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Abstract
State-of-the-art video object detection methods maintain a
memory structure, either a sliding window or a memory
queue, to enhance the current frame using attention mecha-
nisms. However, we argue that these memory structures are
not efficient or sufficient because of two implied operations:
(1) concatenating all features in memory for enhancement,
leading to a heavy computational cost; (2) frame-wise mem-
ory updating, preventing the memory from capturing more
temporal information. In this paper, we propose a multi-level
aggregation architecture via memory bank called MAMBA.
Specifically, our memory bank employs two novel operations
to eliminate disadvantages of existing methods: (1) light-
weight key-set construction which can significantly reduce
the computational cost; (2) fine-grained feature-wise updat-
ing strategy which enables our method to utilize knowledge
from the whole video. To better enhance features from com-
plementary levels, i.e., feature maps and proposals, we fur-
ther propose a generalized enhancement operation (GEO) to
aggregate multi-level features in a unified manner. We con-
duct extensive evaluations on the challenging ImageNetVID
dataset. Compared with existing state-of-the-art methods, our
method achieves superior performance in terms of both speed
and accuracy. More remarkably, MAMBA achieves mAP of
83.7%/84.6% at 12.6/9.1 FPS with ResNet-101.

Introduction
Object detection is a fundamental task in computer vision
and plays a critical role in many real-world applications. Re-
cently, deep convolutional neural networks (CNNs) based
object detectors (Girshick et al. 2015; Girshick 2015; Ren
et al. 2015; Dai et al. 2016; Redmon et al. 2016; Tian
et al. 2019) have achieved excellent performance on still im-
ages. However, the success of still-image detectors is hard
to transfer to video data directly, because of the quality de-
terioration of video frames, caused by severe motion blur,
rare poses, defocus, occlusions, etc.. To solve these issues,
recent methods (Zhu et al. 2017b, 2018, 2017a; Deng et al.
2019a; Wu et al. 2019; Deng et al. 2019b; Chen et al. 2020;
Shvets, Liu, and Berg 2019) utilize temporal information
to enhance video frames, a.k.a., feature-level enhancement
methods. Specifically, feature-level enhancement methods
construct a memory structure that contains the features of
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Figure 1: Comparisons of the memory construction process
in three memory structures. (a) Sliding window stores raw
features of neighbour frames. (b) Memory queue stores fea-
tures of the enhanced frames. One enhanced frame contains
the temporal information of its previous frames. As a re-
sult, the number of visible frames is enlarged by temporal
connections. (c) The proposed memory bank contains two
novel operations: light-weight key-set construction and fine-
grained feature-wise updating, which help enlarge the num-
ber of visible frames to the length of the whole video. Best
viewed in color.

other frames. Then, either alignment modules, e.g., FlowNet
(Dosovitskiy et al. 2015; Ilg et al. 2017) or relation modules,
e.g., attention mechanisms (Hu et al. 2018; Vaswani et al.
2017), are employed to enhance the current frame using fea-
tures stored in the memory structure. Depending on how the
memory structure is constructed and what features are stored
in the memory, existing feature-level enhancement methods
can be categorized into two groups: sliding window methods

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

2620



and memory queue methods.
A sliding window (Zhu et al. 2017a; Wang et al. 2018;

Bertasius, Torresani, and Shi 2018; Wu et al. 2019; Deng
et al. 2019b; Shvets, Liu, and Berg 2019) stores raw fea-
tures of several neighbour frames of the current frame. Note
that the sliding window may contain future frames (offline
methods). For demonstration, we show an online version
of sliding window in Figure 1 (a). The number of visible
frames, which denotes the amount of information the current
frame can gather from, is equal to the length of the sliding
window. To enlarge the number of visible frames, memory
queue methods (Chen et al. 2020) utilize recurrent temporal
connections to aggregate more temporal information from
additional frames, shown in Figure 1 (b). Instead of storing
raw features, a memory queue stores the intermediate en-
hanced features. Thanks to the stacked enhancement stages,
a memory queue enlarges the number of visible frames sev-
eral times, e.g., double in (Chen et al. 2020). The increased
number of visible frames contributes to better performance.

