019) and GEOMetrics (Smith et al.
2019) which are trained directly using Chamfer-based loss
functions.

A substantial body of work exists at the intersection of
differential geometry, computer vision, and deep learning that
studies the usefulness of geodesics in many 3D settings, such
as surface matching (Wang, Peterson, and Staib 2000; Wang,
Peterson, and Staib 2003), shape classification (Luciano and
Hamza 2018), and manifold learning (Pai et al. 2019; Groueix
et al. 2018; Wang et al. 2018). In particular, the well-known
Isomap (Tenenbaum, De Silva, and Langford 2000) algorithm
uses shortest paths on k-nearest neighbors graphs and applies
Multidimensional Scaling (Cox and Cox 2008) to find the
dimensionality and embedding of the data. As illustrated in
Figure 1, direct embedding of geodesic distances does not
necessarily yield the object surface. In Geodesic-HOF, the
network is designed to explicitly output a sampling of the
surface manifold and learn geodesic distances.

Learning Geodesics for 3D Reconstruction
From a finite set of points, connecting points based on Eu-
clidean distance proximity alone is insufficient to produce an
accurate depiction of the surface topology. If distant points
on the manifold are erroneously considered to be close be-
cause they are close in the Euclidean space used for com-
puting neighborhoods, the so-called “short-circuiting" prob-
lem arises (Balasubramanian and Schwartz 2002). Short-
circuiting can be observed in Figure 2 where the points on
opposite sides of a single wing are erroneously connected
because they are nearby in terms of their Euclidean distance,
although they are quite far on the surface. We propose using
surface geodesics as a natural tool to solve this problem.

A geodesic between two points on a surface is a shortest
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Figure 2: Top: Estimating the normal of a point on the wing by using geodesic neighborhoods. Bottom: Normal estimation of the
same point using the Euclidean neighborhoods. We observe spurious neighbor points from the bottom of the wing are included
in the Euclidean case, which causes the normal estimation to be inaccurate. Best viewed in color.

path between these points which lies entirely on the sur-
face1. Geodesics carry a significant amount of information
about surface properties. In particular, the difference between
the geodesic and Euclidean distances between two points is
directly related to curvature. Intuitively, connecting points
based on geodesic distance, rather than Euclidean distance
yields a more faithful reconstruction of the true surface. Given
this setup, we can formalize the surface reconstruction prob-
lem that is the focus of this work.

Problem statement: Given a single image I of an object
O, our goal is to be able to (i) generate an arbitrary number of
samples from the surface of O, and (ii) compute the geodesic
distance between any two generated points on the surface.
We use Chamfer distance (Eqn. 1) to quantify the similarity
between a set of samples from the model and the ground truth
O.

In the next section, we present our approach to solving this
problem through a deep neural network.

Geodesic-HOF: Method Overview
Geodesic-HOF is a neural network architecture and set of
training objectives that aim to address the problem presented
above. In order to describe the technical details of Geodesic-
HOF, we first establish our notation and terminology. During
training, we are given an image I of an object O as well as
X∗ = {x∗1, . . . , x∗n}, a set of points sampled from O. We de-
note the ground truth surface geodesic function g(·, ·). In prac-
tice, the function g can be computed using either a very dense
sampling of the ground truth object O or a surface triangula-
tion. Using a convolutional neural network, Geodesic-HOF
maps an input image I to a continuous mapping function
fI : M ⊂ RD → R3+K . fI maps samples from a canonical
sampling domain M (in this work, the unit solid sphere) to

1In some contexts, geodesics are defined as locally shortest paths.
For example, two points on the sphere making an angle less than π
with the center has two geodesics even though one is shorter than
the other. In this paper, we use the term to refer to a globally shortest
path. Note that, there might still be multiple geodesic as in the case
of two diametrically opposite points on the sphere.

an embedding space Z = {zi = fI(mi) ∈ R3+K}. Ap-
plying fI to M gives a set of high-dimensional points from
which we extract an object reconstruction, including surface
curvature information.

