
Efficient Object-Level Visual Context Modeling for Multimodal Machine
Translation: Masking Irrelevant Objects Helps Grounding

Dexin Wang and Deyi Xiong∗

College of Intelligence and Computing, Tianjin University, Tianjin, China 300350
{dexinwang, dyxiong}@tju.edu.cn

Abstract

Visual context provides grounding information for multi-
modal machine translation (MMT). However, previous MMT
models and probing studies on visual features suggest that
visual information is less explored in MMT as it is often re-
dundant to textual information. In this paper, we propose an
Object-level Visual Context modeling framework (OVC) to
efficiently capture and explore visual information for multi-
modal machine translation. With detected objects, the pro-
posed OVC encourages MMT to ground translation on desir-
able visual objects by masking irrelevant objects in the visu-
al modality. We equip the proposed OVC with an additional
object-masking loss to achieve this goal. The object-masking
loss is estimated according to the similarity between masked
objects and the source texts so as to encourage masking
source-irrelevant objects. Additionally, in order to generate
vision-consistent target words, we further propose a vision-
weighted translation loss for OVC. Experiments on MMT
datasets demonstrate that the proposed OVC model outper-
forms state-of-the-art MMT models and analyses show that
masking irrelevant objects helps grounding in MMT.1

Introduction
Multimodal Machine Translation aims at translating a sen-
tence paired with an additional modality (e.g. audio modal-
ity in spoken language translation or visual modality in
image/video-guided translation) into the target language (El-
liott et al. 2016), where the additional modality, though
closely semantically related to the text, provides an alter-
native and complementary view to it. By contrast to text-
only neural machine translation (NMT), MMT character-
izes with the assumption that the additional modality help-
s improve translation by either grounding the meaning of
the text or providing multimodal context information (Lee
et al. 2018). Hence, MMT exhibits pronounced reliance on
language-vision/speech interaction.2

However, effectively integrating visual information and
language-vision interaction into machine translation has
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1Source code is available at https://github.com/tjunlp-lab/OVC.
2In this paper, we focus on multimodal machine translation with

both visual and textual modality.

Complete sentences:    a    man       sleeping    in   a    green     room     on    a   couch
Color deprivation:       a    man       sleeping    in   a   [color]    room     on    a   couch 
Gender masking:         a  [person]  sleeping    in   a    green     room     on    a   couch 
Entity masking:           a   [mask]    sleeping    in    a    green    [mask]   on    a   [mask] 
Our masking:               a  [person]   sleeping    in    a   [color]   [scene]   on    a   [other]  

ein mann schläft in einem grünen raum auf einem sofa 

a  man  sleeping  in  a  green  room  on  a  couchSource text

Target text
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multimodal machine translationtext-only machine translation

Figure 1: Word masking in multimodal machine translation.

been regarded as a big challenge (Yang et al. 2020) for
years since Multi30K (Elliott et al. 2016) is proposed as a
benchmark dataset for MMT. Many previous MMT studies
on Multi30K, which exploit complete source texts during
both training and inference, have found that visual context is
needed only in special cases, e.g., translating sentences with
incorrect or ambiguous source words, by both human and
machine translation, and is hence marginally beneficial to
multimodal machine translation (Lala et al. 2018; Ive, Mad-
hyastha, and Specia 2019).

In this paper, we hypothesize that visual context can be
efficiently exploited to enhance MMT, instead of being ig-
nored as a redundant input, from three aspects as follows:
• Source text processing and encoding. In most cases,

source texts provide sufficient information for translation,
which makes visual context redundant. Therefore, weak-
ening the input signal from the textual modality may force
MMT to pay more attention to the visual modality.

• Visual feature learning tailored for translation. Not all
parts in visual images are useful for translation. Learning
visual features that are not only linked but also comple-
mentary to source texts is desirable for MMT.

