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Abstract

Generalized Zero-Shot Learning (GZSL) targets recogniz-
ing new categories by learning transferable image represen-
tations. Existing methods find that, by aligning image repre-
sentations with corresponding semantic labels, the semantic-
aligned representations can be transferred to unseen cate-
gories. However, supervised by only seen category labels,
the learned semantic knowledge is highly task-specific, which
makes image representations biased towards seen categories.
In this paper, we propose a novel Dual-Contrastive Em-
bedding Network (DCEN) that simultaneously learns task-
specific and task-independent knowledge via semantic align-
ment and instance discrimination. First, DCEN leverages
task labels to cluster representations of the same seman-
tic category by cross-modal contrastive learning and explor-
ing semantic-visual complementarity. Besides task-specific
knowledge, DCEN then introduces task-independent knowl-
edge by attracting representations of different views of the
same image and repelling representations of different images.
Compared to high-level seen category supervision, this in-
stance discrimination supervision encourages DCEN to cap-
ture low-level visual knowledge, which is less biased toward
seen categories and alleviates the representation bias. Con-
sequently, the task-specific and task-independent knowledge
jointly make for transferable representations of DCEN, which
obtains averaged 4.1% improvement on four public bench-
marks.

Introduction
Deep learning-based methods are highly successful on vari-
ous computer vision tasks, such as image classification (He
et al. 2016), object detection (Girshick et al. 2014), and se-
mantic segmentation (Badrinarayanan, Kendall, and Cipolla
2017). However, these models require a huge demand for
manually labelled training data for numerous classes. To this
end, Generalized Zero-Shot Learning (GZSL), which aims
to recognize either seen or unseen categories thereby re-
duces manual annotation labors, recently has attracted great
interests.

Due to unavailable unseen category data during train-
ing, GZSL puts a high demand on transferability of image
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Figure 1: Motivation of this paper. (a) Existing methods fo-
cus on using task labels to learn semantic-aligned represen-
tations, which can be transferred to unseen categories. (b)
Besides, this paper further learns task-independent knowl-
edge via instance discrimination supervision, which signifi-
cantly improves the representation transferability.

representations (Jiang et al. 2018; Tong et al. 2019). Pre-
vious methods tackle this problem by aligning image rep-
resentations with corresponding category attributes (Xian
et al. 2018a), as shown in Fig. 1 (a). Since seen and un-
seen domain categories share a common attribute space, the
semantic-aligned representation can be transferred to unseen
categories, and the recognition becomes a nearest neighbour
searching problem, i.e., images and category attributes serve
as queries and anchors, respectively. Based on this paradigm,
most GZSL methods focus on designing elaborate semantic-
visual alignment mechanism, such as visual and attribute at-
tentions (Zhu et al. 2019; Xie et al. 2019; Huynh and Elham-
ifar 2020), semantic auto-encoders (Felix et al. 2018; Min
et al. 2019), and domain detectors (Atzmon and Chechik
2019). However, trained with only seen category labels, the
learned image representations are highly task-specific and
biased towards seen categories, which makes an unseen im-
age tend to be recognized as seen categories.

To alleviate this issue, we introduce task-independent
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knowledge that is learned without seen category concepts
and shared by both seen and unseen images. We propose a
novel Dual-Contrastive Embedding Network (DCEN) that
simultaneously learns task-specific and task-independent
knowledge to obtain transferable representations in GZSL.
Specifically, we design two modules in DCEN, i.e., Se-
mantic Contrastive Module (SCM) and Visual Contrastive
Module (VCM), to enhance the semantic-visual alignment
knowledge via task labels and introduce annotation-free vi-
sual knowledge via instance discrimination, respectively.

First, SCM is developed to leverage semantic labels to
learn task-specific knowledge. By constructing cross-modal
triplets, SCM constrains the image representation to be not
only aligned with the corresponding category but also far
away from the most confusing category, which improves
the inter-class representation discrimination. Besides, we
design masked attribute prediction to complete the miss-
ing category attributes from corresponding image repre-
sentations. This renders the image representation to pre-
serve the semantic-visual complementarity, resulting in bet-
ter semantic-visual alignment. With cross-modal contrastive
learning and masked attribute prediction, SCM can better
bridge the semantic-visual gap than previous methods to
learn semantic-aligned representation.

