
Domain General Face Forgery Detection by Learning to Weight

Ke Sun1, Hong Liu2, Qixiang Ye3, Yue Gao4,
Jianzhuang Liu5, Ling Shao6, †Rongrong Ji1,7∗

1Media Analytics and Computing Lab, Department of Artificial Intelligence,
School of Informatics, Xiamen University, 361005, China

2National Institute of Informatics, Japan 3University of Chinese Academy of Sciences, China
4Tsinghua University, China 5Noah’s Ark Lab, Huawei Technologies, China

6Inception Institute of Artificial Intelligence, Abu Dhabi, UAE 7 Institute of Artificial Intelligence, Xiamen University

Abstract

In this paper, we propose a domain-general model, termed
learning-to-weight (LTW), that guarantees face detection per-
formance across multiple domains, particularly the target
domains that are never seen before. However, various face
forgery methods cause complex and biased data distribu-
tions, making it challenging to detect fake faces in unseen
domains. We argue that different faces contribute differently
to a detection model trained on multiple domains, making
the model likely to fit domain-specific biases. As such, we
propose the LTW approach based on the meta-weight learn-
ing algorithm, which configures different weights for face
images from different domains. The LTW network can bal-
ance the model’s generalizability across multiple domains.
Then, the meta-optimization calibrates the source domain’s
gradient enabling more discriminative features to be learned.
The detection ability of the network is further improved
by introducing an intra-class compact loss. Extensive ex-
periments on several commonly used deepfake datasets to
demonstrate the effectiveness of our method in detecting syn-
thetic faces. Code and supplemental material are available at
https://github.com/skJack/LTW.

Introduction
Recent years have witnessed significant advances in face
recognition. In particular, technologies such as deep learning
have greatly improved the performance of this task. How-
ever, through sophisticated manipulation of face images, ex-
isting facial recognition systems are at risk of being crippled.
For instance, using recent GAN methods (Karras, Laine,
and Aila 2019; Goodfellow et al. 2014; Brock, Donahue,
and Simonyan 2018), it is possible to generate fake faces
that can fool the existing face recognition systems. There-
fore, it is crucial to develop approaches that can distinguish
between real and fake faces, which has received a lot of at-
tention from the research community.

The current research on face forgery detection mainly
consists of face manipulation and detection. The face ma-
nipulation focuses on generating fake faces for attacking the
face detection system. There are four main facial manipu-
lations including entire face synthesis, identity swapping,

∗Corresponding author: rrji@xmu.edu.cn.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Training
-Set

Meta-
test Set

Meta-
Split

Strategy

DeepFake

Face2Face

NeuralTexure

FaceSwap

DeepFake

Face2Face

Real

Training-Set

FaceSwap

Real

Real

Meta-test Set

Random
Shuffle

Training

Celeb-DF

DFDC

Testing

FaceForensics++

𝑓(𝜃)

Figure 1. An overview of the proposed method for the gen-
eral face forgery problem. The left part shows the train-
ing process, which is based on a meta-learning framework.
This framework randomly splits and shuffles a multi-source
domain dataset. During training, the meta-test set is gen-
erated based on the meta-split strategy. Then, the meta-
optimization tries to learn a domain-invariant model, which
can be used in detecting unseen domains.

attribute manipulation, and expression swapping (Tolosana
et al. 2020; Mirsky and Lee 2020). Among these, iden-
tity swapping (also known as deepfake) is currently most
focused on by forgery methods. As such, several relevant
public benchmarks, such as FaceForensics++ (Rossler et al.
2019), Celeb-DF (Li et al. 2019), and DFDC (Dolhansky
et al. 2020), have been released to help develop and verify
reliable fake face detection algorithms.

However, the fake faces in the above mentioned datasets
were crafted in a relatively homogeneous manner. Thus, the
data distributions and face identities are roughly the same
for the training and test sets. In contrast, in real-world ap-
plications, a model trained on a given training set (source
domain) is always used on a very different test set (target
domain), which is often previously unseen.

While domain adaptation may be a solution, adapting the
knowledge learned from a source domain to target ones, it is
still unable to handle unseen target domains due to lack of
unseen training data. Therefore, generalized face forgery de-
tection is less studied and more challenging because attack-
ers can use unseen face manipulations to attack the existing
face recognition system. In this paper, we argue that domain

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

2638

generalization needs to be considered. Similar to (Guo et al.
2020), we call this scenario general face forgery detection.

In this paper, we focus on building a more effective model
for general face forgery detection. Before briefly describ-
ing our method, we first analyze some of the properties of
this task. First, the fake facial images are always synthesized
through a generative adversarial network. These face images
are crafted by different methods and contain multiple biases
because of the generator’s inherent bias. Such virtual and bi-
ased properties make the data distribution of the source do-
main more complex, leading to large semantic gaps between
source domain data.

Secondly, due to the different generators, the quality
of each fake face varies greatly. Some samples may have
domain-invariant features, while others have domain-biased
features. Therefore, directly training on samples with equal
weights will corrupt the generalization ability of a detection
model.