However, these memory structures are not efficient or suf-
ficient enough because of two implied operations: (1) Con-
catenating all features in memory for enhancement, leading
to heavy computational cost. (2) Updating the memory in a
coarse-grained manner, i.e., frame-wise updating. Deleting
features of the oldest frame at every time step. This limits
the number of visible frames to a fixed number, e.g., 20-30,
and prevents the model from capturing temporal information
from the whole video.

To address these issues, we propose a memory bank for
video object detection. As shown in Figure 1 (c), our mem-
ory bank contains two novel operations. Firstly, unlike the
existing methods (Chen et al. 2020; Deng et al. 2019b; Wu
et al. 2019; Deng et al. 2019a) that use all the features in the
memory, we introduce a light-weight key-set construction
strategy to select a subset of features in the memory bank
for enhancement, significantly reducing the computational
cost and leading to a higher speed. Secondly, instead of the
widely used holistic frame-wise memory updating strategy,
we propose a fine-grained feature-wise updating strategy,
which can partially delete features from multiple frames. As
a result, our method is able to capture and store information
from more frames under the same memory size.

In addition, several RFCN-based (Dai et al. 2016) meth-
ods, e.g., MANet (Wang et al. 2018) and OGEM (Deng et al.
2019a), demonstrate that the enhancement in different lev-
els, i.e., pixel-level (deep feature maps) and instance-level
(position-sensitive score maps), are complementary. More
recent FasterRCNN-based (Ren et al. 2015) methods (Chen
et al. 2020; Deng et al. 2019b; Wu et al. 2019; Shvets, Liu,
and Berg 2019) leverage relation networks (Hu et al. 2018)
to perform better instance-level enhancements and improve
the performance significantly. However, relation networks
cannot receive pixel-level feature as input. To solve this,
we introduce a generalized enhancement operation (GEO),
which can enhance features in both pixel-level and instance-
level in a unified way. By introducing multi-level aggrega-
tion via proposed memory bank (MAMBA), our method
achieves superior performance in terms of both speed and
accuracy. To sum up, our contribution is threefold:

• We propose a memory bank for video object detection.
Specifically, we introduce a light-weight key-set construc-
tion strategy and a more fine-grained feature-wise updat-
ing mechanism, greatly reducing the computational costs
and achieving a flexible framework for different accuracy-
speed trade-offs.

• We present a generalized enhancement operation (GEO),
which can enhance complementary multi-level (pixel-
level and instance-level) features in a unified way.

• We conduct extensive experiments on ImageNet VID
dataset (Russakovsky et al. 2015). Compared with state-
of-the-art methods, our method achieves better perfor-
mance and faster speed at the same time.

Related Work
Object Detection. Still image object detectors (Girshick
2015; Ren et al. 2015; Redmon et al. 2016; Redmon and
Farhadi 2017; Dai et al. 2016) have been remarkably
improved due to the development of deep convolutional
neural networks (CNNs) (He et al. 2016; Xie et al. 2017).
In two-stage detectors (Ren et al. 2015; Dai et al. 2016),
firstly, a backbone network (He et al. 2016; Simonyan and
Zisserman 2014; Szegedy et al. 2015) is used to extract
deep feature maps of an image and then the deep feature
maps are passed into the Region Proposal Networks (RPN)
(Ren et al. 2015) to generate object proposals. Secondly, the
sub-networks further classify the proposals and regress the
bounding boxes. Our proposed memory bank is a general
module and can be easily applied to different detectors.