• Target word generation and decoding. Visual representa-
tions can be used to not only initialize the decoder (Zhou
et al. 2018) but also guide target word prediction (e.g., re-
warding target prediction consistent with visual context).
Regarding the first aspect, we have witnessed that pio-

neering efforts (Caglayan et al. 2019; Ive, Madhyastha, and
Specia 2019), different from previous methods, mask spe-
cific words (e.g. gender-neutral words) in source texts, forc-
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ing MMT to distill visual information into text generation,
as shown in Figure 1. In addition to the source text mask-
ing, in this paper, we attempt to explore all the three afore-
mentioned aspects in a unified framework for MMT. Specif-
ically, we propose an efficient object-level visual context
modeling framework (OVC) to capture desirable visual fea-
tures and to reward vision-consistent target predictions for
MMT. In this framework, we first detect a bag of object-
s from images. Inspired by the word masking method in
source texts (Caglayan et al. 2019), we also encourage OVC
to mask visual objects that are not relevant to source texts by
computing object-text similarity in a preprocessing step. For
this, we propose an object-masking loss that calculates the
cross-entropy loss difference between original translation
and translations generated with the relevant-object-masked
image vs. irrelevant-object-masked image. This is to reward
masking irrelevant objects in visual context while masking
relevant objects is penalized.

In order to force the decoder to generate vision-consistent
target words, we change the traditional cross-entropy trans-
lation loss into a vision-weighted loss in OVC, which tends
to reward the generation of vision-related words or rare but
vision-consistent words.

To examine the effectiveness of the proposed OVC in
visual feature learning, we test OVC against the baselines
in both standard and source-degradation setting with word
masking as shown in Figure 1.

The contributions of this work can be summarized as fol-
lows:

• We propose a new approach to MMT, which masks both
objects in images and specific words in source texts for
better visual feature learning and exploration.

• We propose two additional training objectives to enhance
MMT: an object-masking loss to penalize undesirable ob-
ject masking and a vision-weighted translation loss to
guide the decoder to generate vision-consistent words.

• We conduct experiments and in-depth analyses on exist-
ing MMT datasets, which demonstrate that our model can
outperform or achieve competitive performance against
state-of-the-art MMT models.

Related Work
MMT without Text Masking
Since the release of the Multi30K dataset, a variety of differ-
ent approaches have been proposed for multimodal machine
translation. Efforts for the MMT modeling mechanism can
be categorized into RNN-based sequence-to-sequence mod-
els and attention-based ones. Elliott and Kádár (2017) and
Caglayan et al. (2017) employ GRU/LSTM-based encoder-
decoder models to encode source texts and integrate a single
image vector into the model. The image vector is either used
to initialize the encoder or decoder (Zhou et al. 2018; Ive,
Madhyastha, and Specia 2019) or to fuse with word embed-
dings in the embedding layer of the encoder (Caglayan et al.
2017). Attention-based sequence-to-sequence approaches
have been proposed for MMT (Huang et al. 2016), which
compute either spatially-unaware image-to-texts attention

(Zhang et al. 2020) or spatially-aware object-to-text to cap-
ture vision-text interaction so as to enhance the encoder and
decoder of MMT (Yang et al. 2020).

We also have witnessed two proposed categories for
MMT from the perspective of cross-modal learning ap-
proaches, which either explicitly transform visual features
and textual embeddings from one modality to the other at
both training and inference (Caglayan et al. 2017; Yin et al.
2020), or implicitly align the visual and textual modalities to
generate vision-aware textual features at training. Unlike the
explicit approaches, the implicit cross-modal learning meth-
ods do not require images as input at inference, taking the
image features as latent variables across different languages
(Elliott and Kádár 2017; Calixto, Rios, and Aziz 2019; Hi-
rasawa et al. 2019), which also serves as a latent scheme for
unsupervised MMT (Lee et al. 2018). Despite the success of
plenty of models on Multi30K, an interesting finding is that
the visual modality is not fully exploited and only marginal-
ly beneficial to machine translation (Caglayan et al. 2017;
Ive, Madhyastha, and Specia 2019).

Text-Masked MMT
To probe the real need for visual context in MMT, several re-
searchers further explore new settings where visual features
are not explicitly expressed by source texts on purpose. In
other words, specific source words that are linked to visu-
al features are purposely masked. In particular, Ive, Mad-
hyastha, and Specia (2019) focus on three major linguistic
phenomena and mask ambiguous, inaccurate and gender-
neutral (e.g., player) words in source texts on Multi30K.
Their experiment results suggest that the additional visu-
al context is important for addressing these uncertainties.
Caglayan et al. (2019) propose more thoroughly masked
schemes on Multi30K by applying color deprivation, whole
entity masking and progressive masking on source texts.
They find that MMT is able to integrate the visual modality
when the available visual features are complementary rather
than redundant to source texts.

