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Abstract

Human beings can quickly adapt to environmental changes
by leveraging learning experience. However, adapting deep
neural networks to dynamic environments by machine learn-
ing algorithms remains a challenge. To better understand this
issue, we study the problem of continual domain adaptation,
where the model is presented with a labelled source domain
and a sequence of unlabelled target domains. The obstacles
in this problem are both domain shift and catastrophic forget-
ting. We propose Gradient Regularized Contrastive Learning
(GRCL) to solve the obstacles. At the core of our method,
gradient regularization plays two key roles: (1) enforcing the
gradient not to harm the discriminative ability of source fea-
tures which can, in turn, benefit the adaptation ability of the
model to target domains; (2) constraining the gradient not to
increase the classification loss on old target domains, which
enables the model to preserve the performance on old target
domains when adapting to an in-coming target domain. Exper-
iments on Digits, DomainNet and Office-Caltech benchmarks
demonstrate the strong performance of our approach when
compared to the state-of-the-art.

Introduction
Generalizing models learned from one domain (source do-
main) to novel domains (target domains) has been a major
challenge of machine learning. The performance of the model
learned on one domain may degrade significantly on other do-
mains because of different data distribution (Luo et al. 2019;
Ben-David et al. 2010; Moreno-Torres et al. 2012; Storkey
2009; Yu et al. 2020). In this work, we investigate contin-
ual domain adaptation (continual DA), where models are
trained in multi-steps and only part of training samples are
presented in each step. Continual DA considers the real-world
setting where target domain data are acquired sequentially.
As an example, autonomous driving requires adapting to
scenes (target domains) in different weathers and different
countries. And these training data are usually collected in
different seasons: snowy scenes can only be collected in win-
ter while rainy scenes are mostly in summer. Continual DA
also considers efficiency when the model is deployed in the
real world. When samples from a novel domain are acquired,
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conventional DA, i.e. not continual DA, requires to use all
samples collected to train the model from scratch, which is
time-consuming. Continual DA can address the problem as it
enables the model incrementally adapts to the new domain
without losing generalization ability on old domains.

In this paper, we consider keeping the discriminative ability
of source features can benefit adapting the model to different
target domains. Intuitively, as the labels of source domain
samples are given, the discriminative ability learned from
labelled source samples can guide the adaptation to all target
domains. Existing DA methods (Ganin et al. 2016; Long et al.
2017; Tzeng et al. 2017; Saito et al. 2018; Su et al. 2020;
Peng et al. 2019b) cannot retrain such discriminative ability
on source features because they adopt multitask learning, i.e.
one classification loss on the source domain and one domain
adaptation loss. When minimizing the multitask loss, the
classification loss on the source domain may still increase,
meaning the model’s discriminative ability on the source
domain is weakened. In contrast, our method constrains the
classification loss on the source domain non-increase (source
discriminative constraint) in every training iteration. In this
way, we maintain the discriminative ability of source features
and more importantly improve the adaptation ability of the
learned model to the target domain.

Furthermore, the model trained with sequential data suf-
fers from catastrophic forgetting. Existing method (Bobu
et al. 2018) handles catastrophic forgetting by incorporating
a replay in the adversary training framework. However, this
approach assumes that the sequential target domain shift fol-
lows some specific patterns and suffers from catastrophic
forgetting when the assumption breaks. In contrast, when
adapting the model to a new target domain, we propose to
enforce the classification loss not to increase for every old tar-
get domain (target memorization constraint). This constraint
ensures the model not to lose the generalization ability on
old target domains when adapting to a new target domain.

Based on the observations above, we propose gradient
regularized contrastive learning (GRCL), to tackle continual
DA. GRCL leverages the contrastive loss to learn domain-
invariant representations using the samples in the source do-
main, the old target domains and the new target domain. Two
constraints, i.e. source discriminative constraint and target
memorization constraint, are proposed when optimizing the
network. Specifically, the source discriminative constraint is
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formulated to constrain that the gradient of the parameters
should be positively correlated to the gradient of classification
loss for the source domain. And the target memorization con-
straint constrains that the gradient of the parameters should
be positively correlated to the gradient of classification loss
for every old target domain. The pseudo-labels involved in
the target memorization constraint are generated by cluster-
ing(Yang et al. 2020, 2019; Guo et al. 2020; Ester et al. 1996;
Kanungo et al. 2002). These pseudo-labels are high-quality
because features in old target domains are discriminative and
we can filter out those samples with low confidence.