Video Object Detection. Existing video object detection
methods can be divided into two categories: box-level meth-
ods and feature-level methods. Box-level methods leverage
LSTM (Kang et al. 2017a) or tracking (Kang et al. 2017b) to
model the temporal associations between detected bounding
boxes. These methods either introduce heavy computational
cost or serve as a post-processing manner (Han et al. 2016;
Feichtenhofer, Pinz, and Zisserman 2017). In contrast, the
feature-level methods enhance the current frame with other
frames end-to-endly. Based on how to compute the correla-
tion features between frames, feature-level methods can be
divided into two subcategories: optical flow based (Dosovit-
skiy et al. 2015) and attention (Vaswani et al. 2017) based
methods. Specifically, FGFA (Zhu et al. 2017a) uses opti-
cal flow to align neighbor frames onto the current frame at
every time step. THP (Zhu et al. 2018) does partial aggre-
gation in a recurrent manner. MANet (Wang et al. 2018) av-
erages the optical flow within proposals to address the poor
flow estimation caused by occlusion. Recent methods (Deng
et al. 2019a; Wu et al. 2019; Deng et al. 2019b; Chen et al.
2020) employ attention mechanisms to do feature enhance-
ment. Most of them (Deng et al. 2019b; Wu et al. 2019; Chen
et al. 2020) conduct instance-level enhancement by reason-
ing the object relations across frames. OGEM (Deng et al.
2019a) proposes an object guided strategy to partially store
and sparsely update the object features.
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Figure 2: (a) Overview of our framework. Given an input frame It, firstly, It is passed through the backbone networks. Secondly,
the extracted feature maps is enhanced by the pixel-level memory bank. Thirdly, the Region Proposal Networks (RPN) is used
to extract proposals on the enhanced feature maps. Finally, the proposals are further enhanced by the instance-level memory
bank and then enhanced proposals are used to compute the detection loss. (b) Illustration of the enhancement process of the
memory bank. The input can either be feature maps or proposals. Best viewed in color.

Our Approach
In this section, we introduce a novel framework using Multi-
level Aggregation with Memory Bank (MAMBA) for video
object detection. In order to enhance the current frame (i.e.,
query) Q = {qi}

Nq

i=1 (where Nq denotes the number of
features in the current frame), we first construct a key set
K = {kj}Nk

j (where Nk is the total number of feature in
the key set) by a light-weight key set construction strategy.
The total number of features stored in memory bankMB is
Nm (Nm � Nk). Then, we apply the generalized enhance-
ment operation (GEO) to enhance Q with K. Note that the
proposed GEO supports both pixel-level and instance-level
features. Finally, we utilize a feature-wise updating strategy
to update memory bank MB. An overview of our frame-
work is shown in Figure 2 and the inference procedure is
described in Algorithm 1.

Light-weight Key Set Construction
Existing methods (Chen et al. 2020; Deng et al. 2019a; Wu
et al. 2019; Shvets, Liu, and Berg 2019; Deng et al. 2019b)
concatenate all the features in memory to build the key set
(K), which not only increases computational cost but also
restricts memory to store more diverse features to further im-
prove the performance. In contrast, we design a light-weight
key set construction strategy for memory bank to construc-
tion the key set, which can be formulated as:

K = Sampling(MB), (1)

where Sampling denotes the sampling strategy and MB
denotes memory bank. Specifically, we implement three
sampling strategies: score ranking, frequency select, and

random select. For score ranking strategy, we select the top-
Nk features in the memory bank according to their confi-
dence score, either classification score for pixel-level en-
hancement or objectness score for instance-level enhance-
ment. For frequency-guided selection, we normalize confi-
dence scores of all features in the memory bank by softmax.
The normalized scores are used as the frequency, which can
guide the sampling process. As a result, features with higher
scores have higher possibility to be selected, but it is not hard
restricted as the score ranking strategy. We also implement
a random selection strategy. Using random selection, the
sampled subset of features approximately follows the same
distribution of all features stored in memory. In our experi-
ments, all three sampling strategies can effectively improve
the performance. Among them, random selection achieves a
sightly higher accuracy. For simplicity, we use the random
selected strategy by default.