Second, VCM is designed to learn task-independent
knowledge by distinguishing each image as an individual
category, as shown in Fig. 1 (b). This forces the image repre-
sentation to capture as many detailed visual cues as possible
for each individual image, so that all images can be sep-
arated apart. Without task labels, the learned low-level vi-
sual knowledge is only related to intra-image invariance and
inter-image difference, which is irrelevant to seen category
concepts. Thus, the learned knowledge is less biased towards
the seen categories than the task-specific knowledge from
seen category labels, and thereby significantly improves the
representation transferability.

Consequently, the task-independent knowledge from in-
stance discrimination and task-specific knowledge from se-
mantic alignment jointly make for transferable representa-
tions of our DCEN, which achieves averaged 4.1% improve-
ment on four widely-used GZSL benchmarks. Our overall
contribution is threefold:

• We propose a novel Dual-Contrastive Embedding Net-
work (DCEN) that simultaneously learns task-specific
and task-independent knowledge to produce transferable
representations in GZSL. To the best of our knowledge,
this is the first work that introduces task-independent
knowledge from instance discrimination to boost repre-
sentation transferability in GZSL.

• DCEN learns task-independent knowledge by exploring
inter-image visual distinction and intra-image transforma-
tion invariance. Extensive experiments are conducted to
search important low-level invariance concepts for GZSL.

• DCEN learns task-specific knowledge by constructing
cross-modal contrastive learning and exploring semantic-
visual complementarity to better bridge the semantic-
visual gap.

Related Works
Generalized Zero-Shot Learning
This paper belongs to Inductive GZSL (Xian et al. 2016;
Kodirov, Xiang, and Gong 2017; Min et al. 2020), where the
unseen domain data is unavailable during training. A general
solution is to learn a joint embedding space, where the image
representations and semantic labels, e.g., category attributes
(Farhadi et al. 2009; Morgado and Vasconcelos 2017) or text
descriptions (Ba et al. 2015), are aligned (Xian et al. 2018a;
Zhu, Wang, and Saligrama 2019).

Based on this motivation, most existing methods focus on
boosting the semantic-visual alignment by carefully design-
ing the embedding space. For example, previous methods
(Shigeto et al. 2015; Zhu, Wang, and Saligrama 2019; Min
et al. 2019) constrain the embedding space to be spanned by
high-dimensional visual representations, instead of seman-
tic labels, to improve the space discrimination. This can pre-
vent a few seen categories from being the anchors for most
input images (Annadani and Biswas 2018), but it also weak-
ens the semantic relationship in the embedding space. To
this end, recent methods (Kodirov, Xiang, and Gong 2017;
Tong et al. 2019) use auto-encoders to enhance the semantic
relationship in the embedding space. For example, DSEN
(Min et al. 2019) designs domain-specific cyclic encoders
between semantic embeddings and category attributes to ex-
plore semantic domain differences, and SP-AEN (Chen et al.
2018) uses cyclic constraints between visual representations
and images to capture detailed visual clues. Recently, atten-
tion mechanisms are leveraged for images and semantic la-
bels to improve representation discrimination. In VSE (Zhu,
Wang, and Saligrama 2019) and SGMA (Zhu et al. 2019),
multi-head attentions are designed to infer important local
regions to boost semantic-visual alignment. LFGAA (Liu
et al. 2019), and DAZLE (Huynh and Elhamifar 2020) use
attribute attention to generate clean semantic embeddings.
Although being effective, the previous methods focus on
better leveraging seen domain labels to improve semantic-
visual alignment. Thus, it inevitably makes the image repre-
sentation highly task-specific and biased towards seen cate-
gories, which limits the transferability to unseen categories.

Self-Supervised Learning
Without human annotations, self-supervised learning meth-
ods (Tian, Krishnan, and Isola 2020) have proved that
learning task-independent knowledge can produce represen-
tations with strong generalization on various downstream
tasks, which even surpass fully-supervised methods. Specif-
ically, they usually construct some proxy tasks as super-
vision to learn image representations. For example, Rot-
Net (Gidaris, Singh, and Komodakis 2018) constrains the
model to predict the rotation angles of an input image. CFN
(Noroozi and Favaro 2016) regards an image as a jigsaw and
predicts the shuffled patch order. Deep clustering methods
(Yang et al. 2018; Caron et al. 2018; Yang et al. 2020) sep-
arate different classes via clustering. Recently, contrastive
learning (Tian, Krishnan, and Isola 2020; He et al. 2020)
has attracted increasing attention, which aims to minimize
the mutual information between different images and re-