For every z ∈ Z, we denote the vector obtained by taking
the first three components of z as x and refer to it as point
coordinates of z. We call the remaining K dimensions as
the geodesic lifting coordinates of z. We define the set of
predicted point coordinates from a set of samples {mi} as
Ô = {x̂i = fI(mi)[:3]} (the first three components of each
output of fI ). Finally, for any two mi,mj ∈ M , with ẑi =
fI(mi) and ẑj = fI(mj), the predicted geodesic distance is
given by ĝ(ẑi, ẑj) = ||ẑi − ẑj ||2.

The mapping fI is trained such that Ô accurately approx-
imates the ground truth object O in terms of Chamfer dis-
tance and ĝ(zi, zj) accurately approximates the ground truth
geodesic distance g(x∗i , x

∗
j ), where x∗i , x

∗
j ∈ X∗ are the two

ground truth samples closest to x̂i and x̂j (the point coordi-
nates of zi and zj). The first condition requires that the point
coordinates represent an accurate sampling of the object sur-
face; the second condition requires the embedding space to
accurately capture geodesic distances between two point co-
ordinates. We can show that the lifting coordinates encode
curvature information: the quantity ĝ(ẑi, ẑj)

2−||x̂i− x̂j ||2 is
equal to the squared norm of the geodesic lifting coordinates.
This quantity approaches the geodesic curvature when the
samples are close to each other on the manifold.

Network Architecture and Training
The network design of Geodesic-HOF follows the Higher
Order Function (HOF) method, which has three main com-
ponents: an image encoder, a Higher-Order Function network
and a point mapping network. An image encoder extracts
the semantic and geometric information from an image I
of an object. From this representation, the Higher-Order
Function network predicts a set of parameters of a map-
ping function fI : RD → R3+K . To use the mapping func-
tion fI , we start by sampling the unit sphere to generate
a set of points M = {mi}. Then we use the learned net-
work to map these sampled points to a set of embeddings
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Category
3D-R2N2

(Choy et al.)
PSGN

(Fan et al.)
Pix2Mesh

(Wang et al.)
AtlasNet

(Groueix et al.)
OccNet

( Mescheder et al.) Ours
Airplane 0.227 0.137 0.187 0.104 0.147 0.099
Bench 0.194 0.181 0.201 0.138 0.155 0.122

Cabinet 0.217 0.215 0.196 0.175 0.167 0.134
Car 0.213 0.169 0.180 0.141 0.105 0.100

Chair 0.270 0.247 0.265 0.209 0.180 0.173
Display 0.314 0.284 0.239 0.198 0.278 0.193
Lamp 0.778 0.314 0.308 0.305 0.479 0.229

Speaker 0.318 0.316 0.285 0.245 0.300 0.206
Rifle 0.183 0.134 0.164 0.115 0.141 0.096
Sofa 0.229 0.224 0.212 0.177 0.194 0.162
Table 0.239 0.222 0.218 0.190 0.189 0.145

Telephone 0.195 0.161 0.149 0.128 0.140 0.109
Vessel 0.238 0.188 0.212 0.151 0.218 0.137
mean 0.278 0.215 0.216 0.175 0.215 0.141

Table 1: Chamfer Comparison: Geodesic-HOF achieves state of the art performance in Chamfer distance. We sample 100,000
points on the object of interest and the output of each method to compute the Chamfer distance.

Figure 3: Qualitative Comparison of reconstruction results
with existing methods. Best viewed in color.

Z = {zi = fI(mi) ∈ R3+K}. The advantages of Higher-
Order Function Networks over the Latent Vector Concatena-
tion (LVC) paradigm are discussed in detail in (Mitchell et al.
2019). Please refer to the Supplementary Material Section for
the architecture details. In Geodesic-HOF, we optimize the
loss function L, the weighted sum of the standard Chamfer
loss LC and the geodesic loss LG, with weight λC and λG,
respectively: L := λCLC +λGLG. These losses are defined in
the next section. Since the precision of the point coordinates
is important for finding the correct geodesic distance, we
weigh the Chamfer loss more than the Geodesic loss. Prac-
tically, we choose λG and λC to be 0.1 and 1.0 respectively.
We use the Adam Optimizer (Kingma and Ba 2015) with
learning rate 1e-5.