To summarize, our contributions are as follows: (1) We
propose a source discriminative constraint to improve dis-
criminative ability of features in the target domains by pre-
serving the discriminative ability of source features. (2) We
propose a target memorization constraint to explicitly memo-
rize the knowledge on old target domains. The proposed two
constraints consistently improve the continual DA by over
5% compared with the baseline method on three benchmarks.

Related Works
Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) aims to transfer the
knowledge from a different but related domain (source do-
main) to a novel domain (target domain). Various methods
have been proposed, including discrpancy-based UDA ap-
proaches (Long et al. 2017; Tzeng et al. 2014; Ghifary, Kleijn,
and Zhang 2014; Peng and Saenko 2018), adversary-based
approaches (Liu and Tuzel 2016; Tzeng et al. 2017; Liu et al.
2018; Su et al. 2020), reconstruction-base approaches (Yi
et al. 2017; Zhu et al. 2017; Hoffman et al. 2018; Kim et al.
2017) and contrastive learning based approaches (Ge et al.
2020; Park et al. 2020; Kim et al. 2020). To maintain the dis-
criminative ability of the model to the source domain, these
approaches resort to adding the task loss, e.g. classification
loss for the image classification task, on the source domain
data to the adaptation loss as a multitask objective function.
Consequently, the task loss on the source domain data of-
ten increases even though the multitask objective function
is minimized. In contrast, we explicitly enforce that the task
loss on the source domain should not increase, preserving
the discriminative ability of the model to the source domain.
Besides, instead of setting the trade-off parameter manually
in the multi-task learning, our GRCL adaptively updates the
ratio of gradients in different tasks by solving an optimization
problem. Such adaptive updating of the gradient is the key
to maintaining the discriminative ability of source features,
which, in turn, improves performance on the target domain.

Continual Learning
Continual learning (Prabhu, Torr, and Dokania 2020; Parisi
et al. 2019; Zhao et al. 2020) addresses catastrophic forget-
ting in a sequence of supervised learning tasks. Popular meth-
ods can be categorized as regularization-based methods (Kirk-
patrick et al. 2017; Zenke, Poole, and Ganguli 2017; Aljundi
et al. 2018; Li and Hoiem 2017) and memory-based meth-
ods (Rebuffi et al. 2017; Castro et al. 2018; Hou et al. 2018,
2019). In particular, GEM(Lopez-Paz and Ranzato 2017) is

most related to our method. It uses episodic memory to store
some training samples of old tasks and conducts constrained
optimization to address the catastrophic forgetting problem.
However, GEM cannot address continual DA very well, it
aims to learn different classes continuously, while continual
DA needs to recognize the images with the same label space
but from different domains. To address the continual DA, our
method highlights the importance of the source domain data
and explicitly utilizes the constraints from the source domain
to guide the learning of all other target domains.

Continual Domain Adaptation
When learning a sequence of unlabeled target domains, con-
tinual domain adaptation aims to achieve good generaliza-
tion abilities on all seen domains (Lao et al. 2020). Massi-
miliano (Mancini et al. 2019) attempted to solve a specific
scenario in continual DA, where no target data is available,
but with metadata provided for all domains. Gong (Gong
et al. 2019) proposed to bridge two domains by generating a
continuous flow of intermediate states between two original
domains. Several other papers (Wulfmeier, Bewley, and Pos-
ner 2018; Hoffman et al. 2014; Wang, He, and Katabi 2020;
Cheung et al. 2019) presented continuous domain adaptation
with the emphasis to generalize on a transitioning target do-
main. The approaches (Mancini et al. 2019; Gong et al. 2019;
Wulfmeier, Bewley, and Posner 2018; Hoffman et al. 2014)
do not explicitly target the catastrophic forgetting problem,
while the approaches (Bobu et al. 2018) and our approach
target the catastrophic forgetting problem. Our approach
is different from the method in two aspects. First, existing
works aim to address catastrophic forgetting, but with an
implicit assumption that the domain shift follows a specific
pattern, i.e. data shift domain gradually, e.g. gradually chang-
ing weather or lighting condition. However, our approach
does not need this assumption because we explicitly set con-
straints on every old target domain without relying on the
domain relationships. Second, compared with the closest
work in (Bobu et al. 2018) which uses multitask learning
with a simple replay, our GRCL emphasizes the importance
of the discriminative source features and tackles catastrophic
forgetting by strictly following the constraint that the task
loss on the old target domains non-increase in every iteration.