It is worth noting that using sampling strategy in the mem-
ory bank, we can flexibly control Nk to achieve a control-
lable speed-accuracy trade-off. In our experiments, we can
construct a much larger memory (e.g., Nm=96k while the
largest Nm for existing methods is only 6k) to store more di-
verse features in order to improve performance. Meanwhile,
we can select a much smaller key set to achieve a faster
speed. For example, the smallest Nk used in existing meth-
ods is 2,775 reported in RDN (Deng et al. 2019b) and RDN
achieves 81.8% mAP with a speed of 128.0 ms. An extreme
version of our method with Nk = 50 and Nm = 20, 000
achieves a much higher accuracy of 83.1% mAP meanwhile
a much faster runtime speed at 75.8 ms. Detailed speed-
accuracy trade-offs our method are shown in Table 6.
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Algorithm 1: Inference Algorithm with Memory
Bank in a PyTorch-like style.

# offline test: a bool value denotes whether enable
offline testing

# n feat: networks for feature extraction
# n rpn: region proposal networks
# n head: detection head networks for proposals
# GEO: generalized enhancement operation.
# V : video frames {It} of length T
#MBpix,MBins: pixel/instance memory bank.

def enhance via mem bank (q,MB):
K =MB.sample () # key set construction
q̂ = q + GEO (q, K) # generalized enhancement
return q̂

if offline test: # shuffle if do offline testing
Random.shuffle(V )

for It in V : # load a frame in the video
# feature extraction networks
f = n feat.forward(It)

# enhance with pixel-level memory bank
f̂pix = enhance via mem bank (fpix,MBpix)

# region proposal networks
fins = n rpn.forward(f̂pix)

# enhance with instance-level memory bank
f̂ins = enhance via mem bank (fins,MBins)

# detection head networks
results = n head.forward(f̂ins)

# feature-wise updating
MBpix.update(f̂pix)
MBins.update(f̂ins)

Unified Multi-level Enhancement
In this section, we introduce details of the generalized en-
hancement operation (GEO) which enables multi-level en-
hancements to be performed in a unified manner. Given a
query set Q and a key set K, the GEO augments each qi ∈ Q
by measuring M relation features which are achieved by the
weighted sum of all key k samples in K, where M denotes
the number of attention heads. Specifically, the m-th relation
feature fm

R of a query sample qi is calculated as:

fm
R (qi,K) =

∑
j

wm
ij · (Wm

V · kj), m = 1, · · ·,M, (2)

where Wm
V denotes a linear transformation matrix, M is the

number of relation features calculated by attention operation
and wij is an element in the correlation matrix W computed
based on the similarity of all q-k pairs. Precisely, wij is com-
puted as

wij =
exp(S(qi, kj))∑
k exp(S(qi, kj))

, (3)

S(qi, kj) =
dot(WQ · qi,WK · kj)√

d
, (4)

where S(qi, kj) represents the similarity of qi and kj , dot
denotes the dot product, WQ and WK are two transforma-
tion matrix, and d is the feature dimension. The total of M
relation features are then aggregated by concatenation. Fi-
nally, the GEO outputs the augmented feature by adding the
original feature qi and the aggregated relation feature:

GEO(qi,K) = qi + concat[fm
R (qi,K)

M
m=1]. (5)

The enhancement process can be recursively performed.
Formally, for the k-th GEO of enhancement, the augmented
feature of qi is computed as

qki = GEO(h(qk−1i ),K), k = 1, · · ·, Ng, (6)

where h(·) denotes the feature transformation function im-
plemented with a fully-connected layer plus ReLU and Ng

denotes times of GEO for enhancement recursively. With the
GEO, we can easily achieve multi-level enhancement, i.e.,
pixel-level and instance-level feature enhancement, which
proves to be effective to utilize complementary feature to
further improve the performance.

Feature-wise Updating Strategy
Existing approaches (Deng et al. 2019b; Wu et al. 2019;
Chen et al. 2020; Deng et al. 2019a) update the memory by
a frame-wise operation, which deletes all features of the old-
est frame. For the memory bank, we present a fine-grained
feature-wise memory updating strategy, which is more flex-
ible and efficient. The feature-wise memory updating strat-
egy can also improve the diversity of features stored in the
memory leading to a better performance. To implement the
feature-wise updating strategy, we use the three sampling
methods introduced in § to select features in memory to be
updated.