To handle the above mentioned problems, this paper pro-
poses a novel algorithm for general face forgery detection,
which is based on a newly defined learning-to-weight (LTW)
framework. The basic idea of LTW containing two branches
is simple but effective. The first branch is the basic bi-
nary detection model, which extracts the features of each
image and determines whether the input image is real or
fake. The second branch is a weight-aware network that pre-
dicts the domain-adaptive weight score of each image in the
training batch. Then, we use the meta-learning framework
to combine these two branches together, which not only
learns the parameters of the weight-aware network but also
calibrates the source/target domain shift through the meta-
optimization. Since the face forgery detection is a binary
classification problem, we further propose a new regular-
ization loss, termed Intra-Class Compact (ICC) Loss . This
regularization aims to aggregate all real samples into a sub-
set and then push such fake subset away from the real one,
which helps to improve the performance of detection. Fi-
nally, we construct five benchmarks to validate our model
and compare it with related methods (Nguyen et al. 2019;
Cozzolino et al. 2018; Li et al. 2018). Our experiments show
that the proposed LTW outperforms the state-of-the-arts,
with a 2% improvement on average over the best compared
method.

Related Work
Face Forgery Detection
In early research, the change in a face image after JPEG
compression was used to determine its authenticity (Agar-
wal and Farid 2017). McCloskey and Albright (2018) ex-
tracted simple RGB features and then used the SVM classi-
fier to determine whether a face is true or false. To further
improve the performance, Matern, Riess, and Stamminger
(2019) studied the properties of the visual artifacts and pro-
posed a simple but effective pipeline that achieves surpris-
ingly good results.

However, these methods are based on hand-crafted fea-
tures and are not very robust or sensitive to the quality
of training data. To overcome these issues, recent research

has focused on deeply supervised learning methods. The
simplest approach is to use a convolutional neural network
(CNN) for binary classification (Tan and Le 2019; Chollet
2017). This kind of method is very effective and is widely
used in DFDC competitions (Dolhansky et al. 2020). Be-
sides, several other characteristic methods have been pro-
posed. For instance, a two-stream tampered face detection
model was proposed in (Zhou et al. 2017), where one stream
detect low-level inconsistencies between image patches and
the other explicitly detects tampered faces. Afchar et al.
(2018) proposed MesoNet, which uses a small number of
layers to focus on the mesoscopic properties of face images.
Moreover, some works (Nguyen et al. 2019; Cozzolino et al.
2018; Li et al. 2020) use generative models to reconstruct
the face images, thereby reducing the noise introduced by
face manipulation and improving detection performance.

Domain Generalization
Recent deep models face a common problem that there is
a large gap between the distributions of training and test
data, which greatly affects model performance. Therefore,
domain generalization has been widely studied, and has be-
come an important problem.

Muandet, Balduzzi, and Schölkopf (2013) proposed a
domain-invariant component analysis method that learns
an invariant transformation by minimizing the dissimilarity
across different domains. Another direction is to use a gener-
ative model (i.e., auto-encoder) to learn a latent embedding
and map both the source domain and the target domain to the
same space (Glorot, Bordes, and Bengio 2011; Chen et al.
2012). MLDG (Li et al. 2018) was the first to use meta learn-
ing for domain generalization while Meta-face (Guo et al.
2020) later applied it to the open set of face recognition.
Different from these, our LTW method not only considers
the domain shift but also the sample diversity.

Meta Learning
Meta learning, also known as learning to learn, aims to learn
certain parameters or strategies for few-shot learning.

The goal of meta-learning is to train a model on a vari-
ety of learning tasks, such that it can solve new tasks us-
ing only a small number of training samples (Finn, Abbeel,
and Levine 2017; Nichol, Achiam, and Schulman 2018). Re-
cently, some works have used a meta-learning framework to
solve domain generalization (Vinyals et al. 2016; Qiao et al.
2018). Our main difference from them is that we use the
meta-learning to resolve the new problem of general face
forgery detection with our LTW framework.

Proposed Method
Overall Framework
We first introduce the overall framework of the proposed
learning to weight (LTW) algorithm, based on meta learn-
ing. It aims to improve the generalization of the detector
so that fake faces in unseen domains can also be recog-
nized. Therefore, we define the basic detection model as
f(θ), where θ is the parameter set of a neural network. In
the training stage, we select N source domain Ds

train =

2639

Training
set

𝑓(𝜃) Training Loss

𝑓(𝜃!)Meta-test
set

Meta-test
Loss

Pooling

Weight for each sample
𝑝(𝑤) Feature

squeeze Pooling …

Weight

ICC Loss

CE Loss

Meta-training Flow

Meta-testing Flow

Meta-training Gradient

Meta-testing Gradient

𝑓(𝜃∗)

𝑝(𝑤∗)Pooling

Step1: Meta-Training

Step2: Meta-Testing Step3: Parameters Updating

𝑓!