Although masking source words forces MMT models to
pay more attention to and therefore exploit the visual modal-
ity for translation, there is a big performance gap between
the standard setting (without text masking) and source-
degradation setting (purposely masking specific words). For
example, in the experiments reported by Ive, Madhyastha,
and Specia (2019), the best METEOR on WMT 2018 MMT
EN-DE test set for the standard setting is 46.5 while the
highest METEOR score for the source-degradation setting
is only 41.6. Although specific words are masked in source
texts, visual features that are semantically linked to these
words are available in the visual modality provided for
MMT. This indicates that the visual modality is not fully ex-
ploited by current MMT models even though the available
information is complementary to source texts.

Efficient Object-Level Visual Context
Modeling

In this section, we elaborate the proposed OVC model. The
backbone of the model is a GRU-based encoder-decoder
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a man sleeping in a green room on a sofa

ein mann schläft  in  einem grünen  raum  auf  einem  sofa   [EOS]
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Figure 2: The architecture of the proposed OVC framework. MSIO: masking source-irrelevant objects. MSRO: masking source-
relevant objects. SAV denotes source annotation vectors. VASR is the vision-aware source representation of the source sentence.

neural network with two multihead attention layers that
model the attention between source tokens and detected ob-
jects in the input image as well as the attention between tar-
get and source tokens. The architecture of OVC is shown in
Figure 2. The source input to OVC can be either an orig-
inal source sentence or the degradation of the source sen-
tence (see Section ‘Experiment’ for more details on how
we degrade source sentences by masking specific words).
The visual modality is integrated into the model through the
object-source multihead attention, which is also explored in
two additional training objectives: the object-masking loss
and the vision-weighted translation loss.

Encoder
The encoder of OVC consists of a bidirectional GRU mod-
ule and an object-source attention layer that performs the
fusion of textual and visual modalities. The inputs to the en-
coder include token embeddings of source texts and object-
level visual features from the paired image. Let Wn

s =
{w1

s , w
2
s , ..., w

n
s } denote the token embedding matrix of the

source sentence, where n is the number of tokens. The
object-level features are a set of vector embeddings of ob-
jects detected by a pretrained object detector. Each detected
object is labeled with its predicted object category and at-
tribute (e.g., “young man”, “green wall”). In our case, we use
Resnet101 (He et al. 2016) as the object detector which com-
presses each object into a 2048-dimension vector. We de-
note the object embedding matrix asOm = {o1, o2, ..., om},
where m is the number of all detected objects. During train-
ing, some objects from the paired image are randomly s-
elected and masked, which we’ll discuss in the following

subsection in detail. The representation for a masked object
is set to a zero vector.

The bidirectional GRU transforms the sequence of source
token embeddings into a sequence of annotation vectors
(SAV):

Hn
s = (h1

s, h
2
s, ..., h

n
s ) (1)

We then adopt a multihead attention layer over Hn
s and Om

to obtain a vision-aware source representation (VASR) as
follows:

VASR = MultiHead1(H
n
s , O

m, Om) (2)

where MultiHead(Q, K, V) is a multihead attention function
taking a query matrix Q, a key matrix K, and a value matrix
V as inputs. After that, we aggregate VASR and Hn

s into
a mixed-modality source sentence vector (SSV) by apply-
ing average-pooling (AP) on both VASR and Hn

s to get two
separate vectors and then adding the two vectors as follows:

SSV = AP(VASR) + AP(Hn
s ) (3)

Decoder
The decoder of OVC also consists of a multihead attention
layer to compute source-target attention and a GRU module
to update hidden states. SSV is fed into the GRU layer to
initialize the decoder as follows:

H0
t = GRU(w[sos]

t , SSV) (4)

where w[sos]
t is the embedding of the start symbol. At each

time step, the multihead attention layer computes the source-
target attention as follows:

T i+1 = MultiHead2(H
i
t ,VASR,VASR) (5)
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where Hi
t is the hidden state at i-th time step of the decoder.

