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Abstract
Recent results show that features of adversarially trained net-
works for classification, in addition to being robust, enable
desirable properties such as invertibility. The latter property
may seem counter-intuitive as it is widely accepted by the
community that classification models should only capture the
minimal information (features) required for the task. Moti-
vated by this discrepancy, we investigate the dual relation-
ship between Adversarial Training and Information Theory.
We show that the Adversarial Training can improve linear
transferability to new tasks, from which arises a new trade-
off between transferability of representations and accuracy on
the source task. We validate our results employing robust net-
works trained on CIFAR-10, CIFAR-100 and ImageNet on
several datasets. Moreover, we show that Adversarial Train-
ing reduces Fisher information of representations about the
input and of the weights about the task, and we provide a
theoretical argument which explains the invertibility of deter-
ministic networks without violating the principle of minimal-
ity. Finally, we leverage our theoretical insights to remarkably
improve the quality of reconstructed images through inver-
sion.

Introduction
In the last 10 years, Deep Neural Networks (DNNs) dra-
matically improved the performance in any computer vision
task. However, the impressive accuracy comes at the cost
of poor robustness to small perturbations, called adversar-
ial perturbations, that lead the models to predict, with high
confidence, a wrong class (Goodfellow, Shlens, and Szegedy
2014; Terzi, Susto, and Chaudhari 2020). This undesirable
behaviour led to a flourishing of research works ensuring
robustness against them. State-of-the-art approaches for ro-
bustness are provided by Adversarial Training (AT) (Madry
et al. 2017) and its variants (Zhang et al. 2019). The ratio-
nale of these approaches is to find worst-case examples and
feed them to the model during training or constraining the
output to not change significantly under small perturbations.
However, robustness is achieved at the expense of a decrease
in accuracy: the more a model is robust, the lower its accu-
racy will be (Tsipras et al. 2019). This is a classic “waterbed
effect” between precision and robustness ubiquitous in opti-
mal control and many other fields. Interestingly, robustness
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is not the only desiderata of adversarially trained models:
their representations are semantically meaningful and they
can be used for other Computer Vision (CV) tasks, such as
generation and (semantic) interpolation of images. More im-
portantly, AT enables invertibility, that is the ability to re-
construct input images from their representations (Ilyas et al.
2019) by solving a simple optimization problem. This is true
also for out-of-distribution images meaning that robust net-
works do not destroy information about the input. Hence,
how can we explain that, while robust networks preserve in-
formation, they lack in generalization power?

In this context, obtaining good representations for a task
has been the subject of representation learning where the
most widely accepted theory is Information Bottleneck
(IB) (Tishby, Pereira, and Bialek 2000; Alemi et al. 2016;
Achille and Soatto 2018b) which calls for reducing infor-
mation in the activations, arguing it is necessary for gener-
alization. More formally, let x be an input random variable
and y be a target random variable, a good representation z of
the input should be maximally expressive about for y while
being as concise as possible about x. The solution of the op-
timal trade-off can be found by optimizing the Information
Lagrangian:

min
z
−I(z, y) + βI(z, x)

where β controls how much information about x is conveyed
by z. Both AT and IB at their core aim at finding good rep-
resentations: the first calls for representations that are robust
to input perturbations while the latter finds minimal repre-
sentations sufficient for the task. How are these two meth-
ods related? Do they share some properties? More precisely,
does the invertibility property create a contradiction on IB
theory? In fact, if generalization requires discarding infor-
mation in the data that is not necessary for the task, it should
not be possible to reconstruct the input images.

Throughout this paper we will (i) investigate the research
questions stated above, with particular focus on the connec-
tion between IB and AT and as a consequence of our anal-
ysis, (ii) we will reveal new interesting properties of robust
models.