FC

FC

FC

Meta-Split Strategy

Figure 2. Overview of our proposed method. The black arrow means the meta-training flow, while the orange arrow represents
the meta-testing flow. The blue dotted arrow means the gradient of the training loss, which updated for the θ and the red dotted
arrow represents the gradient of meta-test loss which to update w and θ. Note that the training loss consists of the CE loss and
ICC loss.

{dsd1, dsd2, ...dsdN} for training, where dsdi represent the ith
subset based on the attack method. Then, the trained model
f(θ) is evaluated on the M unseen target domain test set
Dt
test = {dtd1, dtd2, ...dtdM}, as shown in Fig. 1. As a result,

our goal is to train the detection model f(θ) on the source
domain Ds

train, which can obtain better performance on the
unseen test domain Dt

test without any model updating.

Specifically, the LTW module has two branches. The first
is the binary classification neural network f(θ), which aims
to extract features and determine the authenticity of each
face. The other branch is a weight-aware network p(w) that
is dependent on the latent feature in f(θ). The whole module
is shown in the upper box of Fig. 2. This module can assign
domain-adaptive weights to each sample, and it helps the ba-
sic model f(θ) mine for more domain-general features. Note
that during inference, only trained f(θ) is needed. There-
fore, the key is to design the weight-aware network, the ar-
chitecture of which is shown in Fig. 2.

Different from (Shu et al. 2019), our weight-aware net-
work takes a feature map fi, outputed by the last convolu-
tional layer in f(θ), as input. We define fi as the latent fea-
ture extracted from a given input image xi. To avoid adding
too many parameters and reducing the inference speed, p(w)
is designed to be very small, containing only 1.024M pa-
rameters. In detail, we use two depth-wise separable convo-
lutional layers to squeeze the number of feature map chan-
nels. Then, this is followed by a fully connected layer and
the predicted scores are outputted for the input samples. To
achieve better results, we use the Sigmoid function to nor-
malize scores to [0, 1]. In what follows, we use p(fi;w) to
denote the weight of sample xi, with w being the parameters
of the weight-aware network.

In order to update the parameters of p(w) and calibrate
the domain gradient of f(θ), we embed the LTW framework
into a meta-learning strategy (Finn, Abbeel, and Levine
2017; Shu et al. 2019). This framework contains two advan-
tages. 1) The basic model f(θ) can avoid overfitting to each
specific domain. 2) The weight-aware network p(w) can be
optimized by meta-gradient to measure each sample’s do-
main generalization.

Meta-Split Strategy To simulate the domain shift, we di-
vide the source domains Ds

train into training domains Ds
nt

and meta-domains Ds
meta during each training epoch. To

avoid overfitting to particular data distribution, we use a ran-
dom selection scheme to shuffle the source domains. Specif-
ically, we randomly split N source domains Ds

train into two
subsets Ds

nt and Ds
meta, where Ds

nt has N/2 domain sets
used to train the detector, and Ds

meta contains the rest to
assist in the model training. Note that our split scheme guar-
antees that there is no domain overlap between them. Dur-
ing training, for each epoch, a sample batch is sampled from
Ds
nt named training set. Then a meta-test set is formed in

this way: For a fake (real) face in the batch, find its corre-
sponding real (fake) face from Ds

meta. This strategy enables
the model to learn pair information between different do-
mains. Fig. 1 shows this meta-split strategy.

Learning Process
We divide our whole learning process into three steps: Meta-
Training, Meta-Testing and Parameters Updating, which are
detailed in the next subsections and also shown in Fig 2.

Step 1: Meta-Training This stage is used to calculate the
training set’s loss based on the binary detection model f(θ),

2640

𝜃

Unseen-
Domain

Training-
Set

w Meta-test
Set

Original update direction

Final update direction

Meta-test set gradient for regular direction
Meta-test set gradient for updating 𝑝(𝑤)

Weight for each sample from 𝑝(𝑤)

None-face with a small weight

Fake face with small weight

Fake face with a large weight

Figure 3. Visualization of our method. The grey arrow repre-
sents the original direction to update θ, which lacks general-
ization for the unseen domains. The red arrows indicate the
meta gradient flow used for updating the w and correcting
the original direction. The weight-aware network is respon-
sible for giving each sample a weight . For example, it gives
a wrongly detected face or low quality face a small weight
and gives a relatively high quality sample a large weight.
The blue arrow denotes the final direction of updating θ. In
the training set, a deeper blue dot means a face with a larger
weight.

with the help of the weight-aware module. Specially, with
the meta-split strategy, we sample K training data from Ds

nt
denoted as Xs = {xi, yi}Ki=1. Generally, the model pa-
rameters θ can be obtained by minimizing a loss function
L. In contrast, we add a domain-adapted weight p(fi;w)
when calculating the final loss. Specifically, the training loss
T (θ, w) is formulated as:

T (θ, w) =
1

K

K∑
i=1

L((xi, yi); θ) ∗ p(fi;w) (1)

where L is our loss function defined later.