2711



𝐼𝑖

Sea gull
𝑦𝑖

𝜑𝑣
1(𝐼𝑖) CNN model

Momentum       update

𝜑𝑣
2(𝐼𝑖)

𝒂𝑦𝑖 Random
Masking FC Modules

ℒ𝑖𝑑

ℒ𝑠𝑎

Instance 
Discrimination

Semantic 
Alignment

𝑓(∙)

ℎ(∙)

𝑔(∙)

Visual Contrastive 
Module

Semantic 
Contrastive Module

CNN model

Visual Representation

Figure 2: The diagram of Dual-Contrastive Embedding Network. Visual Contrastive Module learns task-independent knowledge
via instance discrimination, and Semantic Contrastive Module learns task-specific knowledge via semantic alignment.

gards each image as an individual category. Some works
extend contrastive learning to cross-modal tasks. AVID
(Morgado, Vasconcelos, and Misra 2020) utilizes the corre-
spondence between audio and visual representations. CMC
(Tian, Krishnan, and Isola 2020) contrasts across multiple
views, such as luminance, chrominance RGB, and depth.
Inspired by the generalized self-supervised representation,
task-independent knowledge has been introduced in many
other fields, such as few-shot learning (Gidaris et al. 2019)
and landmark detection (Cheng, Su, and Maji 2020).

In this paper, we explore the task-independent knowl-
edge from instance discrimination to boost representation
transferability in GZSL. Notably, SDGN (Wu et al. 2020)
also uses self-supervised learning in GZSL. However, it is
much different from our DCEN, because: (a) SDGN follows
Transductive ZSL setting that uses unseen domain images
for training, while our DCEN only uses data from seen do-
main during the training stage; (b) SDGN applies contrastive
loss to triplet data of two domains to alleviate domain con-
fusion, while we utilize instance discrimination knowledge
of the seen domain; (c) SDGN is a generative method that
utilizes powerful GANs for unseen domain feature genera-
tion.

Dual-Contrastive Embedding Network
Problem Formulation
The target of GZSL is to recognize images from either
seen or unseen categories using the model trained only with
seen domain data. Here, we define seen domain data as
S = {Ii, yi,ayi

|Ii ∈ Is, yi ∈ Ys,ayi
∈ As}, where Ii

is an image of a seen category, yi is the corresponding cate-
gory, and ayi is the semantic description of yi, such as cat-
egory attributes. Unseen domain data are similarly defined
as U = {Ii, yi,ayi |Ii ∈ Iu, yi ∈ Yu,ayi ∈ Au}, where
Ys ∩ Yu = ∅.

One main stream of GZSL methods is to learn a joint em-
bedding space, where the image representations and cate-

gory descriptions can be aligned by minimizing:

Lzsl =
∑
Ii∈Is

d
(
f(Ii),ayi

)
, (1)

where f(·) is the feature extractor to produce image rep-
resentations. d(·, ·) is a distance function, such as negative
cosine similarity. Since As and Au usually share a common
semantic space, the semantic-visual relationship captured by
f(·) can be transferred to the unseen domain by:

ŷ = arg min
y∈Ys∪Yu

d
(
f(I),ay

)
, (2)

where I ∈ Is ∪ Iu.
However, due to unavailable U during training, it puts a

high demand on transferability of learned f(·) in Eq. (1).

Semantic Contrastive Module
In order to better align semantic and visual embeddings,
we introduce a Semantic Contrastive Module (SCM) to bet-
ter bridge the semantic-visual gap via cross-modal con-
trastive learning and exploring semantic-visual complemen-
tarity. Specifically, in the SCM, we construct semantic-
visual triplets to prevent image representations from being
biased towards confusing category and design masked at-
tribute prediction to complete the missing attributes from
image representations.

As shown in Fig. 2, given an image Ii and its category at-
tribute ayi , SCM learns the semantic-aligned representation
f(Ii) by minimizing:

Lsa =
∑
Ii∈Is

d
(
f(Ii), h(âyi

)
)
− min

yk 6=yi

{d
(
f(Ii), h(âyk

)
)
}.