Contributions and Related Works
A fundamental result of IB is that, in order to generalize well
on a task, z has to be sufficient and minimal, that is, it should
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contain only the information necessary to predict y, which in
our case is a target class. Apparently, this is in contradiction
with the evidence that robust DNNs are invertible maintain-
ing almost all the information about the input x even if is
not necessary for the task. However, what matters for gen-
eralization is not the information in the activations, but in-
formation in the weights (PAC-Bayes bounds) (Achille and
Soatto 2019). Reducing information in the weights, yields
to reduction in the effective information in the activations
at test time. Differently from IB theory, (Achille and Soatto
2019) claims that the network does not need to destroy in-
formation in the data that is not needed for the task: it sim-
ply needs to make it inaccessible to the classifier, but other-
wise can leave it lingering in the weights. That is the case
for ordinary learning. As for AT, robustness is obtained at
cost of lower accuracy on natural images (Madry et al. 2017;
Tsipras et al. 2019), suggesting that only the robust features
are extracted by the model (Ilyas et al. 2019): How can be
this conciliated with invertibility of robust models? This pa-
per shows that, while AT preserves information about the
data that is irrelevant for the task in the weights (to the point
where the resulting model is invertible), the information that
is effectively used by the classifier does not contain all the
details about the input x. In other words, the network is not
effectively invertible: what really matters is the accessible
information stored in the weights. In order to visualize this
fact, we will introduce effective images, that are images that
represent what the classifier ”sees”. Inverting learned rep-
resentations is not new, and it was solved in (Mahendran
and Vedaldi 2015; Yosinski et al. 2015; Ulyanov, Vedaldi,
and Lempitsky 2018; Kingma and Welling 2013); however,
these methods either inject external information through pri-
ors or explicitly impose the task of reconstruction contrary
to robust models.

The main contribution of this work can be summarized as
follows. If representations contain all the information about
the input x, then adversarially trained models should be bet-
ter at transfering features to different tasks, where aspects of
the data that were irrelevant to the task it was (pre)-trained
on were neither destroyed nor ignored, but preserved. To
test this hypothesis, we perform linear classification (fine-
tune the last layer) for different tasks. We show that AT im-
proves linear transferability of deep learning models across
diverse tasks which are sufficiently different from the source
task/dataset. Specifically, the farther two tasks are (as mea-
sured by a task distance), the higher the performance im-
provement that can be achieved by training a linear classifier
using an adversarially-trained model (feature, or backbone)
compared to an ordinarily trained model. Related to this, in
(Shafahi et al. 2019) the transferability of robustness to new
tasks is studied experimentally; differently, in the present
work we study the linear transferability of natural accuracy.
Moreover, we also analytically show that, confirming em-
pirical evidence (Ilyas et al. 2019), once we extract robust
features from a backbone model, all the models using these
features have to be robust.

We will also show that adversarial regularization is
a lower-bound of the regularizer in the Information La-
grangian, so AT in general results in a loss of accuracy for

the task at hand. The benefit is increased transferability, thus
showing a classical tradeoff of robustness (and its conse-
quent transferability) and accuracy on the task for which it
is trained. This is a classic ”waterbed effect” between preci-
sion and robustness ubuiquitous in optimal control. Regard-
ing the connection with IB, we show analytically that AT
reduces the effective information in the activations about the
input, as defined by (Achille and Soatto 2019). Moreover,
we show empirically that adversarial training also reduces
information in the weights and its consequences.

Finally, we show that injecting effective noise once during
the inversion process dramatically improves reconstruction
of images in term of convergence and quality of fit.

In order to facilitate the reading, the manuscript is or-
ganized as follows. The section “Preliminaries and Nota-
tion” provides the necessary notation,“AT Reduces Informa-
tion” presents all the theoretical building blocks by show-
ing the connection between AT and IB. Based on the previ-
ous results, the section “Does Invertibility Contradict IB?”
shows why there is no contradiction between minimality
of representations and invertibility of robust models, and
“Transferability-accuracy Trade-Off” shows that robust fea-
tures can transfer better to new tasks.

Preliminaries and Notation

We introduce here the notation used in this paper. We de-
note a dataset of N samples with D = {(xi, yi)}Ni=1 where
x ∈ X is an input, and y ∈ Y is the target class in
the finite set Y = {1, . . . ,K}. More in general, we refer
to y as a random variable defining the ”task”. In this pa-
per we focus on classification problems using cross-entropy
LD(w) = E(x,y)∼D[`(x, y;w)] on the training set D as ob-
jective where `(x, y;w) = − log pw(y|x) and pw(y|x) is en-
coded by a DNN. The loss LD(w) is usually minimized us-
ing stochastic gradient descent (SGD) (Bottou, Curtis, and
Nocedal 2018), which updates the weights w with a noisy
estimate of the gradient computed from a mini-batch of sam-
ples. Thus, weights update can be expressed by a stochas-
tic diffusion process with non-isotropic noise (Li, Tai et al.
2017). In order to measure the (asymmetric) dissimilarity
between distributions we use the Kullbach-Liebler diver-
gence between p(x) and q(x) given by KL( p(x) ‖ q(x) ) =
Ex∼p(x)