The GRU module aggregates previous word embedding and
T i+1 to update the hidden state as follows:

Hi+1 = GRU(wi
t, T

i+1) (6)

where wi
t denotes the embedding of the i-th target word. Fi-

nally, we project Ht into logit vectors for target word pre-
diction over the vocabulary.

Training Objectives
In order to facilitate our model to capture the deep interac-
tion between the textual and visual modalities, in OVC, we
propose two additional translation objectives to better inte-
grate visual features into MMT: an object-masking loss and
a vision-weighted translation loss.

Object-Masking Loss. The object-masking loss (denoted
as Lm) is to optimize MMT to discriminate good grounding
of source tokens to the visual modality from bad grounding
by telling the model the difference between masking source-
relevant objects and masking those irrelevant. If an object is
masked, the corresponding oi is set to a zero vector. Specif-
ically, the goals of using this objective are two-folds:

• forcing the model to penalize masking objects (e.g., the
masked object in 3© of Figure 2) on which source words
(or tags in degraded source sentences) can be grounded.

• rewarding masking schemes where irrelevant objects
(e.g., the masked object in 2© of Figure 2) are masked
so as to avoid the negative impact from them.

Before we define the object-masking loss, let’s discuss
how we detect source-relevant objects from those irrelevan-
t. Generally, we compute the degree of the relevance of an
object to the source sentence by semantic similarity with the
aid of a pretrained language model.3 In particular, we first
compute a cosine similarity matrix (denoted as Sm∗n) for all
possible object-word pairs (wi

op, w
j
sp) for each object, where

wi
op is the word embedding for the category word of the i-

th object, wj
sp is the word embedding for the j-th source

token. Both embeddings are from the same pretrained lan-
guage model. Notice that Wn

sp = {w1
sp, w

2
sp, ..., w

n
sp} is d-

ifferent from Wn
s in that the former is from the pretrained

language model and only used for source-relevant object de-
tection in the preprocessing step while the latter is initial-
ized randomly and trained with the model. We perform max-
pooling over the corresponding row of the similarity matrix
S to obtain the similarity score of the object to the entire
source sentence. In this way, we collect a vector of similari-
ty scores OSS (object-to-sentence similarity) for all objects
as follows:

OSSi = maxSi,1:n, i = 1, 2, ...,m (7)

3We use multilingual-cased-base-BERT which is only used in
the preprocessing step to determine source-relevant objects. The
reason of using the multilingual BERT is that object category words
and source words may be in two different languages. Other multi-
lingual word embeddings can be used here too.

We then define an indicator d to indicate whether an ob-
ject is source-relevant or not as follows:
di = 1 if OSSi > γ otherwise 0, i = 1, 2, ...,m (8)

where γ is a predefined similarity threshold hyper-
parameter.4

With d, we calculate the object-masking loss as follows:
Lr = L(Om

øi
,Wn

s ) if di = 1 (9)
Lir = L(Om

øi
,Wn

s ) if di = 0 (10)
Lm = −(Lr − Lo) + (Lir − Lo)

2 (11)
where L denotes the cross-entropy translation loss of OVC
fed with different visual features,Om

øi
denotesOm where the

i-th object is masked (i.e, oi = 0), Lo denotes the original
cross-entropy loss of OVC where no objects are masked, Lr

calculates the new cross-entropy loss if a source-relevant ob-
ject is masked while Lir is the new loss if a source-irrelevant
object is masked. Therefore, minimizing Lm will force the
model to reward masking irrelevant objects and penalize
masking relevant objects. For each training instance, OVC
randomly samples source-irrelevant objects for computing
Lir and source-relevant objects for generating Lr. For each
masked instance, we make sure that all masked objects are
either source-relevant or source-irrelevant. No mixed cases
are sampled.