Analysis of Sampling Strategy
In video object detection, there are many redundant fea-
tures because adjacent frames are very similar. If the key
set has many redundancies, the entropy of information will
be small, which means the key set is less informative. The
score ranking strategy and frequency selection tend to sam-
ple a large portion of features from few frames and decrease
the entropy of information. On the contrary, random selec-
tion generates a more diverse and informative key set.

Experiments
Experimental Settings
Dataset and Evaluation. We evaluate our method on the
ImageNet (Russakovsky et al. 2015) VID dataset which con-
tains 3862 training and 555 validation videos. We follow the
previous approaches (Zhu et al. 2017b,a; Wang et al. 2018;
Deng et al. 2019a; Wu et al. 2019) and train our model on
the overlapped 30 classes of ImageNet VID and DET set.
Specifically, we sample 15 frames from each video in VID
dataset and at most 2,000 images per class from DET dataset
as our training set. Then we report the mean average preci-
sion (mAP) on the validation set.
Backbone and Detection Architecture. Following (Zhu
et al. 2017b,a; Deng et al. 2019a,b) we use the ResNet-101
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Methods Memory Base detector Backbone mAP(%)

D&T (Feichtenhofer, Pinz, and Zisserman 2017) - RFCN ResNet-101 75.8
FGFA (Zhu et al. 2017a) Window RFCN ResNet-101 76.3
MANet (Wang et al. 2018) Window RFCN ResNet-101 78.1
THP (Zhu et al. 2018) Queue RFCN ResNet-101+DCN 78.6
STSN (Bertasius, Torresani, and Shi 2018) Window RFCN ResNet-101+DCN 78.9
PSLA (Guo et al. 2019) Queue RFCN ResNet-101+DCN 80.0
OGEM (Deng et al. 2019a) Queue RFCN ResNet-101 79.3

Ours Bank RFCN ResNet-101 80.8

STCA (Luo et al. 2019) Window FasterRCNN ResNet-101 80.3
SELSA (Wu et al. 2019) Window FasterRCNN ResNet-101 80.3
LRTR (Shvets, Liu, and Berg 2019) Window FPN ResNet-101 81.0
RDN (Deng et al. 2019b) Window FasterRCNN ResNet-101 81.8
MEGA (Chen et al. 2020) Queue FasterRCNN ResNet-101 82.9

Ours Bank FasterRCNN ResNet-101 84.6

LRTR (Shvets, Liu, and Berg 2019) Window FPN ResNeXt-101 84.1
RDN (Deng et al. 2019b) Window FasterRCNN ResNeXt-101 83.2
MEGA (Chen et al. 2020) Queue FasterRCNN ResNeXt-101 84.1

Ours Bank FasterRCNN ResNeXt-101 85.4
Ours† Bank FasterRCNN ResNeXt-101 86.7

Table 1: Comparison with state-of-the-art end-to-end methods on ImageNet VID validation set. † denotes using random crop
and random scale data augmentations for training.

(He et al. 2016) as our backbone. Apart from ResNet-101,
we also use a stronger backbone ResNeXt-101 (Xie et al.
2017) for some comparisons. For detection network, early
methods (Zhu et al. 2017b,a; Wang et al. 2018; Deng et al.
2019a; Bertasius, Torresani, and Shi 2018) use RFCN (Dai
et al. 2016) as the baseline detector, while more recent meth-
ods (Wu et al. 2019; Deng et al. 2019b; Shvets, Liu, and Berg
2019; Chen et al. 2020) use FasterRCNN (Ren et al. 2015).
Since our memory bank is a general module and can be ap-
plied to different detectors, we implement memory bank on
top of both RFCN and FasterRCNN for fair comparisons.
We apply RPN on the extracted deep feature maps. We use
12 anchors with 4 scales 642, 1282, 2562, 5122 and 3 aspect
ratios 1 : 2, 1 : 1, 2 : 1. Non-maximum suppression (NMS)
is applied to generate 300 proposals for each image with an
IoU threshold 0.7. Finally, NMS is applied to clean the de-
tection results, with IoU threshold 0.5.