Step 2: Meta-Testing After meta-training, we obtain the
weighted loss T on the training-set, the next challenge is
how to update the parameters W of the feature weight net
and make full use of the current unseen domain data Ds

meta
to improve the model’s generalization. Inspired by (Li et al.
2018), we use the second derivative of the model parameters.
In order to do that, first we need to virtually update θ using
gradient descent:

θ
′
= θ − α∇θT (θ, w) (2)

where α is the learning rate of meta-training stage. Then,
the model with its virtual parameters θ

′
is tested on the

Xm = {x′

i, y
′

i}Ki=1 generated by the meta-split strategy. By
evaluating on it, which is the relatively unseen domain for
the current epoch, model f(θ) can learn general features
across different domains. The meta-test loss is defined as
follows:

M(θ
′
, w) =

1

K

K∑
i=1

L((x
′

i, y
′

i); θ
′
, w), (3)

Step 3: Parameters Updating Since the meta-training
stage calculates the weighted loss T on the training-set and
the meta-testing stage calculates the loss M on the meta-
test set, we introduce our parameter updating method in this
stage. We define the final objective as:

argmin
θ,w

T (θ, w) + βM(θ
′
, w), (4)

where β weights the importance of the meta-loss. By min-
imizing the Eq.(4), the parameters θ and w can be updated
as follows, using gradient descent.

θ∗ = θ − α∇θT (θ, w)︸ ︷︷ ︸
meta−train update

+β(θ
′
− γ∇θ′M(θ

′
, w))︸ ︷︷ ︸

meta−test update

(5)

w∗ = w − φ∇wM(θ
′
, w) (6)

Hyperparameters γ and φ are the learning rates for the up-
date of θ and w, respectiely.

Analysis The meta-testing stage is equivalent to calcu-
lating the second-order derivative of the meta-test set. As
shown in Fig. 3, the gradient of meta-testing is used to up-
date the parameters of w and calibrate the gradient of train-
ing loss. On the one hand, if the learning gradient of a train-
ing sample contributes to the decline of the meta-test loss
M(θ

′
, w), it is considered as beneficial for the domain gen-

eralization and the weight-aware network tend to give it a
higher weight. On the other hand, the second-order deriva-
tive of the meta-testing step guides and modifies the direc-
tion of the parameters θ update, so that the model can ad-
dress unseen domains.

As noted in (Guo et al. 2020), optimizing the parameters
by Eqs.(5) and (6) means that we force the f(θ) and p(w) to
perform well on training set and meta-test set.

Loss Function
Because of the variety of attacks, the model may not be able
to cover all types of forged faces, but the distribution of the
real faces is relatively stable. To take advantage of this, we
first consider this problem as a form of one-class classifica-
tion. Inspired by (Perera and Patel 2019; Kuang et al. 2019),
we propose a novel loss function called the Intra-Class Com-
pact (ICC) Loss. The basic idea is to make positive samples
gather and push the negative samples away from the positive
center. Specifically, define O = {o1, o2, ..., on} ∈ Rn×1

to be the output of the model f(θ) after pooling and a
fully-connected layer, as shown in Fig. 2, with label Y =
{y1, y2, ...yn}, yi ∈ {(0, 1)}, where 0 indicates a real sam-
ple and 1 is a fake sample. We choose positive and negative
sample sets Oreal and Ofake according to Y .

The distance between the positive samples and their real
center is defined as

Lpositive =
1

|Oreal|

|Oreal|∑
j=1

(orealj − Creal)2, (7)

where

Creal =
1

N

N∑
j=1

orealj . (8)

2641

0.031 0.120 0.332

0.421 0.820 0.861

0.890 0.941 0.991

Scores of Fake Faces

0.012 0.111 0.187

0.188 0.210 0.430

0.882 0.911 0.989

Scores of Real Faces

Figure 4. Samples with their weights predicted by the
weight-aware network. The left shows the fake face weights,
while the right shows the real face.

The distance between the negative samples and Creal is:

Lnegative =
1

|Ofake|

|Ofake|∑
j=1

(ofakej − Creal)2. (9)

Then the ICC loss Licc is

Licc = Lpositive − Lnegative. (10)

Note that Creal is updated in each mini-batch. The intra-
class compact loss gathers the positive samples together
while keeping all types of negative samples away from the
positive center. By doing this, the model is not only forced to
dig more discriminative features but also improved in gen-
eralization because the unseen attack will be pushed away
from the real center. Finally the overall loss during the meta-
training period is:

L = Lce + λLicc, (11)
where Lce is the binary cross entropy loss, and λ is the
weighting parameter to balance the importance of Licc.

Experiments
Evaluation Settings
To evaluate the capability of our proposed method, we
build different benchmarks based on three popular deepfake
databases FaceForensics++ (Rossler et al. 2019), Celeb-
DF (Li et al. 2019), and DFDC (Li et al. 2019).