Vision-Weighted Translation Loss. Partially inspired by
VIFIDEL (Madhyastha, Wang, and Specia 2019) which
checks whether the generated translations are consisten-
t with the visual modality by evaluating the visual fidelity of
them, we introduce a vision-weighted translation loss. Simi-
lar to OSS, we first compute a target-to-source semantic sim-
ilarity matrix S′r∗n where r is the number of target tokens.
In order to allow the model to pay more attention to vision-
related tokens5 in source texts (e.g., “man”, “green” in Fig-
ure 2), we further set elements that are not vision-related in
S′ to 0. Then we compute a target-to-vision-related-source
similarity vector TVS as follows:

TVSj = maxS′j,1:n, j = 1, 2, ..., r (12)
After that, we calculate a weight for each target word to esti-
mate how much the target word is consistent with the visual
modality as follows:

qj =
TVSj/fj∑r

a=1 TVSa/fa
, j = 1, 2, ..., r (13)

where fj is the frequency of the j-th token in the training
data. fj is applied to de-bias rare vision-related words. Then
the vision-weighted loss Lv can be computed as follows:

Lv =
r∑

j=1

qj ∗ Loj (14)

where Loj is the cross-entropy loss of the j-th target word.
Generally, Lv favors target words that are vision-consistent.
Rare words can be encouraged to generate if they are related
to the visual modality through the de-biasing factor fj .

4In our case, we set γ to 0.48 after randomly checking 100 sam-
ples in the training data to select a suitable threshold.

5Vision-related tokens are marked and provided by Flickr30K-
Entities (Plummer et al. 2015).
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Overall Objective of OVC. We aggregate the basic trans-
lation loss Lo, the object-masking loss Lm and the vision-
weighted loss Lv for each sample into three forms as fol-
lows:

Lovcm = (Lo+ Lr + Lir)/3 + α ∗ Lm (15)
Lovcv = Lo+ β ∗ Lv (16)

Lovcfull
= (Lo+ Lr + Lir)/3 + α ∗ Lm + β ∗ Lv (17)

where α and β are two hyper-parameters to control the two
additional training objectives. Lovcm is the loss objective of
OVC with the additional object-masking loss where we opti-
mize the average of three translation losses (Lo, Lr and Lir)
instead of Lo itself, otherwise the Lir and Lr terms will be
uncontrollable during optimization. Lovcv is the loss objec-
tive of OVC with the additional vision-weighted translation
loss while Lovcfull

is the full-fledged objective of OVC with
the two additional losses.

Experiments
In order to evaluate the proposed OVC framework for MMT,
we conducted a series of experiments on MMT datasets and
compared OVC with state-of-the-art MMT models.

Dataset
We used three datasets:

• Multi30K (Elliott et al. 2016). This is a widely-used
benchmark dataset for MMT, which contains English cap-
tions for images from Flickr30K (Young et al. 2014)
and corresponding translations into German, French
and Czech. We conducted experiments with English-
to-French (En-Fr) and English-to-German (En-De) and
adopted the default split of Multi30K in WMT 2017
MMT shared task, which consists of 29,000 samples for
training and 1,014 for validation, and 1,000 for test. We
used sentences with subwords preprocessed by the imple-
mentation of VAG-NMT. For these splits,6 the vocabulary
contains 8.5K sub-words for English, 9.4K for German
and 8.7K for French.

• WMT17 MMT test set (Elliott et al. 2017). This test
set contains 1,000 unduplicated images manually selected
from 7 different Flickr groups.

• Ambiguous COCO. This is an out-of-domain test set of
WMT 2017 with 461 images whose captions are selected
to contain ambiguous verbs.

Experiment Settings
Following previous works (Ive, Madhyastha, and Specia
2019; Yin et al. 2020), we evaluated OVC in the following
two settings.

• Standard setting: For this setting, we retain all words in
source texts and feed them as textual input into all MMT
models for both training and inference.