Training and Inference Details. To reduce the redundancy
and improve the quality of the stored features, we select K
samples of enhanced features to update the memory bank.
Following (Deng et al. 2019b; Chen et al. 2020), we select
K=75 proposals with highest objectness score for instance-
level memory bank. For pixel-level memory bank, we ran-
domly select K=100 pixels within each detected bounding
box. In both training and test phases, the images are re-
sized to a shorter side of 600 pixels. The whole architec-
ture is trained on 4 Titan RTX GPUs with SGD (momentum:
0.9, weight decay: 0.0001). In the first phase, we only train
the pixel-level enhancement. Each GPU contains one mini-
batch consisting of two frames, the key frame Ik and a ran-

domly selected frame from the video to approximately form
pixel-level memory. Both RPN losses and Detection losses
are only computed on the key frame. We train the pixel-level
model for 60K iterations. The learning rate is 0.001 for the
first 40K iterations, and 0.0001 for the last 20k iterations. In
the second phase, we end-to-end train both pixel-level en-
hancement and instance-level enhancement for 120K itera-
tions. The learning rate is 0.001 for the first 80K iterations
and 0.0001 for the last 40K iterations.

Comparison
End-to-end performance. We compare our method with
the state-of-the-art methods in Table 1. To make fair compar-
isons with other methods, we implement our method on top
of two base detectors: RFCN (Dai et al. 2016) and Faster-
RCNN (Ren et al. 2015). Table 1 shows that we achieve
the best performance with both RFCN and FasterRCNN set-
ting. Specifically, for RFCN setting, our method also out-
performs the best competitor OGEM by 1.5% mAP and
achieve 80.8% mAP. For FasterRCNN setting, our method
achieves 84.6% of mAP and outperforms its best competi-
tor MEGA by 1.7% using ResNet-101 backbone. By replac-
ing the backbone with a stronger network ResNeXt-101, our
method achieves 85.4% of mAP. By adding random crop and
random scale data augmentations for training, our method fi-
nally achieves 86.7% of mAP.
Speed-accuracy trade-off. To analyze the speed-accuracy
trade-off, we re-implement many state-of-the-art methods
and make comparisons in Table 1. All results are obtained
on Titan RTX GPUs. Our lite-version model Oursins which

2624



Methods Base detector mAP(%) Published Our Impl.
Runtime(ms) Device Runtime(ms)

FGFA (Zhu et al. 2017a) RFCN 76.3 733 K40 -
MANet (Wang et al. 2018) RFCN 78.1 269.7 Titan X -
OGEM (Deng et al. 2019a) RFCN 79.3 112 1080 TI 89.1

Ourpix RFCN 80.2 - 81.3
Our RFCN 80.8 90.1

STCA (Luo et al. 2019) FasterRCNN 80.3 322.2 Titan X -
SELSA (Wu et al. 2019) FasterRCNN 80.3 - 91.2
RDN (Deng et al. 2019b) FasterRCNN 81.8 94.2 V100 128.0
MEGA (Chen et al. 2020) FasterRCNN 82.9 114.5 2080 TI 182.7

Oursins FasterRCNN 83.7 - 79.6
Ours FasterRCNN 84.6 110.3

Table 2: Speed-accuracy trade-off with ResNet-101 backbone. The last column shows the runtime(ms) of our implementations.
All our results are obtained on Titan RTX GPUs.