Evaluation Benchmarks There are four different ap-
proaches in the FaceForensics++ database, including two
computer graphics methods (Face2Face and FaceSwap) and
two learning-based approaches (DeepFakes and NeuralTex-
tures). The results obtained by these attack methods are quite
different. As such, we use these different generation meth-
ods as the basis for splitting the source and target domains.
Besides, to further evaluate our method, we also consider
the quality of videos, testing on both higher quality (quan-
tization parameter equal to 23) and lower quality images
(quantization 40). The specific content of each benchmark
is shown in Tab. 1.

Name Compression Source domains Target domain(s)

GID-DF23/40 C23/40
Face2Face
FaceSwap

NeuralTextures
DeepFake

GID-F2F23/40 C23/40
DeepFake
FaceSwap

NeuralTextures
Face2Face

GID-FS23/40 C23/40
DeepFake
Face2Face

NeuralTextures
FaceSwap

GID-NT23/40 C23/40
DeepFake
Face2Face
FaceSwap

NeuralTextures

GCD C23

DeepFake
Face2Face
FaceSwap

NeuralTextures

Celeb-DF
DFDC

DeepFake
Face2Face
FaceSwap

NeuralTextures

Table 1. Summary of the five benchmarks we design. The
number 23 or 40 under “compression” means the quanti-
zation parameter. Source domains are used for training and
target domains for evaluation. GID: general intra-datasets.
GCD: general cross datasets.

Evaluation Metrics To fully evaluate the quality of a
model, we apply accuracy score (ACC), log loss, area under
the receiver operating characteristic curve (AUC) and equal
error rate (EER) as our evaluation metrics. Specifically, Log
loss is used in the DFDC competition, and is formulated by:

LogLoss = − 1

n

n∑
i=1

yilog(ŷi)+ (1− yi)log(1− ŷi), (12)

where n is the number of images being predicted, ŷi is the
predicted probability of the ith image being fake, yi is the
label of the sample, and log() is the natural (base e) loga-
rithm.

Training Settings For each benchmark, we use Face-
Forensics++ for training and use the multitask cascaded
CNNs to extract faces, where the margin is set to 16 (?).
We follow the official division of the dataset, in which 720
videos are used for training, 140 videos for validation and
140 videos for testing. As for the testing of GCD-23, we
choose 518 test videos from Celeb-DF and use the last 200
real videos of the DFDC data set with its corresponding fake
videos to form the Celeb-DF and DFDC test sets.

In order to simulate the lack of data in the practical sce-
nario, different from (Rossler et al. 2019; Qian et al. 2020)
that used 270 frames, we only use 10 frames for training and
testing.

Implementation Details
Each input face is resized to 224 × 224. In order to clearly
reflect the capability of the model, we remove all addi-
tional tricks that may improve generalization, such as data
augmentation (great impact on model generalization), early
stop, and so on. To reduce the randomness of a mini-batch
and initial values of the parameters, all the methods share
the same random seeds.

2642

Method GID-DF23 GID-DF40 GID-F2F23 GID-F2F40
Metric ACC LOSS AUC EER ACC LOSS AUC EER ACC LOSS AUC EER ACC LOSS AUC EER

Basemodel 0.495 0.697 0.485 0.512 0.485 0.699 0.451 0.531 0.523 0.691 0.556 0.461 0.505 0.694 0.537 0.471
Alltrain-Basemodel 0.824 0.862 0.911 0.170 0.676 1.995 0.753 0.32 0.633 1.755 0.801 0.268 0.614 1.812 0.674 0.384

FocalLoss-Basemodel 0.813 0.466 0.903 0.177 0.674 0.876 0.749 0.306 0.608 0.760 0.798 0.273 0.610 0.761 0.672 0.383
ForensicTransfer 0.720 - - 0.331 0.682 - - 0.333 0.645 - - 0.385 0.550 - - 0.452

Multi-task 0.703 - - 0.374 0.667 - - 0.351 0.587 - - 0.401 0.565 - - 0.440
MLDG 0.842 0.760 0.918 0.152 0.671 0.952 0.730 0.329 0.634 1.907 0.771 0.304 0.581 2.434 0.617 0.419

Ours 0.856 0.792 0.927 0.145 0.691 0.715 0.756 0.305 0.656 1.422 0.802 0.271 0.657 1.025 0.724 0.331

Table 2. Performance on the GID-DF23/40 and GID-F2F23/40 benchmarks. The highest results are highlighted in bold.