6https://drive.google.com/drive/folders/
1G645SexvhMsLPJhPAPBjc4FnNF7v3N6w

• Source-degradation setting: In this setting, we mask
words in source texts according to Flickr30K-Entities
(Plummer et al. 2015), which manually categorizes words
in English captions in Multi30K into 9 classes:‘people’,
‘scene’, ‘clothing’, ‘instruments’, ‘animals’, ‘bodyparts’,
‘vehicles’, ‘other’ and ‘notvisual’. We did not mask
the ‘notvisual’ category as words in this category can-
not been grounded in the corresponding image. Except
for the ‘notvisual’ words, we replaced vision-related
words with their corresponding category tags. Besides, we
replaced color-related words as an identical ‘color’ cate-
gory in the remaining source texts, as shown in Figure
1. 20.9% of words (79,622 out of 380,793) in the train-
ing set and 21.0% of words (2,818 out of 13,419) in the
validation set were masked in this way. As Flickr30K-
Entities do not provide tags for the re-sampled images in
the WMT17 MMT test set, we only evaluated MMT mod-
els on the development set in this experiment setting. We
fed all MMT models with masked source texts as textual
input during both training and inference.

Baselines

We compared our proposed OVC against 6 different strong
baselines:

• Transformer (Vaswani et al. 2017): state-of-the-art neural
machine translation architecture with self-attention.

• Imagination (Elliott and Kádár 2017): an RNN-based
sequence-to-sequence MMT system which implicitly
aligns images and their corresponding source texts.

• VAG-NMT (Zhou et al. 2018): an RNN-/Attention-mixed
MMT system using vision-text attention to obtain a
vision-aware context representation as the initial state of
its decoder.

• VMMT (Calixto, Rios, and Aziz 2019): a GRU-based
MMT approach that imposes a constraint on the KL ter-
m to explore non-negligible mutual information between
inputs and a latent variable.

• GMMT (Yin et al. 2020): a stacked graph-based and
transformer-based MMT model using object-level fea-
tures and a textual graph parser for modeling semantic
interactions.

• VAR-MMT (Yang et al. 2020): an attention-based MMT
model that employs visual agreement regularization on vi-
sual entity attention via additional word aligners.

For fairness, all the models were trained using Multi30K.
No extra resource was used. In the standard setting, we
compared OVC against these baselines whose performance
on the WMT17 MMT test set are directly reported from
their corresponding papers. Note that the performance of
Transformer is taken from (Yin et al. 2020). For the source-
degradation setting, we only compared OVC with different
objectives as this is a new setting where no results of existing
models are available.
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Models
WMT17 MMT test set Ambiguous COCO

En⇒Fr En⇒De En⇒Fr En⇒De
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

Existing MMT Models
(T ) Transformer‡ 52.0 68.0 30.6 50.4 - - 27.3 46.2
(R) Imagination i - - 30.2 51.2 - - 26.4 45.8
(R) VAG-NMT i‡ 53.5±0.7 70.0±0.7 31.6±0.5 52.2±0.3 44.6±0.6 64.2±0.5 27.9±0.6 47.8±0.6
(R) VAG-NMT i 53.8±0.3 70.3±0.5 31.6±0.3 52.2±0.3 45.0±0.4 64.7±0.4 28.3±0.6 48.0±0.5
(R) VAR-MMT o 52.6 69.9 29.3 51.2 - - -
(T ) VAR-MMT o 53.3 70.4 29.5 50.3 - - -
(R) LIUMCVC i 52.7±0.9 69.5±0.7 30.7±1.0 52.2±0.4 43.5±1.2 63.2±0.9 26.4±0.9 47.4±0.3
(R) VMMT i - - 30.1±0.3 49.9±0.3 - - 25.5±0.5 44.8±0.2
(T ) GMMT o 53.9 69.3 32.2 51.9 - - 28.7 47.6

Our Proposed Models
OVC 53.5±0.2 70.2±0.3 31.7±0.3 51.9±0.4 44.7±0.6 64.1±0.3 28.5±0.5 47.8±0.3
OVC+Lm 54.1±0.7 70.5±0.5 32.3±0.6 52.4±0.3 45.3±0.5 64.6±0.5 28.9±0.5 48.1±0.5
OVC+Lv 54.2±0.4 70.5±0.5 32.4±0.4 52.3±0.5 45.2±0.4 64.6±0.3 28.6±0.5 48.0±0.6
OVC+Lm+Lv 54.0±0.4 70.4±0.4 32.4±0.6 52.2±0.3 45.1±0.6 64.5±0.5 28.8±0.4 48.0±0.4

Table 1: Results of standard experiments. ‡ denotes text-only models. i denotes models using image-level features while o
object-level features. Prefix R denotes RNN-based approaches while T Transformer-based approaches. OVC+Lm, OVC+Lv

and OVC+Lm+Lv denote OVC trained with Lovcm , Lovcv and Lovcfull
respectively.