[
log(p(x)/q(x))

]
. It is well-known that the

second order approximation of the KL-divergence is
Ex KL( pw(y|x) ‖ pw+δw(y|x) ) = δwtFδw + o(‖δw‖2)
where F is the Fisher Information Matrix (FIM), defined
by F = Ex,y∼p(x)pw(y|x)[∇ log pw(y|x)∇ log pw(y|x)t] =

Ex∼p(x)pw(y|x)[−∇2
w log pw(y|x)]. The FIM gives a lo-

cal measure of how much a perturbation δw on param-
eters w, will change pw(y|x) with respect to KL diver-
gence (Martens 2014). Finally, let x and z be two random
variables. The Shannon mutual information is defined as
I(x; z) = Ex∼p(x)[KL( p(z|x) ‖ p(z) )]. Throughout this
paper, we indicate the representations before the linear layer
as z = fw(x), where fw(x) is called feature extractor.

2675



Adversarial Training
AT aims at solving the following min-max problem:

minw E(x,y)∼D[`(x?, y;w)]

δ? = argmax‖δ‖2<ε `(x+ δ, y;w)

x? = x+ δ?
(1)

In the following we denote E(x,y)∼D[`(x?, y;w)] with
L?D(w). We remark that by E(x,y)∼D we mean the empirical
expectation over N elements of the dataset. Intuitively, the
objective of AT is to ensure stability to small perturbations
on the input. With cross-entropy loss this amounts to require
that KL( pw(x+ δ) ‖ pw(x) ) ≤ γ, with γ small. Depending
on ε, we can write Equation (1) as:

min
w

E(x,y)∼D[`(x, y;w)]+

β max
‖δ‖2≤ε

KL( pw(y|x+ δ) ‖ pw(y|x) )
(2)

which is the formulation introduced in (Zhang et al. 2019)
when using cross-entropy loss. We define the (weak) inver-
sion of features as:
Definition 0.1 (Inversion). Let z̄ = fw(x) be the final rep-
resentation (before linear classifier) of an image x, and let
fw be the robust feature extractor. The reconstructed image
(inversion) is the solution of the following problem:

x̂(w; z) = f−1
w (z̄) = argmin

x′
‖z̄ − fw(x′)‖2 (3)

where the initial condition of x′ is white noise x′(0) ∼
N(0.5, σ), where σ is the noise scale.

AT Reduces Information
In this section, we analytically show why a robust network,
even if it is invertible at test time, is effectively not invertible
as a consequence of noise injected by SGD. We first define
the Fisher Fz|x of representations w.r.t. inputs.
Definition 0.2. The FIM Fz|x of representations w.r.t the
input distribution is defined as:

Fz|x = Ex∼p(x)Ez∼pw(z|x)∇x log pw(z|x)∇x log pw(z|x)
t

= Ex∼p(x)S(z|x) (4)

where S(z|x) is the sensitivity matrix of the model at a fixed
input location x.

In the next proposition we relate AT to Equation (4),
showing that, requiring the stability of fw w.r.t. x is equiva-
lent to regularize the FIM Fz|x.
Proposition 0.3. Let δ ∈ X be a small perturbation such
that ‖δ‖2 = ε.1 Then,

max
‖δ‖2

KL( pw(z|x+ δ) ‖ pw(z|x) ) ≈ ε2

2
vtλ1

S(z|x)vλ1
(5)

where vλ1
is the (unit-norm) eigen-vector corresponding to

the first principal eigenvalue λ1.
1We would like to note that the practical implementation only

requires ‖δ‖2 ≤ ε. However, in practice, it is possible to see that
for small ε, the norm of δ is almost always ε.

Hence, AT is equivalent to regularize the Fisher of
representation z with respect to inputs x. By applying
white Gaussian noise instead of adversarial noise, Equa-
tion (5) would become KL( pw(z|x+ δ) ‖ pw(z|x) ) ≈
ε2

2n
trS(z|x), where n is the input dimension. It is easy to

see that
trS(z|x)

n
≤ vtλ1

S(z|x)vλ1 , meaning that Gaussian
Noise Regularization (GNR) is upper bounded by AT: the
inefficiency of GNR increases as the input dimension in-
creases, causing that many directions preserve high curva-
ture. (Tsipras et al. 2019) showed that AT, for a linear clas-
sification problem with hinge loss, is equivalent to penalize
the `2-norm of weights. The next example shows that when
using cross-entropy loss, penalizing the Fisher Fz|x yields a
similar result.