(3)
Different from the general objective function Eq. (1), SCM
first randomly masks some elements of ayi

, which generates
âyi

to introduce some semantic variance and improve model
robustness to input noises. As attributes contain abstract se-
mantic information, such as wing colors, it is hard for vi-
sual feature extractor f(·) to extract such highly abstract
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Figure 3: Architecture for masked attribute prediction.

concepts from the images. Thus, instead of directly aligning
f(Ii) with âyi , SCM usesK fully-connected (FC) modules,
consisting of FC, Batch normalization (BN), and ReLU, to
produce high-level semantic embeddings h(âyi), which can
better bridge the semantic-visual gap. Besides, SCM con-
structs cross-modal triplet {f(Ii), h(âyi

), h(âyk
)}, where

f(Ii) is the anchor image representation, h(âyi
) is the posi-

tive category semantic embedding, and h(âyk
) is the most

confusing negative category semantic embedding. Triplet
loss has been demonstrated useful in previous works of
face recognition (Schroff, Kalenichenko, and Philbin 2015).
Thus, Lsa can not only align f(Ii) with the correspond-
ing h(âyi), but also punish the most confusing category.
Compared to Lzsl, Lsa can produce more discriminative
semantic-aligned f(Ii) via cross-modal contrastive learning.

To better preserve semantic relationships among cat-
egories and encode the semantic knowledge into f(Ii),
masked attribute prediction ĥ(·) is designed by predicting
the missed elements in âyi from the image representation
f(Ii). The architecture is shown in Fig. 3. we first fuse the
image representation f(Ii) and semantic embedding h(âyi)
via FC blocks and concatenation. Then, a decoder module,
consisting of K FC blocks, is used to predict the intact at-
tribute ap

yi
. The depths of h(·) and ĥ(·) are kept consis-

tent for better attribute reconstruction. Notably, since the
attribute masking is random and h(âyi) has no masking
knowledge, f(Ii) should capture accurate and entire seman-
tic information from Ii to complete âyi

, thereby enhancing
the semantic-visual alignment. The loss function for masked
attribute prediction is:

Lsp =
∑
Ii∈Is

∥∥∥ĥ(f(Ii), h(âyi)
)
− ayi

∥∥∥
2
. (4)

With cross-modal contrastive learning and masked at-
tribute prediction, SCM learns better semantic alignment
knowledge than naive Lzsl, which makes image represen-
tation f(·) better transferable to unseen categories.

Visual Contrastive Module
Since only S is available for training, the learned seman-
tic knowledge in f(·) from SCM is inevitably task-specific
to the seen categories. Thus, a visual contrastive module
(VCM) is proposed to learn task-independent knowledge
without human annotations, which further improves the
transferability of f(·). To this end, VCM regards each im-

age I as an individual category, to push different image rep-
resentations far away from each other. This enforces f(·) to
capture more detailed visual clues to represent each individ-
ual image so that they can be separated apart well. Besides,
VCM learns low-level visual invariance concepts, such as
rotation and cropping invariance, that lead to strong gener-
alization.

Given the i-th image Ii in Is, VCM first transforms Ii into
two different counterparts Iv1i = ϕ1

v(Ii) and Iv2i = ϕ2
v(Ii).

ϕv(·) is a composition of random low-level transforma-
tions, e.g., cropping, rotation, blurring, or color jittering.
Then, Iv1i and Iv2i are fed into two CNN models f(·) and
g(·) to extract visual representations f(Iv1i ) and g(Iv2i ), re-
spectively. Finally, a visual contrastive loss is used to attract
representations of two counterparts generated from the same
image and repel representations from different images by:

Lid = −
∑
Ii∈Is

log
exp{d(f(Iv1i ), g(Iv2i ))/τ}∑
j exp{d(f(Iv1i ), g(Iv2j ))/τ}

, (5)

where d(·, ·) is the cosine similarity between two represen-
tations, and τ is a temperature parameter. The positive data
pair is defined as {Iv1i , Iv2i } that are two views from the
same image, while the negative data pair is defined as {Iv1i ,
Iv2j } for different images when i 6= j. Data from previous
batches serve as negative data. The numerator term of Lid

constrains f(·) to be invariant to pre-defined image transfor-
mationsϕv(·). By designing different image transformations
ϕv(·), VCM can induce different low-level invariance con-
cepts that are useful in GZSL tasks. The denominator term
of Lid constrains f(·) to be discriminative among different
images.

In Lid, the weights of g(·) are momentum-updated (Laine
and Aila 2017) from f(·) by:

Wg = m ∗Wg + (1−m) ∗Wf , (6)

where Wg and Wf are weights of g(·) and f(·). m is a mo-
mentum parameter. The momentum-updated g(·) has two
main advantages: a) compared to a new trainable CNN, g(·)
has less memory cost, and b) compared to sharing weights of
f(·), g(·) is the temporal ensemble of different checkpoints
from f(·) and contains temporal momentum information.