En⇒De
Metrics BLEU METEOR
OVC t 21.02 40.61
OVC i 22.02 41.91
OVC o 21.98 41.57
OVC o+HM 25.31 43.85
OVC o+Lm 26.30 45.37
OVC o+Lv 22.18 42.01
OVC o+Lm+Lv 22.57 42.24

En⇒Fr
OVC t 37.01 55.35
OVC i 37.40 55.68
OVC o 36.94 54.92
OVC o+HM 37.39 55.38
OVC o+Lm 39.31 57.28
OVC o+Lv 37.25 55.79
OVC o+Lm+Lv 37.63 56.14

Table 2: Results for the source-degradation setting on the
WMT17 MMT development set. t denotes text-only mod-
els. HM is a hard masking scheme where irrelevant objects
are masked in a hard way according to the predefined thresh-
old.

Results in Standard Setting
Model Setting for OVC
In order to avoid the influence of the increasing number of
parameters on the comparison, we limited the number of pa-
rameters in our OVC models to be comparative to that in
(Zhou et al. 2018) (16.0M parameters). In order to achieve
this, we set the size of word embeddings in OVC to 256.
The encoder of source texts has one bidirectional-GRU lay-
er and one multihead object-text attention layer. The hidden

state sizes of all modules in the encoder were set to 512.
The decoder has one multihead attention layer and two s-
tacked GRU layers, of which the hidden sizes were set to
512 and the input sizes 256 and 512 for the two GRU layers,
respectively. We used Adam as the optimizer with a sched-
uled learning rate and applied early-stopping with a patient
step of 10 during training. With these settings, our proposed
OVC of its full form has 11.3M parameters. All models were
trained in the teacher-forcing manner. Other settings were
kept the same as in (Zhou et al. 2018). All implementations
were built based upon Pytorch and models were both trained
and evaluated on one 2080Ti GPU. We performed a grid
search on the WMT17 MMT development set to obtain the
hyper-parameters: α was set to 0.1 and β was set to 0.1.

For image-level visual features, we used the pool5 out-
puts of a pretrained Resnet-50, released by WMT 2017. For
object-level visual features, we first took the pool5 outputs
of a pretrained Resnet101 detector7 as candidates. We then
selected objects of the highest 20 object confidences as our
object-level features.

To make our experiments more statistically reliable, for
the proposed model, we run each experiment for three times
and report the average results over the three runs. The result-
s in the standard setting are listed in Table 1. OVC trained
with the two additional losses either outperforms existing
Transformer-based and RNN-based MMT models with an
average improvement of 0.25 BLEU and 0.10 METEOR, or
achieves competitive results to them. The basic OVC shows
no advantage over existing image-level MMT models. For
example, in most cases, the basic OVC is not better than
VAG-NMT i on the WMT17 MMT test set and Ambigu-
ous COCO. We conjecture that the object-level visual fea-
tures may contain irrelevant information for machine trans-

7https://github.com/peteanderson80/bottom-up-attention
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lation. And since the Multi30K training data is small and
textually repetitive, this makes it hard for object-level MMT
models to learn fine-grained grounding alignments. How-
ever, after being equipped with the two proposed addition-
al objectives, OVC is superior to both image- and object-
level MMT models. It gains an average improvement of
0.4∼0.6 BLEU and 0.3∼0.5 METEOR using the additional
Lm, while 0.1∼0.7 BLEU and 0.2∼0.5 METEOR using the
additional Lv , which indicate that our proposed objectives
enhance the visual grounding capability of OVC. Addition-
ally, we visualize the object-source attention of OVC trained
with different objectives in Appendix to support this hypoth-
esis.

Results in Source-Degradation Setting and
Ablation Study
In this setting, we compared different OVC variants using
different objectives, which is also the ablation study of our
proposed OVC. We also trained OVC in a text-only setting
by dropping the object-to-source attention layer in its en-
coder, where VASR is replaced by the annotation vectors
and SSV is directly the average-pooling result of the anno-
tation vectors.