Example 0.4 (Binary classification). Assume a binary clas-
sification problem where y ∈ {−1, 1} Let p(y = 1|x) =
1− p(y = −1|x) = sigmoid(wtx). Then we have:

Fz|x = cwwt , tr(Fz|x) = c ‖w‖22 , c = Ex[p(−1|x)p(1|x)]

The previous example may suggest that with `2-
perturbations AT may reduce the l2-norm of the weights. We
trained robust models with different ε (with the same seed)
to verify this claim: as reported in Figure 5, we discovered
that it is true only for ε > 1, pointing out that there may
exist two different regimes.

What we are interested in is the relation between the
Shannon Mutual Information I(z, x) and the Fisher Infor-
mation in the activations Fz|x. However, in adversarial train-
ing there is nothing that is stochastic but SGD. For this rea-
son, (Achille and Soatto 2019) introduced effective informa-
tion. The idea under this definition is that, even though the
network is deterministic at the end of training, what matters
is the noise that SGD injects to the classifier. Thus, the ef-
fective information is a measure of the information that the
network effectively uses in order to classify. Before contin-
uing, we need to quantify this noise applied to weights.

Definition 0.5 (Information in the Weights). The complexity
of the task D at level β, using the posterior Q(w|D) and the
prior P (w), is

Cβ(D;P,Q) = Ew∼Q(w|D)[LD(pw(y|x))]+

βKL(Q(w|D) ‖P (w) )︸ ︷︷ ︸
Information in the Weights

, (6)

where Ew∼Q(w|D)[LD(pw(y|x))] is the (expected) recon-
struction error of the label under the “noisy” weight
distribution Q(w|D); KL(Q(w|D) ‖P (w) ) measures the
entropy of Q(w|D) relative to the prior P (w). If
Q∗(w|D) minimizes Equation (6) for a given β, we call
KL(Q∗(w|D) ‖P (w) ) the Information in the Weights for
the task D at level β.

Given the prior P (w) ∼ N(0, λ2I), the solution of the
optimal trade-off is given by the distribution Q(w|D) ∼

N(w?,Σ?) such that Σ? =
β

2

(
Fw +

β

2λ2
I

)−1

with Fw ≈
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Figure 1: Inversion using the standard and variational ResNet-50 model. (Top row) Original images. (Second row) Images
reconstructed optimizing Equation (3). (Third row) Images reconstructed by adding noise only once. (Bottom row) Effective
images obtained optimizing Equation (10).

∇2
wLD(w). The previous definition tells us that if we perturb

uninformative weights, the loss is only slightly perturbed.
This means that information in the activations that is not pre-
served by such perturbations is not used by the classifier.
Definition 0.6. (Effective Information in the Activations
(Achille and Soatto 2019)). Let w be the weights, and let
n ∼ N(0,Σ∗w), with Σ∗w = βF−1(w) be the optimal Gaus-
sian noise minimizing Equation (6) at level β for a prior
N(0, λ2I). We call effective information (at noise level β)
the amount of information about x that is not destroyed by
the added noise:

Ieff,β(x; z) = I(x; zn), (7)

where zn = fw+n(x) are the activations computed by the
perturbed weights w + n ∼ N(w,Σ∗w).

By Prop. 4.2(i) in (Achille and Soatto 2019) we have that
the relation between Fz|x and effective information is given
by:

Ieff,β(x; z) ≈ H(x)− Ex
[1

2
log
( (2πe)k

|Fz|x|

)]
, (8)

whereH(x) is the entropy of input distribution. Equation (8)
shows that AT compresses data similarly to IB. With AT, the
noise is injected in the input x and not only in the weights. In
order to reduce the effective information that the representa-
tions have about the input (relative to the task), it is sufficient
to decrease |Fz|x|, that is, increasing ε. In the Supplementary
Material, we show how details about x are discarded varying
ε.