Consequently, through instance discrimination Lid, f(·)
can gather augmented views of the same image and push
different images apart. Thus, f(·) can not only capture the
unique information contained in each individual image but
also learn useful invariance concepts. More importantly, this
low-level visual knowledge is irrelevant to any category con-
cept of Ys, thereby being well-transferable to the unseen im-
ages.

Overall Objective
Finally, the overall objective function of DCEN is :

Lall = λ1Lid + Lsa + λ2Lsp, (7)

where λ1 and λ2 are hyper-parameters to balance Lid and
Lsp. The task-specific knowledge of Lsa + λ2Lsp and task-
independent knowledge of λ1Lid jointly make for transfer-
able visual representation f(I).
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Dataset Seen/Unseen Attributes Train Val Test
CUB 150/50 312 7,057 1,764 2,967

AWA2 40/10 85 23,527 5,882 7,913
aPY 20/12 64 5,932 1,483 7,924
SUN 645/72 102 10,320 2,580 1,440

Table 1: Detailed statistics of datasets.
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Figure 4: Effects of different λ1 and λ2 for Lid and Lsp,
respectively.

The testing phase is viewed as a nearest neighbour search-
ing process by:

ŷ = arg min
y∈Ys∪Yu

d
(
f(I), h(ay)

)
, (8)

where I ∈ Is ∪ Iu is the query image, and ay is the anchor
category attribute from both the seen and unseen domains.

Experiments
In this section, we first evaluate each component of DCEN
and then compare DCEN with state-of-the-art GZSL meth-
ods. Please refer to the supplementary for implementation
details of DCEN.

Experimental Settings
Datasets. We adopt four widely-used GZSL benchmarks,
which are Caltech-USCD Birds-200-2011 (CUB) (Wah
et al. 2011), SUN (Patterson and Hays 2012), Animals with
Attributes2 (AWA2) (Xian et al. 2018a), and Attribute Pas-
cal and Yahoo (aPY) (Farhadi et al. 2009) for the following
experiments. Detailed statistics of datasets are listed in Ta-
ble 1. Category attributes provided by datasets are used as
semantic labels.

Metrics. For GZSL, the harmonic meanH = (2MCAu×
MCAs)/(MCAu + MCAs) is widely used to evaluate
the model performance, where MCAs and MCAu are the
Mean Class Top-1 Accuracy for seen and unseen domains,
respectively.

Ablation Study
In this part, we analyze each component of DCEN on CUB
and aPY datasets for fast validation. The baseline model is
denoted as Basic-ZSL, which only learns f(·) via LZSL in
Eq. (1) and is test via Eq. (2).

Effects of instance discrimination. The task-independent
knowledge from instance discrimination is a major con-
tribution of this paper, which is learned by Visual Con-
trastive Module (VCM). Thus, we first analyze how the
task-independent knowledge boosts the transferability of

Aug. Crop Flip Gray CJ Blur Rotation Swap Hprob. 1.0 0.5 0.2 0.8 0.5 0.5 0.2
65.3

Lid

3 65.8↑
3 3 66.0↑
3 3 3 65.5↓
3 3 3(v1) 63.8↓
3 3 3(v2) 65.3↓
3 3 3(v3) 65.2↓
3 3 3 67.1↑
3 3 3(90) 64.4↓
3 3 3(60) 64.7↓
3 3 3(30) 66.5↑
3 3 3(7) 64.2↓
3 3 3(5) 65.8↓
3 3 3(3) 66.7↑
3 3 3 3(30) 67.9↑
3 3 3 3(30) 3(3) 68.5↑

Table 2: Evaluating different visual augmentations on CUB
by successively adding operations. When a certain opera-
tion brings positive effects, it is retained, otherwise, it is re-
moved. The operation probability is experimentally deter-
mined. For v1, v2, and v3 color jittering, the parameters are
respectively (0.4, 0.4, 0.4, 0.4), (0.4, 0.4, 0.4, 0.1), and (0.8,
0.8, 0.8, 0.2) for brightness, contrast, saturation, and hue.
For rotation and swap, the parameters in parentheses indi-
cate rotation angle and jigsaw number, respectively.