The results are shown in Table 2. Under the source-
degradation setting, with image-level features, OVC is better
than its text-only version, which is consistent with previous
multimodal machine translation findings (Caglayan et al.
2019). With object-level features, the performance of OVC
is generally worse than that with image-level features and
even worse than the text-only OVC on English-to-French
translation. This again confirms our finding with the basic
OVC under the standard setting. Besides, it can be seen
that the improvements of both Lm and Lv in the source-
degradation setting are generally larger than those in the s-
tandard setting. Particularly, Lm gains an average improve-
ment of 3.35 BLEU and 3.08 METEOR while Lv achieves
an average improvement of 0.255 BLEU of 0.655 METEOR
over the basic OVC.

For a deep understanding on the impact of object mask-
ing, we further compared a hard masking scheme where
source-irrelevant objects are compulsively masked in a hard
way instead of using the training objective in a soft way
according to the predefined similarity threshold. The sta-
ble improvement of behavior of OVC o+HM vs. OVC o
and OVC o+Lm vs. OVC o+HM suggest that masking ir-
relevant objects helps grounding in MMT as vision-related
words are all masked in the degraded source sentences. S-
ince the only difference between Lm and HM is that Lm

penalizes masking source-relevant objects and encourages
masking source-irrelevant objects simultaneously in a soft
way, the improvements of Lm over HM indicate that the
proposed object-masking loss is a more efficient way for
grounding in MMT.

Results in Mixed Setting
Finally, we trained MMT models in a mixed setting where
source-degradation and standard texts are mixed togeth-
er for training and evaluation is done on the source-
degradation data. Specifically, we trained OVC with the

ST:SD BLEU METEOR
1.0:0.0 22.43 41.64
1.0:0.2 22.66 41.53
1.0:0.4 23.01 42.08
1.0:0.5 22.75 41.73
1.0:0.6 22.68 41.68
1.0:0.8 22.82 42.00
1.0:1.0 22.05 41.03

Table 3: Results under the mixed setting on the WMT17
MMT En⇒De development set. ST:SD denotes the ratio be-
tween the number of standard samples and the number of
source-degradation samples in the mixed setting.

source-degradation & standard mixed training set of Mul-
ti30K and evaluated it on the source-degradation samples
of the WMT17 MMT En⇒De development set to investi-
gate the potential ability of the source-degraded framework
in helping standard MMT. The results are shown in Table
3 with different proportions of mixed standard samples and
degraded samples.

It is interesting to find that the performance of OVC
does not consistently rise as the number of sampled source-
degradation samples increase. The best proportion of addi-
tional source-degradation data is 1.0:0.4. We assume that a
certain amount of source-degradation samples can improve
the grounding ability of MMT models, which offsets the
information loss in source-degradation samples. However,
more source-degradation sample may undermine the ability
of MMT in conveying the meaning of source sentences to
target translations.

Conclusion and Future Work
In this paper, to efficiently model the language-vision inter-
action and integrate visual context into multimodal machine
translation, we have presented OVC, an object-level visu-
al context modeling framework. In OVC, we model the in-
teraction between the textual and visual modality through
the object-text similarity and object-source multihead at-
tention on the source side as well as the vision-weighted
loss on the target side. In order to tailor the visual fea-
ture learning for multimodal machine translation, the addi-
tional object-masking loss is proposed to force OVC to be
aware of whether the masked objects are relevant to source
texts and to perform desirable masking in a soft way. The
presented vision-weighted translation loss is to guide the
decoder to generate vision-consistent target words. Exper-
iment results show that our proposed framework achieves
competitive performance against several existing state-of-
the-art MMT models in the standard setting. Experiments
and analyses on the source-degradation settings suggest that
the proposed two additional training objectives, especially
the object-masking loss, helps grounding in MMT.

In the future, we plan to improve the proposed OVC in
grounding via other mechanisms (e.g., cross-modality pre-
training). And we are also interested in extending our OVC
framework to the video-guided MMT (Wang et al. 2019).
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