Problem Formulation
Let Ds = {(xsi , ysi )}

ns
i=1 be the labeled dataset of source

domain, where each example (xsi , y
s
i ) is composed of an

image xsi ∈ X s and a label ysi ∈ Y . Continual domain
adaptation defines a sequence of adaptation tasks T1:N =
{T1, T2, . . . , TN}. On t-th task Tt, there is an unlabeled tar-
get domain dataset Dt = {xti}

nt
i=1. Different domains share

a common label space Y but have distinct data distributions.
The goal is to learn a label prediction model f that can gen-
eralize well on multiple target domains {D1, . . . ,DN}.

We propose two metrics to evaluate the model adapting
over a stream of target domains, namely average accuracy
(ACC) and average backward transfer (BWT). After the
model adapts to the target domain Dt, we evaluate its per-
formance on the testing set of the new and all old target
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Figure 1: Gradient Regularized Contrastive Learning. Left: Schematic representation of GRCL. The feature bank is initialized by
pretrained model fθt−1

. During training, mini-batch samples are sampled from the source domain, domain-episodic memories
and the new target domain. Contrastive loss, source discriminative constraint, target memorization constraint are then imposed
on the mini-batch. The features of the mini-batch are involved in updating the feature bank in a momentum way. Right: The
gradient regularization is utilized to enforce the gradient of contrastive loss not to increase the cross-entropy loss, which maintains
the discriminative ability of feature learned by contrastive learning.

domains Dtestk (∀k ≤ t). Let Rt,j denote the test accuracy
of the model on the domain Dj after adapting the model to
domain Dt. We use D0 to denote the source domain. ACC
and BWT can be calculated as

ACC =
1

N

N∑
t=0

RN,t, BWT =
1

N − 1

N−1∑
t=1

RN,t −Rt,t. (1)

The ACC represents the average performance over all do-
mains when the model finishes all sequential adaptation tasks.
BWT indicates the influence on previously observed domains
Dk<t when adapting to domain Dt. The negative BWT in-
dicates that adapting to a new domain decreases the perfor-
mance on previous domains. The larger these two metrics
are, the better the model is.

Methodology
We propose a gradient regularized contrastive learning frame-
work (GRCL) to tackle the challenges in continual unsuper-
vised domain adaptation (Continual DA). When adapting the
model to the t-th target domain, the baseline framework is
based on contrastive learning with domain-episodic memo-
riesM1:t−1 and a feature bank Bt. The key innovation of
GRCL lies in two novel constraints on gradients when jointly
training samples in source domainDs, domain-episodic mem-
oriesM1:t−1 and the new target domain Dt in a contrastive
way. The source discriminative constraint can maintain the
discriminative ability of samples in the source domain and
surprisingly, in turn, improves the adaptability on the tar-
get domain. The target memorization constraint overcomes
catastrophic forgetting on old target domains when adapting
the model to a new target domain.

In greater detail, the training samples in each batch are sam-
pled from the source domain Ds, episodic memoriesM1:t−1
and the new target domainDt. These samples are trained with

the unified contrastive loss (Eq. 4) with the help of the feature
bank Bt by Eq. 2. Source discriminative constraint (Eq. 7)
and target memorization constraint (Eq. 5) are imposed on
samples of the source domain and the episodic memories in
the minibatch respectively. The gradient to update the model
w is computed by solving the quadratic optimization problem
(Eq. 11). The whole pipeline is illustrated in Fig. 1(left).