semantic-aligned representation in GZSL by varying λ1 to
influence the visual contrastive loss Lid. The results are
given in Fig. 4 (a). In this experiment, we add VCM to
Basic-ZSL with varying λ1, thus λ1 = 0 denotes no task-
independent knowledge introduced. We can see that when
increasing λ1 from 0 to 0.1 for CUB and aPY, Lid begins in-
troducing instance discriminative knowledge, and H gradu-
ally increases. The best recognition performance is obtained
at around λ1 = 0.1 for both CUB and aPY. This demon-
strates that the task-independent knowledge brought by in-
stance discrimination Lid enables DCEN to produce more
transferable representations, thereby recognizing unseen do-
main images more accurately. When λ1 increases from 0.1
to 1.0, the performance H drops. Specifically, for CUB, the
result with λ1 = 1 is even worse than that with λ1 = 0.
This reveals that, when λ1 is large, the instance discrimina-
tion knowledge Lid, which targets pushing all representa-
tions far away, becomes too sensitive to intra-class variance
of different images and hard to preserve the semantic rela-
tionship, thereby being unable to cluster images correctly.
Thus, a trade-off between task-independent knowledge and
task-specific knowledge is critical to make for strong trans-
ferable representations in GZSL. We find λ1 = 0.1 is suit-
able for most cases, which is used for the following experi-
ments.

Effects of different invariance concepts. In the task-
independent knowledge brought by instance discrimination,
the low-level invariance concepts, induced by visual aug-
mentations, are important. In this part, we conduct exten-
sive experiments to explore useful invariance concepts in
GZSL by combining different augmentations as ϕv(·) in
VCM on CUB. The experiments are carried out based on
Basic-ZSL with λ1 = 0.1. The results are listed in Table 2,
where we explore seven widely-used low-level augmenta-
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tions, which contain random cropping, horizontal flipping,
grayscale, color jittering, Gaussian blurring, rotation, and
swapping. Specifically, the swapping augmentation (Chen
et al. 2019) regards an image as a jigsaw and randomly shuf-
fles the patches, which requires the representation to be in-
variant to patch-swapped images. From the results, adding
cropping, horizontal flipping, Gaussian blurring, rotation,
and swap augmentations into ϕv(·) can benefit the perfor-
mance, while adding grayscale and color jittering harms the
results. This is because that the grayscale and color augmen-
tations will change the color space severely, which may pre-
vent the model from inferring correct color attributes, e.g.,
wing color, to recognize unseen categories. Among the use-
ful augmentations, Gaussian blurring brings the largest im-
provement because it helps the model neglect high-frequent
noises. For random rotation and swapping, too large angles
and jigsaw numbers bring negative effects, which may de-
stroy the image contents severely. Finally, we combine all
positive low-level augmentations in Table 2 as ϕv(·), which
obtains an impressive improvement of 3.2% over the base-
line. The useful low-level invariance concepts explored in
this experiment may provide an insight for the following
GZSL studies.

Visualization of representation. To intuitively analyze
the effect of task-independent knowledge from instance
discrimination, we visualize the image representations be-
fore and after adding VCM using t-SNE (Van der Maaten
and Hinton 2008) on randomly selected categories. The re-
sults are given in Fig. 5. After introducing task-independent
knowledge into image representations, the category margin
is obviously enlarged between seen and unseen categories,
and the distribution of each individual cluster becomes more
compact. This means that image representations are more
distinguishable between categories of the two domains, thus
the unseen image representation is less biased towards the
seen categories. In other words, the visual representation
can be better transferred to represent unseen image char-
acteristics. Besides, Table 3 gives quantitative results after
adding VCM. It shows that VCM can bring an impressive
gain of 5% on H and 6.1% on MCAu, which demonstrates
that VCM helps the model better transfer to the unseen do-
main. In summary, both quantitative and qualitative results
prove that the task-independent knowledge from instance
discrimination can improve the representation transferabil-

Methods MCAu MCAs H
Basic-ZSL 56.3 72.8 63.5

Basic-ZSL with VCM 62.4 75.9 68.5
+attribute masking 62.5 78.3 69.5

+cross-modal triplet 63.5 77.7 69.9
+Lsp 63.8 78.4 70.4

Table 3: Effects of each component of DCEN on CUB.

(b) Effect of K(a) Effect of σ CUB aPY

66
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44
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Figure 6: Effects of different σ and K.

ity in GZSL.