Figure 4: Top Left: 2D Input image. Left: Mesh Reconstruc-
tion from Geodesic-HOF by fitting a chart onto each non-
overlapping manifold generated by clustering the geodesic
lifting coordinates. Right: Visualization of the individual
charts from our decomposition. Each color indicates a differ-
ent chart (20 in total). Best viewed in color.

Loss Functions
The weights of the mapping function fI for a given image
I are learned so as to minimize the weighted sum of two
losses: Chamfer loss and Geodesic loss. Recall M is a set of
points randomly sampled from the pre-mapping space. The
predicted set of embeddings from M is Z = {zi = fI(mi) |
mi ∈M}.

Chamfer loss is defined as the set distance between the
point coordinates X = {xi} and the ground truth point set
Y .

LC(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y
||x− y||22 +

1

|Y |
∑
y∈Y

min
x∈X
||y − x||22

(1)

We optimize this loss so that our predicted point set accurately
represents the surface of the ground truth object.

Geodesic loss ensures the geodesic distance is learned ac-
curately between every pair of points. We denote the ground
truth geodesic distance on the object surface as g(xi, xj),
where (xi, xj) ∈ Ô and Ô is our prediction of O, which
is the union of several 2-manifolds representing the object
surface in R3. Since the geodesic distance is only defined on
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Category
3D-R2N2

(Choy et al.)
Pix2Mesh

(Wang et al.)
AtlasNet

(Groueix et al.)
OccNet

(Mescheder et al.)
Ours
(Euc)

Ours
(Geo)

Airplane 0.629 0.759 0.836 0.840 0.846 0.863
Bench 0.678 0.732 0.779 0.813 0.778 0.795

Cabinet 0.782 0.834 0.850 0.879 0.871 0.870
Car 0.714 0.756 0.836 0.852 0.819 0.827

Chair 0.663 0.746 0.791 0.823 0.802 0.810
Display 0.720 0.830 0.858 0.854 0.834 0.862
Lamp 0.560 0.666 0.694 0.731 0.712 0.732

Speaker 0.711 0.782 0.825 0.832 0.828 0.838
Rifle 0.670 0.718 0.725 0.766 0.797 0.797
Sofa 0.731 0.820 0.840 0.863 0.853 0.855
Table 0.732 0.784 0.832 0.858 0.827 0.841

Telephone 0.817 0.907 0.923 0.935 0.922 0.933
Vessel 0.629 0.699 0.756 0.794 0.774 0.790
mean 0.695 0.772 0.811 0.834 0.818 0.828

Table 2: Normal Comparison: Geodesic-HOF achieves competitive performance with state of the art methods in normal
consistency. We sample 100,000 points on the object of interest and the output of each method to compute the normal consistency.
Note that OccNet (Mescheder et al. 2019) is an implicit method, which gives it advantages in normal estimation due to marching
cubes post-processing.

the object surface, we project the point coordinates {xi} onto
the object and compute the pair-wise geodesic distance. The
details of this formulation are described in Equation 6. We
want to reconstruct the object while learning the embedding
of each point so that the geodesic distance in the 3D object
space R3 is the same as the Euclidean distance in the embed-
ding space Rk. For a set of embeddingsZ = {zi := [xi, wi]},
the geodesic loss is defined as:

LG(Z) =
1

|Z|2

|Z|∑
i=1

|Z|∑
j=1

(||zi − zj ||2 − g(xi, xj))
2 (2)

For computing the geodesic loss, we need the ground truth
geodesic distance matrix on the object O. We build a Nearest
Neighborhood graph G = (V,A) on X∗, a set of samples
from O. We define D(vi, vj), the geodesic distance between
vi and vj , as the length of the shortest path between vi ∈ V
and vj ∈ V computed by Dijkstra’s algorithm onG. For each
point xi from our prediction, we find its k-nearest neighbors,
denoted as Λ(xi) = {vpi } where p is the index of each neigh-
bor. For a pair of point coordinates (xi, xj), assume the set
of nearest neighbors in V of xi and xj are {vpi } and {vqj},
respectively. Here, we use γpq(xi, xj) to denote the unnor-
malized confidence score that path between xi and xj goes
through vpi and vqj . σ here is a generic Gaussian radial basis
function. We define αij , the confidence of an undirected path
between vi ∈ V and vj ∈ V , as:

αpq(xi, xj) =
γpq(xi, xj)∑

p∈|Λ(xi)|,q∈|Λ(xj)| γpq(xi, xj)
(3)

γpq(xi, xj) = σ(xi, v
p
i )σ(xj , v

q
j ) (4)

= exp(−(||xi − vpi ||
2
2 + ||xj − vqj ||

2
2)) (5)

The confidence of a path between xi and xj going through the
two vertices vpi and vqj is the normalized similarity between

(xi, xj) from our prediction and their possible corresponding
vertices (vpi , v

q
j ) in the graph measured by a radial basis ker-

nel. Because of the normalization step, the confidence over
all possible paths can be seen a probability distribution over
which vertices (vpi , v

q
j ) to choose on the ground truth object.

Thus, we can define the soft geodesic loss function as:

g(xi, xj) =
∑

vpi ∈Λ(xi),

vqj∈Λ(xj)

αpq(xi, xj)D(vpi , v
q
j ) (6)

Experiments
In this section, we demonstrate the utility of Geo-HOF in sev-
eral 3D reconstruction settings. First, we show that Geodesic-
HOF is able to reconstruct 3D objects accurately while
learning the geodesic distance. On the ShapeNet (Chang
et al. 2015) dataset, Geodesic-HOF performs competitively
in terms of Chamfer distance (Table 1) and in normal consis-
tency (Table 2) compared against the current state of the art
3D reconstruction methods. Then we show a set of interesting
applications of our learned embeddings in tasks such as mesh
reconstruction and manifold decomposition (Figures 4 and 5).
Our experiments show that we can learn important properties
such as curvature from the learned embeddings to render a
better representation of the object shape.

Single View Object Reconstruction
In this section, we evaluate the quality of our learned repre-
sentation by performing a single-view reconstruction task on
the ShapeNet (Chang et al. 2015) dataset. For fair compari-
son, we use the data split provided in (Choy et al. 2016b). We
use the pre-processed ShapeNet renderings and ground truth
objects from (Mescheder et al. 2019). For evaluation, we use
two main metrics: Chamfer distance and Normal consistency.
The detail of the dataset can be found in Supplementary Ma-
terial.
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Figure 5: Manifold Decomposition of a canonical cube shape
(Top) and a table from ShapeNet (Bottom). Comparing sur-
face manifold decompositions by clustering raw 3D point
coordinates xi and geodesic lifting coordinates wi of the
predicted embedding zi = [xi, wi]. K-Means is used for
clustering with K=6. Geodesic lifting coordinates give more
meaningful features that partition the surface into intuitive
components. Best viewed in color.

Evaluation Metrics Chamfer distance is defined identi-
cally as Equation 1. We sample 100,000 points from both our
output representation and the ground truth point cloud. Note
that the original objects are normalized so that the bounding
box of each object is a unit cube and we follow the eval-
uation procedure of (Mescheder et al. 2019) to use 1/10
of the bounding box size as the unit. Normal consistency
between two normalized unit vectors ni and nj is defined
as the dot product between the two vectors. For evaluating
the surface normals, we first sample oriented points from
the object surface, denoted as Xpred = {(~xi, ~ni)}) and the
set of ground truth points and the corresponding normals
Xgt = {(~yj , ~mj)}). The surface normal consistency between
two set of oriented points sample from the object, denoted as
Γ, is defined as:

Γ(Xgt, Xpred) =
1

|Xgt|
∑

i∈|Xgt|

|~ni · ~mθ(x,Xpred)| (7)

θ(x,Xgt := {(~yj , ~mj)})) = arg min
j∈|Xgt|

||x− yj ||22 (8)