Baseline Framework with Contrastive Learning
Contrastive learning (Wu et al. 2018; He et al. 2020; Chen
et al. 2020) has recently shown the great capability of map-
ping images to an embedding space, where similar images are
close together and dissimilar images are far apart. Inspired by
this, we utilize the contrastive loss to push the target instance
towards the source instances that have similar appearances
with the target input. To better exploit the features from the
source domain, old target domains and the new target domain,
we unify these features in one feature bank and introduce a
unified contrastive loss with the feature bank in detail.

Feature Bank We propose a feature bank Bt to provide
source features, representative old target domain features and
new target domain features. We initialize the feature bank as
Bt = {k(x), ∀x ∈ Ds ∪M1:t−1 ∪ Dt}, whereM1:t−1 =
{M1,M2, ...,Mt−1} andMi stores representitive samples
in the target domainDi. In particular, k(x) is a representation
of the input x and can be computed by

k(x) = qt−1(fθt−1(x)), (2)
where fθt−1

is a CNN-based encoder, and qt−1 is a MLP
projector after adapting the model to (t−1)-th target domain.
All features are normalized by ‖k(x)‖22 = 1. At each training
iteration, the encoded features qt(fθt(x)) in the mini-batch
will be used to update the memory bank Bt by the rule:
k(x)← mk(x) + (1−m)qt(fθt(x)), m ∈ [0, 1] (3)
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Unified Constrastive Loss For adapting the model to
the t-th target domain, the CNN-based fθt is initialized by
fθt−1

, the MLP projection qt is initialized by qt−1 and the
feature bank Bt is initialized by Eq. 2. Images in each training
batch are sampled from the source domain Ds, the episodic
memoriesM1:t−1 and the new target domain Dt at a fixed
ratio. The contrastive loss (Oord, Li, and Vinyals 2018) com-
puted by each training batch is:

Lq(θt,Bt) = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k−∈Bt

exp(q · k−/τ)
,

(4)
where q is a general feature vector q = qt(fθt(x)) and x
denotes the samples in the training batch. k+ is the positive
key for q and can be defined as the corresponding feature
of sample x stored in Bt. Features other than k+ in Bt can
be used as negative keys k− for q. The temperature τ is
empirically set as 0.07.

Source Discriminative Constraint
The contrastive loss can bridge the domain gap by attracting
visually similar samples, but it may harm the discrimina-
tive ability of features in the source domain. Examples are
shown in Fig. 2(b). The orange squares/circles in the purple
area are pulled towards their green counterparts, hence the
discriminative ability of source features is deteriorated. As
labels in the source are reliable, the knowledge learnt from
the source domain are valuable for all the target domains.
We therefore add the source discriminative constraint when
minimizing the contrastive loss Eq. 4, which is to regularize
the Lce(θt,Ds) on the source domain non-increase:

Lce(θt,Ds) ≤ Lce(θt−1,Ds). (5)

We denote w as the vector to update the model and gs as the
gradient of Lce(θt,Ds). Inspired by (Lopez-Paz and Ranzato
2017), the Eq. 5 can be rephrased as

〈w, gs〉 ≥ 0, (6)

where 〈w, gs〉 means the inner product between the update
vector and the original gradient of the classification loss on
the source domain.

〈w, gs〉 := 〈w,
∂Lce(θt,Ds)

∂θt
〉 ≥ 0. (7)

As illustrated in Fig.1 (right), if the angle between gs and
gt is less than π/2, minimizing Eq. 4 by gt will not increase
the classification loss on the source domain. Therefore, we
simply use w = gt to update the model parameters. If the
angle between gs and gt is larger than π/2, updating parame-
ters by gt will inevitably increase the classification loss the
source domain. We therefore enforce w to satisfy Eq. 7 while
keeping close to the gradient of the contrastive loss gt.