AT reduces the information in the weights We showed
that AT reduces effective information about x in the acti-
vation. However, (Achille and Soatto 2019) showed that to
have guarantees about generalization and invariance to nui-
sances at test time one has to control the trade off between

sufficiency for the task and information the weights have
about the dataset. A natural question to ask is whether reduc-
ing information in the activations implies reducing informa-
tion in the weights, that is the mutual information βI(w;D)
between the weights and the dataset. The connection be-
tween weights and activation is given by the following for-
mula (Achille and Soatto 2019):

Fz|x =
1

β
∇xfw · JfFwJ tf ∇xfw (9)

where ∇xfw(x) is the Jacobian of the representation given
the input, and Jf (x) is the Jacobian of the representation
with respect to the weights. Decreasing the Fisher Infor-
mation that the weights contain about the training set de-
creases the effective information between inputs and activa-
tions. However, the vice-versa may not be true in general. In
fact, it is sufficient that ‖∇xfw‖ decreases. Indeed, this fact
was used in several works to enhance model robustness (Vir-
maux and Scaman 2018; Fazlyab et al. 2019). However, as
we show in Figure 4, AT reduces information in the features
as the embedding defined by |F−1

w |, that is, the log-variance
of parameters is increased when increasing the ε applied on
training. Experiments are done with a ResNet-18 on CIFAR-
10. Interestingly, this provides the evidence that it is possible
to achieve robustness without reducing ‖∇xfw‖.

Does Invertibility Contradict IB?
Robust representations are (almost) invertible, even for out-
of-distribution data (Engstrom et al. 2019). Figure 1 shows
examples of inversions using Equation (3). However, past
literature claims that a classifier should store only informa-
tion useful for the task. This is even more surprising as ro-
bust features should discard useful details more than stan-
dard models. This fact empirically proves that it is not nec-
essary to remove information about the input to generalize
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well (Behrmann et al. 2018). Moreover, when f is an invert-
ible map, the Shannon information I(x, z) is infinite. So,
how can invertibility and minimality of representations be
conciliated? Where is the excess of information which ex-
plains the gap? As shown in the section “AT Reduces Infor-
mation”, the main problem of standard IB, is that it requires
to operate in the activations during training and there is no
guarantee that information is also reduced at test time, which
is not as AT shows. The crucial point shown in (Achille
and Soatto 2019) and in the previous sections, is that it is
still possible to maintain information about input at test time
while making the information inaccessible for the classifier.
Moreover, an important result in this paper, is that it is possi-
ble to visualize the images that are effectively ”seen” by the
classifier in computing the prediction. By leveraging Defini-
tion 0.6, we define the effective image.

Definition 0.7 (Effective image). Let z̄ = fw(x), and let
fw be the model trained with ‖δ‖2 ≤ ε. We define effective
image xeff,ε at level ε, the solution of the following problem:

xeff,ε(x; z) = argmin
x′

‖fw+n(x)− fw(x′)‖2 (10)

where n ∼ N(w,Σ?) and Σ? = βF−1(w).

The idea under effective images is to simulate the train-
ing conditions by artificially injecting the noise that approx-
imates SGD. In this manner we can visualize how AT con-
trols the conveyed information. In Figure 1 we show some
examples. Interestingly, robust features are not always good
features: in fact, due to the poor diversity of the dataset
(CIFAR-10), the feature color green is highly correlated
with class frog.

Adding effective noise (once) improves inversion The
quality of inversion depends on the capability of gradient
flow to reach the target representation ẑ. Starting from re-
gions that are distant from training and test points fw may
be less smooth. Intuitively, especially during the first phase
of optimization, it can be beneficial to inject noise to es-
cape from local minima. Surprisingly, we discover that by
injecting effective noise once, reconstruction is much faster
and the quality of images improves dramatically. At the
beginning of optimization, we perturb weights with n̄ ∼
N(0,Σ?) and solve the inversion with fw+n̄. By visually
comparing row 2 and 3 of Figure 1, it is easy to see that
injecting noise as described above, improves the quality
of reconstruction. In support of this, in Figure 2 we nu-
merically assess the quality of representations using the
loss Linv(x, z). The variational model, besides improving
quality of fit, also allows fast convergence: convergence is
achieved after roughly 200 iterations while the deterministic
model converges after 8k iterations (∼ 40×).