In Table 1 we show our Chamfer distance comparison with
3D-R2N2 (Choy et al. 2016a), PSGN (Point Set Generating
Networks) (Fan et al. 2017), Atlasnet (Groueix et al. 2018)
and Pixel2Mesh (Wang et al. 2018). In Table 2, we show the
normal comparison results with the same set of methods. In
Table 1, it can be seen that Geodesic-HOF can accurately
represent the object as indicated by the best overall chamfer

performance. By learning a continuous mapping function
between the mapping domain and the embedding domain,
we allow high-resolution sampling of the embedding space
to represent the object. In addition, by using a Higher-Order
Function Network as the decoder, we avoid the dimension-
ality constraints of the latent vector code to provide a more
direct way for image information to flow into the mapping
function. In comparison, the methods that have pre-defined
connectivity, such as Pix2Mesh (Wang et al. 2018) and At-
lasNet (Groueix et al. 2018), suffer from the topological
constraints of the sampling domain. Furthermore, we present
the qualitative results of our reconstruction results in Figure 3.
While achieving visually more accurate mesh reconstruction,
Geodesic-HOF provides additional information such as chart
decomposition, which we explain in detail next.

Table 2 shows that our normal estimation results compared
with other methods. The last two columns show the normal
consistency obtained with two methods. Both methods use
a nearest neighbor search to find the local planar neighbor-
hood and estimate the normals based on a principal axes
analysis of the neighborhood. Ours (Euc) uses Euclidean
distance to find the neighborhood whereas Ours (Geo) uses
the learned geodesic embedding to find the neighborhood.
The comparison between the last two columns shows that the
geodesic embeddings provide a better guide for finding the
low curvature neighborhood. For example, on the edge of the
table, if we estimate the normal of the points on the tabletop
near the edge, we should avoid the inclusion of the points
on the side of the table. From our experiments, the geodesic
neighborhoods yield overall better normal estimation results.
Note that implicit methods such as Occupancy Network have
a natural advantage in normal estimation due to the filter-
ing effect of the marching cubes post-processing, which is
advantageous for datasets with few high-frequency surface
features. Despite this difference, our normal consistency per-
forms competitively with state of the art methods. This result
highlights the effectiveness of the learned geodesics in under-
standing the local structure, such as curvature, of the object.

Applications
In this section, we show two example applications of our
learned geodesic embeddings. We use the geodesic lifting
dimensions of the embeddings to decompose shapes into sim-
pler, non-overlapping charts. We also show how each chart
from decomposition can be represented as an explicit function
y = f(u, v) which can then be used for mesh reconstruction.

Chart Decomposition The object surface can be repre-
sented as a differentiable 2-manifold, also known as an at-
las, using a collection of charts. Clustering Geodesic-HOF
embeddings according to the lifting coordinates provides a
natural way to split the object into a small number of low
curvature charts as illustrated in Figure 5, where we contrast
this technique with a standard clustering method based on
Euclidean distance in R3. Our method correctly separates the
faces of the cube (left) and the legs and the table-top (right).
The charts can be useful in many applications such as estab-
lishing a uv-map for texture mapping and for triangulation

2849



Pix2Mesh AtlasNet OccNet
Ours

(Mesh)
Chamfer 0.216 0.175 0.215 0.169
Normal 0.772 0.811 0.834 0.780

Table 3: Mesh Reconstruction comparison on entire ShapeNet
test set. Evaluation is done by sampling 100,000 points uni-
formly on the predicted mesh. The surface normal of each
point comes from the surface normal of the triangles the
points belong to. Pix2Mesh, AtlasNet and Geodesic-HOF
are explicit methods whereas OccNet is based on learning
occupancy as an implicit function. Mean values are reported.

Chamfer Normal
Category HOF Geo-HOF HOF Geo-HOF
Airplane 0.096 0.099 0.845 0.863
Bench 0.123 0.122 0.779 0.795
Cabinet 0.134 0.134 0.868 0.870
Car 0.996 0.100 0.818 0.827
Chair 0.174 0.173 0.795 0.810
Display 0.194 0.193 0.836 0.862
Lamp 0.235 0.229 0.707 0.732
Speaker 0.209 0.206 0.829 0.838
Rifle 0.097 0.096 0.793 0.797
Sofa 0.156 0.162 0.853 0.855
Table 0.138 0.145 0.826 0.841
Telephone 0.110 0.109 0.923 0.933
Vessel 0.129 0.137 0.776 0.790
mean 0.137 0.141 0.816 0.828

Table 4: Chamfer and normal evaluation of regular HOF vs.
Geodesic-HOF.

based mesh generation.