Method GID-FS23 GID-FS40 GID-NT23 GID-NT40
Metric ACC LOSS AUC EER ACC LOSS AUC EER ACC LOSS AUC EER ACC LOSS AUC EER

Basemodel 0.517 0.694 0.517 0.488 0.503 0.695 0.512 0.489 0.500 0.696 0.493 0.505 0.497 0.696 0.499 0.499
Alltrain-Basemodel 0.500 4.156 0.543 0.470 0.580 3.257 0.614 0.425 0.608 1.926 0.774 0.291 0.564 2.748 0.600 0.434

FocalLoss-Basemodel 0.484 2.241 0.503 0.498 0.575 1.465 0.596 0.429 0.604 1.125 0.759 0.310 0.566 0.748 0.605 0.426
ForensicTransfer 0.460 - - 0.523 0.530 - - 0.471 0.569 - - 0.457 0.550 - - 0.453

Multi-task 0.497 - - 0.495 0.517 - - 0.484 0.603 - - 0.402 0.560 - - 0.446
MLDG 0.527 1.562 0.609 0.431 0.581 2.434 0.617 0.419 0.621 1.716 0.78 0.290 0.569 2.733 0.607 0.423

Ours 0.549 1.233 0.64 0.397 0.625 1.179 0.681 0.364 0.653 1.561 0.773 0.294 0.585 1.763 0.608 0.415

Table 3. Comparative results on GID-FS23/40 and GID-NT23/40.

Unless otherwise stated, we use the following setting. An
EfficientNet-b0 is used as our backbone with only 5.3M and
0.39B FLOPS, which was proven effective in the Deepfake
Detection Challenge. The model is pre-trained on the Im-
ageNet (Deng et al. 2009). The learning rate α for meta-
training and γ for meta-testing is both 0.001 with Adam op-
timizer. We use a stepLR scheduler, where the step-size is
5 and gamma is set to 0.1. The weight-aware network up-
date learning rate φ is 0.001. The hyperparameter β which
balances the meta-training and meta-testing is set to 1. And
the hyperparameter λ to balance the CE loss and the ICC
loss is set to 0.01. The batch size is 25. To evaluate the
effectiveness of the model, we compare it with six base-
lines: (1) Basemodel: The model pre-trained on ImageNet
without any fine-tuning on a forged face dataset. This is
the simplest baseline without any discrimination ability. (2)
Alltrain-Basemodel: The Basemodel trained on all source
domains. This method can be used as the fairest and pow-
erful baseline. (3) FocalLoss-Basemodel: To compare the
same weighting method, we use the focal loss in Alltrain-
Basemodel. (4) ForensicTransfer (Cozzolino et al. 2018):
This method is the first to highlight the generalized forgery
face detection problem. We reproduce it and run it on our
benchmarks. (5) Multi-task (Nguyen et al. 2019): We run
its official code. Note that when training ForensicTransfer
and Multi-task, their hyperparameters are adjusted accord-
ing to their papers. (6) MLDG (Li et al. 2018): This method
use meta-learning to solve the domain generalization prob-
lem. We adapt it for the generalized forged face detection
problem.

Evaluation Results
Results on GID In Tab. 2 and Tab. 3, our method is com-
pared to the baselines on the GID benchmarks with im-
ages of different qualities. We can observe that overall

our method achieves the best results in all four metrics.
Specifically on GID-F2F40, GID-FS40, GID-NT23, our
method achieves an average improvement of 5% compared
to the baselines, without increasing any model parameters.
FocalLoss-Basemodel achieves good results in reducing log
loss, but its accuracy is not as good as our method. In most
cases, MLDG is better than Alltrain-Basemodel, which also
shows that meta-learning does improve the model’s general-
ization ability. And our model is on average about 3% higher
than MLDG on ACC.

Results on GCD Tab. 4 shows the results on the GCD
benchmark. On this benchmark, we not only aim to achieve
good results on the test set corresponding to the target do-
mains but also focus on the performance across the datasets.
Tab. 4 provides the results, where GCD-OthersAVG means
the average performance on the test sets of DeepFake,
Face2Face, FaceSwap, and NeuralTextures. We can con-
clude that our method performs well on both cross datasets
and intra-datasets compared with the baselines. We achieve
great performance improvements from 60.9% to 63.4% on
the CeleDF testset and also get 1.5% higher on ACC than
the best baseline on DFDC. These observations show that
our method performs well not only on the source domains
but also on the target domains, indicating its generalization
ability.

Visualization of the Weights
In this section, we visualize images with their weights gen-
erated by the weight-aware network. We sample some repre-
sentative images from the FaceForensics++ dataset. The re-
sults are shown in Fig. 4. We can clearly see that, for fake
images, smaller weights are given to the obviously failed
generated faces, wrongly detected faces and inferior quality
faces, while higher quality faces are given larger weights.
For real faces, very noisy or blurry and those under extreme

2643

Method GCD-CeleDF GCD-DFDC GCD-OthersAVG
Metric ACC LOSS AUC EER ACC LOSS AUC EER ACC LOSS AUC EER

Basemodel 0.590 0.679 0.501 0.488 0.514 0.694 0.525 0.483 0.509 0.695 0.513 0.492
Alltrain-Basemodel 0.609 3.176 0.624 0.407 0.615 2.006 0.685 0.374 0.914 0.339 0.981 0.060