Methods Pixel Instance mAP(%) Runtime
(ms)

RFCN 73.8 46.7

Ourspix X 80.2↑6.4 81.3
Oursins X 76.7↑2.9 56.0
Ours X X 80.8↑6.8 90.1

FasterRCNN 75.4 51.8

Ourspix X 81.8↑6.4 81.6
Oursins X 83.7↑8.3 79.6
Ours X X 84.6↑9.2 110.3

Table 3: Ablation study of pixel-level and instance-level
memory bank on single frame baselines. The first part repre-
sents the results using RFCN (Dai et al. 2016) as the base de-
tector. The second part shows the results using FasterRCNN
(Ren et al. 2015) as the base detector.

only uses instance-level memory bank achieves both higher
accuracy and faster speed than its best competitor MEGA.
Specifically, Ourins achieves 83.7% mAP which outper-
forms MEGA by 1.7% mAP. Meanwhile, the speed of
Oursins is 79.6 ms much faster than MEGA. When both
pixel-level and instance-level enhancements are performed,
the accuracy of our method is further improved to 84.6%
mAP and the speed is slightly decreased to 110.3 ms.

Ablation Study
To demonstrate the effect of key components in our memory
bank, we conduct extensive experiments to study how they
contribute to the final performance.
Multi-level enhancement. In this part, we carefully analyze
every component of our method. Table 3 shows our results
using two different base detectors, RFCN (shown in upper
rows) and FasterRCNN (shown in lower rows). The single
frame baseline achieve 73.8% mAP and 75.4% mAP for

Methods (a) (b) (c) (d)

Frame-wise updating? X
Feature-wise updating? X X
Class-wise memory? X

mAP(%) 80.3 81.7 82.4 82.7

Table 4: Effect of feature-wise updating strategy and class-
wise memory.

RFCN and FasterRCNN, respectively. By introducing the
pixel-level memory bank, performances of two baselines are
improved to 80.2% mAP and 81.8% mAP, respectively. The
improvements introduced by pixel-level enhancement are
equal for the two baselines. By introducing instance-level
memory bank, the FasterRCNN baseline is hugely improved
by 8.3% mAP and achieves 83.7% mAP. However, for the
RFCN baseline, the improvement, 2.9% mAP, is relatively
low. We believe that the improvement gap is caused by the
difference of semantic information. Specifically, the propos-
als of FasterRCNN have more semantic information than the
psroi-pooled features of RFCN. By utilizing both pixel-level
and instance-level memory banks, the performance is further
improved to 80.8% mAP and 84.6% mAP for the two base
detectors. We also show the runtime speed of every model
in the last column of Table 3.
Feature-wise updating. Instead of updating the memory
frame-wisely, we propose a feature-wise updating strategy
which updates the memory in a more fine-grained man-
ner. Specifically, we reuse the three different strategies for
key set construction to select features in memory to be
deleted. The three strategies achieve similar improvements.
For simplicity, we use random selection for both key set
construction and memory updating in our experiments. We
use SELSA (Wu et al. 2019) as a baseline and denote it
as Model(a) in Table 4. Model(b) incorporates frame-wise
updating (memory queue). Model(c) incorporates the pro-
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Nm
Concatenation Sampling

mAP(%) Runtime(ms) mAP(%) Runtime(ms)

3k 82.3 83.4 83.2 79.4
6k 82.7 92.6 83.4 79.3
12k 82.7 104.6 83.5 79.4
24k 82.7 142.9 83.7 79.6
48k OOM 83.7 80.3
96k 83.8 81.0

Table 5: Effect of light-weight key set construction with dif-
ferent Nm, where Nm denotes the total number of stored
samples in the memory bank. OOM denotes out of GPU
memory errors on Titan RTX (24GB) devices.

Nk 50 200 1k 2k* 5k

mAP(%) 83.1 83.5 83.6 83.7 83.8
runtime(ms) 75.8 75.9 77.3 79.6 86.7

Table 6: Analysis of different number of Nk.