Mesh Reconstruction Once we decompose the object into
charts, we can fit a surface to each chart and establish a 2D
coordinate frame. The 2D coordinates can then be used for
triangulation. Here, we present a general approach using a
multi-layer Perceptron fθ to represent the manifold. This
is related to the approach of AtlasNet; however, with Geo-
HOF, we have low-curvature regions already partitioned into
charts and have point coordinates associated with each chart,
allowing learning of the parameters θ in an unsupervised
manner. We present additional details in the Supplementary
Material and an illustration of this method in Figure 4.

In Figure 4, we decompose an airplane to 20 non-
overlapping charts by clustering the lifting coordinates, tri-
angulating each chart using the method described above. We
observe that the charts are split nicely at high-curvature areas.
Finally, we compare the resulting meshes with a state of the
art implicit function method: Occupancy Networks learns an
occupancy function to represent the object and uses march-
ing cubes to generate a mesh. In Table 3, we present mean
values over all ShapeNet classes, and present full comparison
across classes in the Supplementary Material section. Note
that, unlike the other methods in this table, we fit the mani-
folds as an optimization step without accessing the ground

Figure 6: Pairwise distance error from network output vs
ground truth pairwise geodesic distance.

truth. Nevertheless, we show competitive Chamfer distance
and normal consistency.

Ablation Study
To further understand the benefits of geodesic supervision,
we compared regular HOF (without geodesic loss) with
Geodesic-HOF in Table 4. While the geodesic loss poses
additional constraints on the network, we show that Geodesic-
HOF is able to learn the geodesic information without sacri-
ficing the chamfer distance performance. Further, we plot the
distance error between every pair of points from the output of
the two networks in Figure 6. As the ground truth distance in-
creases, the Euclidean approximation of geodesic distance be-
comes worse. With the geodesic supervision, Geodesic-HOF
can predict the pairwise distance much more robustly. The
additional geodesic information allows the network to query
neighbors more accurately. This explains why Geodesic-HOF
significantly outperforms baselines in normal estimation.

Conclusion
We presented Geodesic-HOF for generating continuous sur-
face models. Geodesic-HOF can generate surface samples
at arbitrary resolution and estimating the geodesic distance
between any two samples. Comparisons showed that our
method can generate more accurate point samples and sur-
face normals than state of the art methods which can directly
generate surfaces. It also performs comparably to implicit
function methods which rely on post-processing the output
to generate the object surface. We also presented two appli-
cations of Geodesic-HOF: partitioning the surface into non-
overlapping, low-curvature charts and learning a functional
mapping of each chart. Combining these two applications al-
lows us to generate triangulations of the object directly from
the network output. This approach alleviates some of the
limitations of the previous mesh generation methods such as
overlapping charts or genus constraints. We then performed
ablation study to understand the effect of geodesic supervi-
sion on reconstruction and neighbor estimation.

We hope that this work will motivate future research in
3D reconstruction that learns higher-order surface properties
like geodesics in order to produce more useful, accurate
representations of 3D objects.

2850



References
Balasubramanian, M.; and Schwartz, E. L. 2002. The isomap
algorithm and topological stability. Science 295(5552): 7–7.

Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.;
Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su,
H.; et al. 2015. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 .

Choy, C. B.; Xu, D.; Gwak, J.; Chen, K.; and Savarese, S.
2016a. 3d-r2n2: A unified approach for single and multi-
view 3d object reconstruction. In European Conference on
Computer Vision, 628–644. Springer.

Choy, C. B.; Xu, D.; Gwak, J.; Chen, K.; and Savarese, S.
2016b. 3d-r2n2: A unified approach for single and multi-
view 3d object reconstruction. In European conference on
computer vision, 628–644. Springer.

Cox, M. A.; and Cox, T. F. 2008. Multidimensional scaling.
In Handbook of data visualization, 315–347. Springer.

Fan et al. 2017. A point set generation network for 3d object
reconstruction from a single image. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
605–613.