FocalLoss-Basemodel 0.606 1.162 0.616 0.413 0.617 0.787 0.669 0.378 0.905 0.240 0.982 0.057
ForensicTransfer 0.620 - - 0.204 0.540 - - 0.464 0.766 - - 0.297

Multi-task 0.584 - - 0.511 0.511 - - 0.494 0.767 - - 0.285
MLDG 0.595 1.691 0.609 0.418 0.607 1.334 0.682 0.370 0.918 0.247 0.978 0.070
Ours 0.634 2.506 0.641 0.397 0.631 1.807 0.690 0.368 0.938 0.246 0.985 0.048

Table 4. Performance comparison on the GCD benchmarks. GCD-OthersAVG represents the average performance on the test
sets of the four source domains: DeepFake, FaceSwap, Face2Face, and NeuralTextures.

GID-DF23 Ablation Study
ACC LOSS AUC EER

Alltrain-Basemodel 0.824 0.862 0.911 0.17
w/o ICC Loss 0.844 1.032 0.914 0.154

w/o Weight-aware 0.837 0.817 0.917 0.160
w/o Meta-testing 0.840 0.830 0.919 0.158

Ours-full 0.856 0.792 0.927 0.145

Table 5. Ablation study on the GID-DF23 benchmark.

GCD-AVG
BackBone ACC LOSS AUC EER

Efficientnet-b2 0.811 1.179 0.872 0.166
Efficientnet-b2+Ours 0.826 0.876 0.875 0.163

Efficientnet-b4 0.823 1.030 0.874 0.168
Efficientnet-b4+Ours 0.830 0.871 0.873 0.166

Xception 0.797 1.504 0.857 0.179
Xception+Ours 0.820 0.925 0.879 0.171

Resnet50SE 0.783 0.954 0.845 0.203
Resnet50SE+Ours 0.802 0.999 0.863 0.181

VGG19BN 0.705 0.728 0.783 0.283
VGG19BN+Ours 0.731 0.716 0.807 0.260

Table 6. Performance comparison of five backbone architec-
tures with and without our method.

light conditions images tend to obtain smaller weights than
normal face images. We argue that high quality faces usually
contain general features that have a great contribution to the
model generalization.

Ablation Study
Effectiveness of Each Component To evaluate the con-
tributions of different components, we compare our full
method with its three separate ablated versions on the GID-
DF23 benchmark. The quantitative results are shown in
Tab. 5. Removing the weight-aware network is equivalent
to setting all p(fi, w) = 1 in Eq.(̇1). Our model without
meta-testing is such one where first we train the whole LTW
framework, and then retrain it with β = 0 and fix the pre-
trained weight-aware network. Obviously, it can be seen
that the ICC loss, weight-aware network, and meta-testing
are all effective, because the performance drops when any
of them are removed. Specifically, the weight-aware net-

0.8

0.82

0.84

0.86

0
0.0
01 0.0

1
0.0
5 0.1 0.5

GDF-23 ACC

𝝀

0.86
0.88
0.9

0.92
0.94

0
0.0
01 0.0

1
0.0
5 0.1 0.5

GDF-23 AUC

𝝀

0.82
0.83
0.84
0.85
0.86

0 0.3 0.5 0.7 1 1.5

GDF-23 ACC

0.89
0.9

0.91
0.92
0.93

0 0.3 0.5 0.7 1 1.5

GDF-23 AUC

𝜷 𝜷

Figure 5. Results with different λ and β on GDF-23.

work and meta-testing is more important. The performance
drops nearly 2% and 1.6% when removing those two com-
ponents,respectively.

Dependency on Backbone We hope that our method is
model-independent, which means it can be used in any re-
lated deep models. As such, we verify the effect of using
different backbones. We test on GCD and use the average of
all test set results as the evaluation criterion. We simply ad-
just the input dimension of the weight-aware network to be
consistent with the backbone’s feature extract module. We
can observe from Tab. 6 that our method does improves the
network performance regardless of the types of backbones.

Impact of λ and β λ is a hyperparameter weighting the
CE loss and ICC loss, while β weights the training loss and
meta-test loss. The results are shown in Fig. 5, we test it
on the GID-DF23 and show the ACC and AUC with differ-
ent hyperparameters values. The best value of λ is 0.01. A
proper value 1 for β gives the best result, which means that
the meta-training and the meta-testing are equally updated.

Conclusion
In this work, we consider the generalization of the forgery
face detection problem and propose a novel framework,
named Learning to Weight (LTW), to address it. We build
our method based on the meta-learning strategy. To the best
of our knowledge, we are the first to consider generalization
from the perspective of sample differences in this problem.

2644

Acknowledgments
This work is supported by the National Science Fund
for Distinguished Young (No.62025603), the National Nat-
ural Science Foundation of China (No.62025603, No.
U1705262, No. 62072386, No. 62072387, No. 62072389,
No. 62002305, No.61772443, No. 61802324 and No.
61702136) and Guangdong Basic and Applied Basic Re-
search Foundation (No.2019B1515120049).