Transferability-accuracy Trade-Off
The insights from the previous sections motivate the follow-
ing argument: if in robust models information is still there,
is it possible that features not useful for the original task y1

are useful for other tasks? In a sense, z is a well-organized
semantic compression of x such that it approximately allows
to linearly solve the new task y2|z. How well the task y2 is

Figure 2: Comparison of Linv(x, z) of (orange) Effective
images, (green) variational and (blue) deterministic models.

solved depends on how z is organized. In fact, even though
z is optimal for y1 and for reconstructing x, it still could be
not optimal for y2. This intuition suggests that having robust
features z is more beneficial than having a standard model
when the distance d(y2, y1) between tasks y2 and y1 is such
that features from the source models are not easily adaptable
to the new task. Thus, there may exist a trade-off between ac-
curacy on a given task and stability to distributions changes:
”locally”, standard models work better as feature extractor,
but globally this may not be true. In order to test our hypoth-
esis, we (i) analyze the structure of representations extracted
from adversarially-trained models, (ii) provide a theoretical
motivation and (iii) experimentally confirm the theory by
showing the emergence of a trade-off in transferability.
Recently, (Frosst, Papernot, and Hinton 2019) showed that
more entangled features, that is more class-independent, al-
low for better generalization and robustness. In order to
understand the effect of AT, in Figure 6 we show the t-
SNE (Maaten and Hinton 2008) embedding of final repre-
sentations for different values of ε: as ε increases, the en-
tanglement increases at the expenses of less discriminative
features. Thus, robust models capture more high-level fea-
tures instead of the ones useful only for the task at hand.

Effective Transferable Information
Interestingly, Fisher Information theory presented in the sec-
tion “AT Reduces Information” can be applied even to pro-
vide an theoretical intuition about transferability of robust
models.

Since AT reduces Fw|D, it reduces the information that
the network has about the dataset D. In fact:

I(w;D) ≈ H(w)− ED
[1

2
log
( (2πe)k

|Fw|D|

)]
, (11)

where Fw|D ≈ ∇DwtFw∇Dw. From the previous proposi-
tion we can see that there are two ways of reducing the in-
formation I(w;D). The first is reducing |Fw| and the other
is making the weights w more stable with respect to per-
turbation of the datasets. For example, the latter can be ac-
complished by choosing a suitable optimization algorithm
or a particular architecture. Reducing the Fisher Fw|D, im-
plies that the representations vary less when perturbing the
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Figure 3: Accuracy gap between the ro-
bust and standard model as the distance
from the source task increases.

Figure 4: Flatness of Fisher information
as measured by the norm of embedding
(log-variance).

Figure 5: Norm of weights for different
ε. Robust and standard training differ in
the dynamics of ‖w‖2.

C-10
C-100 F-MNIST MNIST SVHN

Rob 44.92 76.89 88.11 58.34
St 35.76 67.15 64.17 36.6

C-100
C-10 F-MNIST MNIST SVHN

74.47 84.85 94.96 70.61
80.18 76.10 79.46 55.6

Table 1: Transfer accuracy [%] starting from CIFAR-10 (left) and CIFAR-100 (right).

dataset with δD. This explains that fact that AT is more ro-
bust to distribution shifts. We would like to remark again that
there are two ways for transferring better: one is to reduce
‖∇Dw‖2 and the other one is reducing |Fw|.

Transferability Experiments

We employ CIFAR-10 (Krizhevsky, Nair, and Hinton 2009),
CIFAR-100 (Krizhevsky, Nair, and Hinton 2009) and Im-
ageNet (Deng et al. 2009) as source datasets. All the ex-
periments are obtained with ResNet-50 and ε = 1 for CI-
FAR and ε = 3 for ImageNet as described in (Ilyas et al.
2019) and in the Appendix. In Table 1 we show perfor-
mance of fine-tuning for the networks pretrained on CIFAR-
10 and CIFAR-100 transferring to CIFAR-10, CIFAR-100
F-MNIST (Xiao, Rasul, and Vollgraf 2017), MNIST (Le-
Cun and Cortes 2010) and SVHN (Netzer et al. 2011). De-
tails of target datasets are given in Appendix. Results con-
firm our hypothesis: when a task is ”visually” distant from
the source dataset, the robust model performs better. For
example, CIFAR-10 images are remarkably different from
the SVHN or MNIST ones. Moreover, as we should expect,
the accuracy gap (and thus the distance) is not symmetric:
while CIFAR-100 is a good proxy for CIFAR-10, the oppo-
site is not true. In fact, when fine-tuning on a more complex
dataset, from a robust model is possible to leverage features
that the standard model would discard. According to (Cui
et al. 2018), we employ Earth Mover’s Distance (EMD) as a
proxy of dataset distance, and we extract the order between
datasets. As we show in Figure 7, the distance correlates well
with the accuracy gap between robust and standard across
all the tasks. Table 2 shows similar results using models pre-
trained on ImageNet. The robust model provides better per-
formance in all the benchmarks being them quite different
from the original tasks. We also report experiments on more
difficult datasets namely Aircraft (Maji et al. 2013), Birds
(Wah et al. 2011), Cars (Krause et al. 2013), Dogs (Khosla