Gkioxari, G.; Malik, J.; and Johnson, J. 2019. Mesh R-CNN.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

Groueix, T.; Fisher, M.; Kim, V. G.; Russell, B. C.; and
Aubry, M. 2018. A papier-mâché approach to learning 3d
surface generation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 216–224.

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. In Bengio, Y.; and LeCun, Y., eds., 3rd In-
ternational Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. URL http://arxiv.org/abs/1412.6980.

Lin, C.-H.; Kong, C.; and Lucey, S. 2018. Learning Efficient
Point Cloud Generation for Dense 3D Object Reconstruction.
In AAAI Conference on Artificial Intelligence (AAAI).

Luciano, L.; and Hamza, A. B. 2018. Deep learning with
geodesic moments for 3D shape classification. Pattern Recog-
nition Letters 105: 182–190. doi:10.1016/j.patrec.2017.05.
011. URL https://doi.org/10.1016/j.patrec.2017.05.011.

Maaten, L. v. d.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research 9(Nov):
2579–2605.

Mescheder, L.; Oechsle, M.; Niemeyer, M.; Nowozin, S.;
and Geiger, A. 2019. Occupancy networks: Learning 3d
reconstruction in function space. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
4460–4470.

Mitchell, E.; Engin, S.; Isler, V.; and Lee, D. D. 2019. Higher-
Order Function Networks for Learning Composable 3D Ob-
ject Representations. arXiv preprint arXiv:1907.10388 .

Pai, G.; Talmon, R.; Bronstein, A.; and Kimmel, R. 2019.
DIMAL: Deep Isometric Manifold Learning Using Sparse

Geodesic Sampling. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), 819–828.
Park, J. J.; Florence, P.; Straub, J.; Newcombe, R.; and Love-
grove, S. 2019. Deepsdf: Learning continuous signed dis-
tance functions for shape representation. arXiv preprint
arXiv:1901.05103 .
Riegler, G.; Osman Ulusoy, A.; and Geiger, A. 2017. Oct-
Net: Learning Deep 3D Representations at High Resolutions.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Smith, E. J.; Fujimoto, S.; Romero, A.; and Meger, D. 2019.
GEOMetrics: Exploiting Geometric Structure for Graph-
Encoded Objects. arXiv preprint arXiv:1901.11461 .
Tatarchenko, M.; Dosovitskiy, A.; and Brox, T. 2017. Octree
generating networks: Efficient convolutional architectures
for high-resolution 3d outputs. In Proceedings of the IEEE
International Conference on Computer Vision, 2088–2096.
Tenenbaum, J. B.; De Silva, V.; and Langford, J. C. 2000.
A global geometric framework for nonlinear dimensionality
reduction. science 290(5500): 2319–2323.
Wang, N.; Zhang, Y.; Li, Z.; Fu, Y.; Liu, W.; and Jiang, Y.-G.
2018. Pixel2mesh: Generating 3d mesh models from single
rgb images. In Proceedings of the European Conference on
Computer Vision (ECCV), 52–67.
Wang, Y.; Peterson, B. S.; and Staib, L. H. 2000. Shape-based
3D surface correspondence using geodesics and local geom-
etry. In Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No.PR00662),
volume 2, 644–651 vol.2.
Wang, Y.; Peterson, B. S.; and Staib, L. H. 2003. 3D Brain
surface matching based on geodesics and local geometry.
Computer Vision and Image Understanding 89(2-3): 252–
271. doi:10.1016/s1077-3142(03)00015-8. URL https://doi.
org/10.1016/s1077-3142(03)00015-8.
Wu, J.; Zhang, C.; Xue, T.; Freeman, B.; and Tenen-
baum, J. 2016. Learning a Probabilistic Latent Space of
Object Shapes via 3D Generative-Adversarial Modeling.
In Lee, D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon,
I.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems 29, 82–90. Curran Associates,
Inc. URL http://papers.nips.cc/paper/6096-learning-
a-probabilistic-latent-space-of-object-shapes-via-3d-
generative-adversarial-modeling.pdf.
Yang, Y.; Feng, C.; Shen, Y.; and Tian, D. 2018. Foldingnet:
Point cloud auto-encoder via deep grid deformation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 206–215.

2851