References
Afchar, D.; Nozick, V.; Yamagishi, J.; and Echizen, I. 2018.
Mesonet: a compact facial video forgery detection network.
In WIFS, 1–7. IEEE.

Agarwal, S.; and Farid, H. 2017. Photo forensics from JPEG
dimples. In WIFS, 1–6. IEEE.

Brock, A.; Donahue, J.; and Simonyan, K. 2018. Large scale
gan training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096 .

Chen, M.; Xu, Z.; Weinberger, K.; and Sha, F. 2012.
Marginalized denoising autoencoders for domain adapta-
tion. arXiv preprint arXiv:1206.4683 .

Chollet, F. 2017. Xception: Deep learning with depthwise
separable convolutions. In CVPR, 1251–1258.

Cozzolino, D.; Thies, J.; Rössler, A.; Riess, C.; Nießner,
M.; and Verdoliva, L. 2018. Forensictransfer: Weakly-
supervised domain adaptation for forgery detection. arXiv
preprint arXiv:1812.02510 .

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR, 248–255. Ieee.

Dolhansky, B.; Bitton, J.; Pflaum, B.; Lu, J.; Howes, R.;
Wang, M.; and Ferrer, C. C. 2020. The DeepFake Detec-
tion Challenge Dataset. arXiv preprint arXiv:2006.07397 .

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
ICML.

Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Domain adap-
tation for large-scale sentiment classification: A deep learn-
ing approach. In ICML.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NeurlPS, 2672–2680.

Guo, J.; Zhu, X.; Zhao, C.; Cao, D.; Lei, Z.; and Li, S. Z.
2020. Learning meta face recognition in unseen domains.
In CVPR, 6163–6172.

Karras, T.; Laine, S.; and Aila, T. 2019. A style-based gen-
erator architecture for generative adversarial networks. In
CVPR, 4401–4410.

Kuang, H.; Ji, R.; Liu, H.; Zhang, S.; Sun, X.; Huang, F.; and
Zhang, B. 2019. Multi-modal Multi-layer Fusion Network
with Average Binary Center Loss for Face Anti-spoofing. In
ACM MM, 48–56.

Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. M. 2018.
Learning to generalize: Meta-learning for domain general-
ization. In AAAI.

Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; and
Guo, B. 2020. Face x-ray for more general face forgery de-
tection. In CVPR, 5001–5010.

Li, Y.; Yang, X.; Sun, P.; Qi, H.; and Lyu, S. 2019. Celeb-
df: A new dataset for deepfake forensics. arXiv preprint
arXiv:1909.12962 .

Matern, F.; Riess, C.; and Stamminger, M. 2019. Exploiting
visual artifacts to expose deepfakes and face manipulations.
In WACVW, 83–92. IEEE.

McCloskey, S.; and Albright, M. 2018. Detecting gan-
generated imagery using color cues. arXiv preprint
arXiv:1812.08247 .

Mirsky, Y.; and Lee, W. 2020. The Creation and Detection
of Deepfakes: A Survey. arXiv preprint arXiv:2004.11138 .

Muandet, K.; Balduzzi, D.; and Schölkopf, B. 2013. Domain
generalization via invariant feature representation. In ICML,
10–18.

Nguyen, H. H.; Fang, F.; Yamagishi, J.; and Echizen, I.
2019. Multi-task learning for detecting and segmenting
manipulated facial images and videos. arXiv preprint
arXiv:1906.06876 .

Nichol, A.; Achiam, J.; and Schulman, J. 2018. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999 .

Perera, P.; and Patel, V. M. 2019. Learning deep features
for one-class classification. IEEE Transactions on Image
Processing 28(11): 5450–5463.

Qian, Y.; Yin, G.; Sheng, L.; Chen, Z.; and Shao, J. 2020.
Thinking in Frequency: Face Forgery Detection by Mining
Frequency-aware Clues. In ECCV, 86–103. Springer.

Qiao, S.; Liu, C.; Shen, W.; and Yuille, A. L. 2018. Few-
shot image recognition by predicting parameters from acti-
vations. In CVPR, 7229–7238.

Rossler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies,
J.; and Nießner, M. 2019. Faceforensics++: Learning to de-
tect manipulated facial images. In ICCV, 1–11.

Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; and
Meng, D. 2019. Meta-weight-net: Learning an explicit map-
ping for sample weighting. In NeurlPS, 1919–1930.

Tan, M.; and Le, Q. V. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946 .

Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.;
and Ortega-Garcia, J. 2020. Deepfakes and beyond: A sur-
vey of face manipulation and fake detection. arXiv preprint
arXiv:2001.00179 .

Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; et al.
2016. Matching networks for one shot learning. In NeurIPS,
3630–3638.

2645

Zhou, P.; Han, X.; Morariu, V. I.; and Davis, L. S. 2017.
Two-stream neural networks for tampered face detection. In
CVPRW, 1831–1839. IEEE.

2646