et al. 2011)2, Flowers (Nilsback and Zisserman 2008), In-
door (Sharif Razavian et al. 2014) that would have not been
suitable for transfering from simpler tasks like CIFAR-10
and CIFAR-100. Not surprisingly the robust model shows
lower accuracy compared to the standard one since images
are very similar to those contained in the ImageNet dataset.
For examples, Dogs images are selected from ImageNet.
Also with ImageNet, as shown by Figure 3, the difference
in accuracy between the two model is correlated with dis-
tance. We can see that the furthest the task the higher the
difference in accuracy in favor of the robust model. For the
sake of space, we report similar results for other source and
target datasets in the Appendix. Finally, in table 3 we ana-
lyze the impact of using a bigger architecture. It is noticeable
that with the more complex network (ResNet50) the gap is
reduced in cases where the standard model is better and it is
increased in cases where the robust one is better.

Robustness of fine-tuned models Are the fine-tuned
models still robust? As already experimentally shown
by (Ilyas et al. 2019; Shafahi et al. 2019), an advantage of
using fw(·) as a feature extraction is that then the new model
A2fw(·)+b2 is robust for the new task. Indeed, it is sufficient
to show that the Fisher Fy|x is bounded from above by Fz|x,
that is, the linear classifier can only reduce information.

Lemma 0.8. Let z = fw be the feature extractor, y = Az+
b, with A ∈ Rk×p, where k < p. Let Fz|x be the Fisher of its
activations about the input. Then, it holds: trFy|x ≤ trFz|x.

Conclusions
Existing works about robust models (Madry et al. 2017;
Ilyas et al. 2019; Tsipras et al. 2019) showed that there exists

2The Stanford Dogs has been built using images and annota-
tions from ImageNet.
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IMG C-10 C-100 F-MNIST MNIST SVHN Aircraft Birds Cars Dogs Flowers Indoor

Rob 93.78 77.94 90.09 98.03 76.90 33.81 35.91 40.47 66.25 93.15 63.06
St 84.72 64.48 86.38 93.91 50.46 36.72 53.58 50.12 88.39 95.48 72.84

Table 2: Transfer accuracy [%] of a ResNet50 pretrained on ImageNet.

ResNet50
C-100 C-10 F-MNIST MNIST SVHN

0 Rob 74.47 84.85 94.96 70.61
St 80.18 76.10 79.46 55.60

1 Rob 85.67 89.22 98.33 91.34
St 87.80 88.65 97.75 91.12

2 Rob 94.82 92.58 99.24 96.63
St 95.20 91.78 99.22 96.60

ResNet18
C-10 F-MNIST MNIST SVHN

68.89 83.40 94.61 61.08
76.50 76.30 77.98 49.32

82.40 87.59 97.82 89.68
85.11 86.11 97.84 88.62

94.59 92.48 99.30 96.39
95.10 92.03 99.15 96.29

Table 3: Performance comparison using different architectures transfering from CIFAR-100.

a trade-off between robustness of representations and accu-
racy for the task. This paper extends this property showing
the parameters of robust models are the solution of a trade-
off between usability of features for other tasks and accu-
racy for the source task. By leveraging results in (Achille
and Soatto 2019, 2018a), we show that AT has a compres-
sion effect similarly to IB, and we explain how a network
can be invertible and lose accuracy for the task at the same
time. Moreover, we show that AT also reduces information
in the weights, extending the notion of effective information
from perturbations of the weights, to perturbations of the in-
put.

We also show that effective noise can be also useful to im-
prove reconstruction of images both in terms of convergence
and quality of reconstruction.

Finally, we provide an analytic argument which explains
why robust models can be better at transferring features to
other tasks. As a corollary of our analysis, to train a generic
feature extractor for several tasks, it is best to train adversar-
ially, unless one already knows the specific task for which
the features are going to be used.
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