Target Memorization Constraint
An essential problem in continual domain adaptation is catas-
trophic forgetting. For this problem, Target Memorization
Constraint is proposed to keep the classification loss for each
domain-episodic memory non-increase:

Lce(θt,Mi) ≤ Lce(θt−1,Mi) for all i < t, (8)

whereMi is i-th domain-episodic memory. When the num-
ber of target domains increases, the computation burden for
Eq. 8 will be large, because we need to solve the t−1 con-
straints of all domain-episodic memory. Alternatively, we
leverage a much efficient way to approximate the Eq.8 by

Lce(θt,M1:t−1) ≤ Lce(θt−1,M1:t−1), (9)

where M1:t−1 = ∪t−1i=1Mi. Instead of computing the loss
on each individual previous domain, Eq. 9 only computes
the loss with the sampled batch of images from M1:t−1.
Similarly, Eq. 9 can be rephrased as

〈w, gdm〉 := 〈w,
∂Lce(θt,M1:t−1)

∂θt
〉 ≥ 0. (10)

Overall Formulation and Solution of GRCL
We combine contrastive learning (Eq. 4) with source dis-
criminative constraint (Eq. 7) and target memorization con-
straint (Eq. 10) and then propose the overall objective func-
tion (Eq. 11) to obtain the final parameter update vector.

In order to incorporate gradient regularization in con-
trastive loss minimization, we modify the objective min Lq
to min ||w − gt||22 for each iteration, where gt is the gradient
of contrastive loss and w is the gradient to update the net-
work. The rationality behind is that to efficiently minimize
contrastive loss, w need to be as close to gt as possible under
the constrains Eq. 7 and Eq. 9. Mathematically, the overall
formulation for GRCL can be defined as

min
w

1

2
‖w − gt‖22

subject to 〈w, gs〉 ≥ 0

〈w, gdm〉 ≥ 0.

(11)

Eq. 11 is essentially a quadratic programming (QP) problem.
Directly solving this problem will involve a huge number of
parameters (the number of parameters in the neural network).
To solve the Eq.11 efficiently, we work in the dual space,
resulting in much smaller QP with only 2 variables:

min
u

1

2
u>GG>u+ g>t G

>u subject to u ≥ 0, (12)

where G = −(gs, gdm) ∈ R2×P and we discard the con-
stant term of g>t gt. The formal proof of Eq.12 is provided in
Supplemetry Materials. Once the solution u∗ = (u∗1, u

∗
2) to

Eq.12 is found, we can solve the Eq.11 by w = G>u∗+gt =
gt − u∗1gs − u∗2gdm. The training protocol of GRCL is sum-
marized in Supplementary Materials.

Discussion In the context of our paper, the previous meth-
ods solve DA or continual DA as a multitask learning
problem. For example, the loss function of continual DA
can be formulated as L = Lq(θt,Bt) + λ1Lce(θt,Ds) +
λ2Lce(θt,M), where λ1, λ2 is the hyper-parameter to trade
off the three losses.

Our gradient regularized method differs from multitask
learning in two aspects. (1) GRCL ensures that parame-
ters update will not harm the classification loss on both
source domain and old target domains. In contrast, mul-
titask learning only minimizes the overall loss, without
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Figure 2: Illustration of GRCL. In Fig.(a,b) the shape denotes class and color denotes domain. The contrastive loss pushes target
samples towards its similar ones in the source domain. However, it inevitably pushes some discriminative features towards some
less discriminative features (purple area), as the contrastive loss only attracts the visually similar features. Such a problem can
be verified by the severe performance degradation on the source domain (Fig.(c)). GRCL regularizes the model update not to
increase the loss on source domain (black arrow), that maintains the discriminative ability of learned features.

Methods Digits DomainNet Office-Caltech

ACC BWT ACC BWT ACC BWT

DANN (Ganin et al. 2016) 74.56 ± 0.14 -11.37 ± 0.09 30.18 ± 0.13 -10.27 ± 0.07 81.78 ± 0.05 -8.75 ± 0.07

MCD (Saito et al. 2018) 76.46 ± 0.24 -10.90 ± 0.11 31.68 ± 0.20 -10.36 ± 0.15 82.63 ± 0.13 -8.70 ± 0.12

DADA (Peng et al. 2019b) 77.30 ± 0.19 -11.40 ± 0.04 32.14 ± 0.14 -8.67 ± 0.09 82.05 ± 0.03 -8.30 ± 0.05