posed feature-wise updating strategy. As shown in Table 4,
comparing with frame-wise updating, feature-wise updat-
ing improves the performance by 0.7% mAP and achieves
82.4% mAP. Previous methods (Deng et al. 2019b; Chen
et al. 2020) only maintain a video-wise memory that deletes
all memory by the end of a video. In contrast, we in-
troduce a class-wise memory which is maintained for the
whole dataset (multiple videos). In this way, the enhance-
ment process can utilize the information from other videos.
By adding the class-wise memory, Model(d) further im-
proves the performance by 0.3% to 82.7% mAP.
Light-weight key set construction. We compare our light-
weight key set construction strategy with the widely used
concatenation. We conduct experiments on Model(d) which
concatenates all 6k stored features in memory as the key set.
We test the overall performance under different number of
stored features Nm, from 3k to 96k. For every Nm, we keep
the number of selected keys to Nk = 2k. Table 5 shows that
our light-weight key set construction strategy works always
better than concatenation in both speed and accuracy under
all Nm settings. Using our light-weight key set construction
strategy the runtime of the model can always roughly stay
the same with the increasing of Nm. In contrast, using con-
catenation, the speed becomes slower and slower as the in-
creasing of Nm. Specifically, when Nm is increased to 48k,
concatenation strategy occurs the Out Of Memory (OOM)
error on Titan RTX GPU (24GB). We use Nm = 24k.
Size of the key set. We evaluate how the size of the key set
Nk effects the performance. In this part, we conduct exper-
iments on the our lite-version method Oursins which only
performs two times of instance-level enhancement Nins = 2
and no pixel-level enhancement Npix = 0. From Table 6,
our method is very robust to the number of sampled keys.
In practice, we set Nk = 2000 for better speed-accuracy
trade-off. Surprisingly, even sampling a very small number
of keys Nk = 50, our method still achieves 83.1% mAP and

Npix 0 1* 2 3

mAP(%) 75.4 81.8 81.8 81.7
Runtime (ms) 51.8 81.6 112.2 143.1

Table 7: Analysis of different number of Npix.

Nins 0 1 2* 3

mAP(%) 75.4 82.0 83.7 83.8
Runtime (ms) 51.8 65.1 79.6 94.1

Table 8: Analysis of different number of Nins.

Pixel AR5 AR10 AR100

77.9 83.8 94.3
X 79.5↑1.6 85.7↑1.9 96.3↑2.0

Table 9: Effect of pixel-level enhancement to RPN.

outperforms the best competitor MEGA by 0.2% mAP.
Number of pixel-level enhancements. As discussed in §,
the enhancement with memory bank can be performed mul-
tiple times. We evaluate the effect of the number of pixel-
level enhancements Npix. When Npix = 0, no pixel-level
enhancement is performed, our method degenerates to the
FasterRCNN baseline. In Table 7, we vary Npix from 0 to
3. With Npix = 1, the performance is improved by 6.4% to
81.8% mAP. By further increasing Npix, the performance is
merely improved. We use Npix = 1 by default.
Number of instance-level enhancements. Similarly, we
evaluate the effect of the number of instance-level enhance-
ments Npix by performing instance-level enhancement on
top of the FasterRCNN. When Nins = 0, no instance-
level enhancement is performed. From Table 8, we can see
that Nins = 2 achieves the best speed-accuracy trade-off.
Specifically, the performance is improved by 8.3% to 83.7%
mAP with Nins = 2. We use Nins = 2 by default.
Effect of pixel-level memory bank to RPN. Recent
instance-level methods (Chen et al. 2020; Wu et al. 2019;
Deng et al. 2019b) do not enhance deep feature maps used
in RPN. Thus, the RPN potentially misses some low-quality
objects. We evaluate the effect of pixel-level memory bank
to RPN. Specifically, the metric Average Recall (AR) is used
for comparison. We select top k of the proposals generated
by RPN to calculate the ARk. Specifically, we tested with
k = {5, 10, 100}. As shown in Table 9, with pixel-level en-
hancement, AR5, AR10, and AR100 are all improved.

Conclusions
In this paper, we propose a multi-level aggregation frame-
work via memory bank (MAMBA). The memory bank con-
tains two novel operations: (1) light-weight key-set con-
struction and (2) fine-grained feature-wise memory up-
dating. Experiment results demonstrate MAMBA achieves
superior performance on the challenging ImageNet VID
dataset in terms of both speed and accuracy.
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