Analysis of semantic contrastive module. In this part, we
analyze each component of SCM, and the results are given
in Table 3. Based on Basic-ZSL with VCM, we add random
attribute masking, cross-modal triplet loss, and masked at-
tribute prediction sequentially. First, we evaluate the effect
of masking σ% attributes in SCM, which can improve model
robustness to semantic noises. In training, attributes are ran-
domly chosen with p = 0.5, and σ% elements of these cho-
sen attributes are masked. Random masking is not used in
testing. Fig. 6 (a) shows the effect of varying σ on CUB
and aPY. When σ is too large which means many elements
of attributes are missed, the semantic alignment becomes
weak, thereby the performance drops. Notably, the reason
for small optimal σ on aPY is that there are much fewer at-
tributes in aPY than in CUB. Thus, suitable semantic mask-
ing is a simple way to improve semantic-visual robustness.
Then, adding cross-modal triplet loss Lsa brings about 0.4%
improvement on CUB in Table 3. Specifically, Lsa contrasts
cross-modal triplets to make visual representation not only
close to corresponding semantic anchors but also far away
from confusing negative categories, which improves repre-
sentation discrimination. Finally, we evaluate the effect of
masked attribute prediction by varying λ2 of Lsp, and the
results are given in Fig. 4 (b). We can see that setting ap-
propriate weights of λ2 for Lsp can boost the final results. It
proves that, by constraining the visual representation to pre-
dict the missed attributes, more semantic information from
category attributes is explicitly encoded and preserved in vi-
sual representation. In summary, our SCM can generate bet-
ter semantic-aligned representation via cross-modal triplet
loss and masked attribute prediction.

Analysis for other hyper-parameters. In DCEN, K, τ ,
and m are three minor hyper-parameters. K determines the
architecture h(·) in Eq. (3). Here, we evaluate the effects
of different K in Fig. 6 (b). It can be seen that K = 2 is
suitable for most cases. τ andm control the cosine similarity
scaling in Eq. (5) and momentum updating of g(·) in Eq. (6).
In this paper, we set τ = 0.07 and m = 0.999, which are

2715



Methods CUB AWA2 aPY SUN
MCAu MCAs H MCAu MCAs H MCAu MCAs H MCAu MCAs H

G
E

N

FGN(Xian et al. 2018b) 43.7 57.7 49.7 - - - - - - 42.6 36.6 39.4
SABR-I(Paul, Krishnan, and Munjal 2019) 55.0 58.7 56.8 30.3 93.9 46.9 - - - 50.7 35.1 41.5
f-VAEGAN-D2(Xian et al. 2019) 63.2 75.6 68.9 - - - - - - 50.1 37.8 43.1
RFF-GZSL(Han, Fu, and Yang 2020) 59.8 79.9 68.4 - - - - - - 58.8 45.3 51.2
OCD-CVAE(Keshari, Singh, and Vatsa 2020) 44.8 59.9 51.3 59.5 73.4 65.7 - - - 44.8 42.9 43.8
IZF-Softmax(Shen, Qin, and Huang 2020) 52.7 68.0 59.4 60.6 77.5 68.0 42.3 60.5 49.8 52.7 57.0 54.8
TF-VAEGAN(Narayan et al. 2020) 63.8 79.3 70.7 - - - - - - 62.4 47.1 53.7

N
O

N
-G

E
N

SYNC(Changpinyo et al. 2016) 11.5 70.9 19.8 10.0 90.5 18.0 7.4 66.3 13.3 7.9 43.3 13.4
CDL(Jiang et al. 2018) 23.5 55.2 32.9 - - - 19.8 48.6 28.1 21.5 34.7 26.5
PSR-ZSL(Annadani and Biswas 2018) 24.6 54.3 33.9 20.7 73.8 32.2 13.5 51.4 21.4 20.8 37.2 26.7
SP-AEN(Chen et al. 2018) 34.7 70.6 46.6 23.3 90.9 37.1 13.7 63.4 22.6 24.9 38.6 30.3
DLFZRL(Tong et al. 2019) - - 37.1 - - 45.1 - - 31.0 - - 24.6
MLSE(Ding and Liu 2019) 22.3 71.6 34.0 23.8 83.2 37.0 12.7 74.3 21.7 20.7 36.4 26.4
TripletLoss(Cacheux, Borgne, and Crucianu 2019) 55.8 52.3 53.0 48.5 83.2 61.3 - - - 47.9 30.4 36.8
COSMO(Atzmon and Chechik 2019) 44.4 57.8 50.2 - - - - - - 44.9 37.7 41.0
PREN(Ye and Guo 2019) 32.5 55.8 43.1 32.4 88.6 47.4 - - - 35.4 27.2 30.8
VSE-S(Zhu, Wang, and Saligrama 2019) 33.4 87.5 48.4 41.6 91.3 57.2 24.5 72.0 36.6 - - -
AREN(Xie et al. 2019) 63.2 69.0 66.0 54.7 79.1 64.7 30.0 47.9 36.9 40.3 32.3 35.9
CosineSoftmax(Kampffmeyer et al. 2019) 47.4 47.6 47.5 56.4 81.4 66.7 26.5 74.0 39.0 36.3 42.8 39.3
DAZLE(Huynh and Elhamifar 2020) 56.7 59.6 58.1 60.3 75.7 67.1 - - - 52.3 24.3 33.2
DCEN 63.8 78.4 70.4 62.4 81.7 70.8 37.5 61.6 46.7 43.7 39.8 41.7