CUA (Bobu et al. 2018) 82.12 ± 0.18 -6.10 ± 0.12 34.22 ± 0.16 -5.53 ± 0.14 84.83 ± 0.10 -4.65 ± 0.08

GRA 84.10 ± 0.15 -0.93 ± 0.10 35.84 ± 0.19 -1.15 ± 0.16 86.53 ± 0.11 -0.03 ± 0.03

GRCL 85.34 ± 0.10 -1.0 ± 0.03 37.74 ± 0.13 -0.67 ± 0.12 87.23 ± 0.06 0.05 ± 0.02

Table 1: ACC and BWT on three continue domain adaptation benchmarks.

source discriminative constraint or target memorization con-
straint guaranteed. (2) Trade-off parameters are different
in w = gt + λ1gs + λ2gdm of multi-task learning and
w = gt − u∗1gs − u∗2gdm of GRCL. Compared with λ1, λ2
that are given manually, u∗1, u

∗
2 are computed by Eq. 12 and

are adaptive in each iteration. Therefore, we conclude that
GRCL can better balance the importance of different sub-
losses during each iteration.

For the experiments on adapting the model to the first target
domain, the results (Fig.2 (c)) show that the multitask loss
only brings marginal improvements on the target domain but
degrades the performance on the source domain. In contrast,
our gradient regularized method can significantly improve the
performance on the target while preserving the performance
on the source domain.

Experiment
Experimental Setup
Datasets We test our method on three popular datasets.

Digits includes five digits datasets (MNIST (LeCun
et al. 1998), MNIST-M (Ganin and Lempitsky 2015),
USPS (Hull 1994), SynNum (Ganin and Lempitsky 2015)
and SVHN (Netzer et al. 2011)). Each domain has 7, 500 im-
ages for training and 1, 500 images for testing. We consider a
continual domain adaptation problem of SynNum −→MNIST
−→MNIST-M −→ USPS −→ SVHN.

DomainNet (Peng et al. 2019a) is one of the largest domain
adaptation datasets with approximately 0.6 million images
distributed among 345 categories. Each domain randomly
selects 40, 000 images for training and 8, 000 images for
testing. Five different domains from DomainNet are used to
build a continual domain adaptation task as Clipart −→ Real
−→ Infograph −→ Sketch −→ Painting.
Office-Caltech (Gong et al. 2012) includes 10 categories
shared by Office-31 (Saenko et al. 2010) and Caltech-
256 (Griffin, Holub, and Perona 2007) datasets. Office-31
dataset contains three domains: DSLR, Amazon and Web-
Cam. We consider a continual domain adaptation task of
DSLR −→ Amazon −→WebCam −→ Caltech.

Competing Methods We compare GRCL with five alter-
natives, including (1) DANN (Ganin et al. 2016), a classic
domain adversarial training based method; (2) MCD (Saito
et al. 2018), maximizing the classifier discrepancy to re-
duce domain gap; (3) DADA (Peng et al. 2019b), disen-
tangling the domain-specific features from category identity;
(4) CUA (Bobu et al. 2018), adopting an adversarial train-
ing based method ADDA (Tzeng et al. 2017) to reduce the
domain shift and a sample replay loss to avoid forgetting;
(5) GRA, replacing the contrastive loss 4 in GRCL with
adversary loss in ADDA (Tzeng et al. 2017).

Implementation Details For fair comparison, we adopt
LeNet-5 (LeCun et al. 1998) on Digits, ResNet-50 (He et al.
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Figure 3: Evolution of classification accuracy on the first target domain as more domains are observed. Existing methods (DANN,
MCD, DADA, CUA) exhibit significant performance degradation due to catastrophic forgetting.

2016) on DomainNet, and ResNet-18 (He et al. 2016) on
Office-Caltech. The number of training and testing images is
identical across different domains. For contrastive learning,
we set batch size to be 256, feature update momentum to
be m = 0.5 in Eq. 3, number of negatives to be 1024 and
training schedule to be 240 epochs. The MLP head uses a
hidden dimension of 2048. Following (Wu et al. 2018; He
et al. 2020), the temperature τ in Eq.4 is 0.07. For data aug-
mentation, we use random color jittering, Gaussian blur and
random horizontal flip. To ensure the discriminative ability
of features in domain-episodic memories, the image samples
and pseudo-labels are generated by clustering with top-1024
confidence. For methods using memory, CUA, GRA and
GRCL use exactly the same size of domain-episodic memory
and k-means algorithm to generate pseudo labels.