Table 4: Results of GZSL on four classification benchmarks. Generative methods (GEN) utilize extra synthetic unseen domain
data for training. The best result is bolded, and the second best is underlined.

commonly used in contrastive learning (He et al. 2020).

Comparison with State-of-the-Art Methods
Finally, we compare our DCEN with the state-of-the-art
methods on four datasets, i.e., CUB, AWA2, aPY, and SUN.
Results are given in Table 4, which shows that DCEN sur-
passes existing methods on four datasets by a large margin.

First, we compare DCEN with related embedding-based
methods, which use only seen domain data for training
and no generative models. DCEN surpasses the best related
method by respectively 4.4%, 3.7%, 7.7%, 0.7% on CUB,
AWA2, aPY, and SUN datasets in the term of H , demon-
strating its good generalizability to different image domains.
Notably, among non-generative methods, AREN (Xie et al.
2019) obtains similar performance to DCEN, but it utilizes a
model ensemble of two separate recognition branches. Our
improvements are impressive, because DCEN introduces ex-
tra task-independent knowledge into image representations
via instance discrimination learning, and it is proved that ap-
propriate task-independent knowledge can significantly im-
prove representation transferability in GZSL.

Then, we compare DCEN with recent generative meth-
ods. Notably, the generative methods utilize prior unseen
domain semantics to synthesize extra unseen visual data for
training, e.g., powerful GANs, while DCEN only uses the
seen domain data. From Table 4, DCEN outperforms most
generative methods by a large margin, which is encourag-
ing for embedding-based methods because no synthesized
unseen domain data is used for training. Compared to re-
cent TF-VAEGAN (Narayan et al. 2020), DCEN obtains
comparable results on CUB using only seen domain data.
This is due to introducing task-independent knowledge from
instance discrimination, and it proves that the embedding-
based methods have much potential.

Finally, we can conclude that: a) task-independent knowl-
edge and task-specific semantic knowledge jointly make for
strong transferable representations in GZSL, which enables

DCEN to surpass all related works; and b) task-independent
knowledge from instance discrimination is useful, and other
task-independent knowledge remains to be explored.

Discussion
Compared to previous embedding-based methods, the im-
provement of DCEN on SUN is much less than the other
three benchmarks. The reason is that the number of images
in each category of SUN is small, e.g., averaged 16 images
per category. Thus, learning instance discrimination has a
similar effect on image representation, compared to category
discrimination. This also reveals a limitation of DCEN, i.e.,
the task-independent knowledge from instance discrimina-
tion may be not suitable for tail categories with inadequate
samples.

Conclusion
In this paper, we propose a novel Dual-Contrastive Em-
bedding Network (DCEN) that utilizes task-independent
and task-specific knowledge to jointly make for transfer-
able representation in GZSL. Specifically, a semantic con-
trastive module is developed to learn task-specific knowl-
edge by performing cross-modal contrastive learning and ex-
ploring semantic-visual complementarity with category la-
bels. Besides, a visual contrastive module is designed to
learn annotation-free task-independent knowledge via in-
stance discrimination supervision, which gathers represen-
tations of the same image and pushes different image rep-
resentations apart. Compared to seen category knowledge,
the task-independent knowledge from instance discrimina-
tion is less biased, which can improve the representation
transferability to unseen categories. Extensive experiments
show that our DCEN achieves superior performance on four
GZSL benchmarks.

In the future, the effects of more task-independent knowl-
edge, such as rotation angle prediction and jigsaw order pre-
diction, will be explored for GZSL.
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