Comparison with Competing Methods
Table 1 summarizes the detailed results for competing meth-
ods and GRCL on three continual DA benchmarks. Each
entry in Table 1 represents the mean value and standard de-
viation which are computed by five runs in corresponding
experiments. The larger average accuracy (ACC) reflects the
better performance of our model in continual DA and larger
backward transfer (BWT) reflects better ability to overcome
catastrophic forgetting. After the model has been adapted to
the final target domain, we report the ACC and BWT over
the whole sequential domains.

As shown in Fig.1, GRCL consistently achieves better
ACC across three benchmarks, suggesting that the model
trained by GRCL owns the best generalization capability
across different domains. Unsurprisingly, most methods ex-
hibit lower negative BWT, as catastrophic forgetting exists.
The methods using memory (CUA, GRA, GRCL) perform
better than other methods without memories (DANN, MCD,
DADA) by 2%− 5% on ACC and 3%− 5% on BWT. The
great improvement on BWT by memory-based methods high-
lights the importance of memory in the continual DA to
overcome catastrophic forgetting.

Among the memory-based methods, GRA and GRCL
leverage memorization constraint while CUA uses replay

buffer and multitask loss, i.e.,

L = Lq(θt,Bt) + λ1Lce(θt,Ds) + λ2Lce(θt,M).
(13)

GRA and GRCL achieve significantly better BWT on three
benchmarks, suggesting the effectiveness of gradient con-
straints for combating catastrophic forgetting. GRCL consis-
tently achieves better ACC than GRA across all benchmarks.
It is because that GRCL utilizes all the samples from domain
memory (cached the samples from all previously observed
domains) in contrastive loss to bridge the domain gap, while
GRA only uses source domain and current target domain in
adversarial loss to learn domain-invariant features.

Fig.3 depicts the evolution of classification accuracy on the
first target domain as more domains are adapted to. The accu-
racy of the first target domain significantly drops in memory-
free methods (DANN, MCD, CUA) but the accuracy still
maintains in memory-based methods. GRCL consistently ex-
hibits minimal forgetting and even positive backward transfer
on Office-Caltech benchmark.

Ablation Study
We analyze the effectiveness of the individual component of
GRCL in Table 2. Src.: the model is trained on the source do-
main and then tested on different target domains. Crt.+Src.:
the model is formulated as a multitask problem but with-
out supervision of classification loss on old target domains
(Eq. 13, λ2 = 0). Crt.+Src.+Mem.: the model is formulated
as Crt.+Src. plus supervision on domain-episodic memories
(Eq. 13). Crt.+SDC: the model is formulated as a contrastive
learning problem (Eq. 4) regularized by Source Discrimina-
tive Constraint (Eq. 7). Crt.+SDC+TMC(GRCL): the model
is formulated as a contrastive learning problem (Eq. 4) reg-
ularized by Source Discriminative Constraint (Eq. 7) and
Target Memorization Constraint (Eq. 10).

Importance of Contrastive Learning Contrastive learn-
ing aims to bridge the gap between different domains. As
is shown in Table 2, Crt.+Src. outperforms Src. by about
2.5%, which shows contrastive learning can bridge the do-
main gap by attracting visually similar samples. The BWT in
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Methods DomainNet Office-Caltech

ACC BWT ACC BWT

Src. 29.18± 0.05 - 80.03± 0.05 -

Multitask Training

Crt.+Src. 31.53± 0.15 -8.27± 0.07 82.57± 0.03 -7.46± 0.07

Crt.+Src.+Mem. 35.23± 0.13 -4.03± 0.11 85.37± 0.03 -3.16± 0.06

Gradient Reguarlized

Crt.+SDC 33.98± 0.13 -7.65± 0.05 84.75± 0.06 -6.88± 0.04

Crt.+SDC+TMC 37.74± 0.13 -0.67± 0.12 87.23± 0.06 0.05± 0.02

Table 2: Ablation studies of GRCL on individual components.

memory size 256 512 1024 2048

Digits 83.00 84.12 85.34 85.41
DomainNet 33.28 35.75 37.74 37.83

Table 3: ACC as a function of memory size.

Crt.+Src. is higher than other existing memory-free method,
i.e., DANN, MCD and DADA, which indicates contrastive
loss has the some ability to overcome catastrophic forgetting.
We attribute this to use memory features in Bt for contrastive
learning while no pseudo-labels are involved. Table 3 and Ta-
ble 4 shows the ACC of GRCL with various sizes of domain-
episodic memories and different training epochs. Because
contrastive learning naturally benefits from larger memory
banks and longer training schedules (Chen et al. 2020), GRCL
gets consistent improvements with their conclusions.

Importance of Source Discriminative Constraint Source
Discriminative Constraint aims to restore the discriminative
ability of features in the source domain and to exploit such
discriminative ability to better adapt the model to the tar-
get domains. Comparing with Crt.+Src. and Crt.+SDC, we
can see the ACC improves (≈ 2.2%) more than BWT does
(≈ 0.8%). The result shows that the improvement of ACC
by Source Discriminative Constraint mainly results from the
model’s better adaptation ability to new target domains in-
stead of overcoming catastrophic forgetting. Therefore, we
conclude Source Discriminative Constraint which keeps the
discriminative ability of the features in the source domain
can benefit domain adaptation to the target domains.

Importance of Target Memorization Constraint Target
Memorization Constraint aims to remember knowledge in
old target domains when the model adapts to a new target
domain. Comparing with Crt.+SDC and Crt.+SDC+TMC
in Table 2, we can see BWT improves by around 6% and
ACC improves by around 3.5%. Therefore, we conclude
that ACC improvements are mainly from overcoming catas-
trophic forgetting by Target Memorization Constraint. Com-
paring with Crt.+Src.+Mem., Crt.+SDC+TMC outperforms
ACC by over 2% and BWT by about 4%. The improvement
on BWT verifies that gradient constraints learning is more
effective to restore old knowledge than multitask learning.

training epoch 120 180 240 300

Digits 80.10 83.46 85.34 85.38
DomainNet 34.80 36.50 37.74 38.16

Office-Caltech 80.93 84.70 87.23 87.28

Table 4: ACC as a function of training epoch.

Figure 4: Comparison among Src., Crt.+Src. and Crt.+SDC.
The performance on target represents the averaged accuracy
over all different target domains.

Effectiveness of Source Discriminative Constraint on Con-
ventional UDA We show the proposed Source Discrimi-
natve Constraint outperforms the popular multitask learning
in conventional UDA, i.e. not Continual DA. We compare
three different methods: (1) Src.; (2) Crt.+Src.; (3) Crt.+SDC.
The λ1 in Eq.13 uses the best value obtained via grid search
and λ2 = 0. The SynNum, Clipart and DSLR are used as
the source domain for Digits, DomainNet and Office-Caltech
dataset respectively. Rather than ACC and BWT, we evaluate
the performance by a different metric for UDA. We report
the averaged classification accuracy on adapting the model
from the source domain to the different target domains. As
shown in Fig.4, Src. performs well on the source domain,
but worse on the target domain, due to the domain gaps.
Crt.+Src. improves the performance on the target domain
but has a significant adverse effect on the performance on
the source domain. Crt.+SDC can improve the performance
even greater than Crt.+Src. on the target domain while main-
taining the accuracy on the source domain simultaneously.
Therefore, we conclude that because of the source discrimi-
native constraint, the discriminative ability of source features
is maintained and can further benefit adaptation to the target
domain in UDA.

Conclusion
This work studies the problem of continual DA, which is one
major challenge in the deployment of deep learning mod-
els. We propose Gradient Regularized Contrastive Learning
(GRCL) to jointly learn both discriminative and domain-
invariant representations. At the core of our method, gradient
regularization maintains the discriminative ability of feature
learned by contrastive loss and overcomes catastrophic for-
getting in the continual adaptation process. Our experiments
demonstrate the competitive performance of GRCL against
the state-of-the-art.
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