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Abstract

We consider long-term path forecasting problems in crowds,
where future sequence trajectories are generated given a short
observation. Recent methods for this problem have focused
on modeling social interactions and predicting multi-modal
futures. However, it is not easy for machines to success-
fully consider social interactions, such as avoiding colli-
sions while considering the uncertainty of futures under a
highly interactive and dynamic scenario. In this paper, we
propose a model that incorporates multiple interacting mo-
tion sequences jointly and predicts multi-modal socially ac-
ceptable distributions of futures. Specifically, we introduce
a new aggregation mechanism for social interactions, which
selectively models long-term inter-related dynamics between
movements in a shared environment through a message pass-
ing mechanism. Moreover, we propose a loss function that not
only accesses how accurate the estimated distributions of the
futures are but also considers collision avoidance. We further
utilize mixture density functions to describe the trajectories
and learn multi-modality of future paths. Extensive experi-
ments over several trajectory prediction benchmarks demon-
strate that our method is able to forecast socially acceptable
distributions in complex scenarios.

Introduction
The ability to predict long-term futures accurately lies at
the heart of autonomous driving and social robots naviga-
tion(Kitani et al. 2012; Karasev et al. 2016; Liu et al. 2016;
Lee et al. 2017; Su et al. 2017; Liang et al. 2019) where
autonomous driving cars and social robots share the same
ecosystem with humans. They adjust their paths by antic-
ipating human movements, specifically, avoiding collisions
or maintaining a safe distance from other people. Modeling
human interactions is a challenging aspect of trajectory pre-
diction task. Although humans can intuitively know how to
interact with other people in crowds, it is not easy for ma-
chines to learn those interaction rules owing to the complex-
ities and uncertainties of human crowds.

Since the success of recurrent neural network (RNN)
on sequence modeling, RNN-based models have been well
developed for use in trajectory prediction. Social LSTM,
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Figure 1: Objective of this study is to forecast socially ac-
ceptable distributions of futures. There are multiple plausi-
ble forthcoming paths in an interactive and dynamic scenario
( for example, the boy walks to 1 and the girl walks to 2 or
3). The result of (b) is not socially acceptable owing to the
collisions between them.

which introduces social pooling to calculate the global rep-
resentations for interactions by aggregating the latent states
of spatially proximal pedestrians, is an important develop-
ment for real-world paths forecasting (Alahi et al. 2016).
The existing research follow the way of Social LSTM but
with improvements. The research (Huang et al. 2019; Mo-
hamed et al. 2020; Li et al. 2020) utilize spatio-temporal
graph representations to describe motion dynamics over
time and space. By modeling the topography of graphs,
the models can naturally model social interactions and the
movement of people. By contrast, generative adversarial net-
work (GAN)-based models are investigated to model the un-
certainty of futures (Gupta et al. 2018; Sadeghian et al. 2019;
Kosaraju et al. 2019). GAN-based models usually contains
social mechanisms in the generators and forecast multiple
plausible trajectories instead of a single future path. The dis-
tributions of futures can be plotted through samples from
the generators. The existing methods usually predict a sin-
gle future path or distributions of the futures by minimizing
(or a combination of ) L2 loss, adversarial loss or maximiz-
ing the lower bound of the log-likelihood function between
the distributions of estimated futures and the distributions of
ground truth.

However, predicting socially acceptable trajectories still
remains as an issue. First, the existing research usually use
”pooling” as an aggregation mechanism which is limited to
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model dynamic interactions and also leaky in information
(Williams and Li 2018; Mohamed et al. 2020). They either
use a Euclidean-distance based ordering structure to select
a fixed number of neighbors or use Max/Average functions
for pooling, where the former is not rational for use in dy-
namic real-world scenarios and the latter loses individual
uniqueness (Kosaraju et al. 2019). Although it can be op-
timized by introducing attention mechanism (Luong, Pham,
and Manning 2015; Fernando et al. 2018; Zhang et al. 2019),
it still can’t model interactions accurately(Sadeghian et al.
2019; Zhang et al. 2019). Second, although the existing re-
search design architectures containing social mechanisms,
their loss functions only access the accuracy of estimated
distributions or locations are without considering social con-
straints, particularly collision avoidance, leading to a poor
performance in terms of modeling social constraints.

To address the above limitations, we develop a trajectory
prediction model named Social DPF for predicting socially
acceptable multi-modal distributions of futures. To deal with
dynamic social interactions, we propose a new aggregation
mechanism by capturing the inter-related dynamics between
multiple motion sequences over space and time. The new
aggregation mechanism selectively incorporates the latent
states of concurrent movements in a shared environment
through two message passing gates and generates social
states that reveals how people interact in crowds. To further
generate socially plausible distributions of futures, we pro-
pose a loss function that not only accesses how the predic-
tions meet the ground truth but also measures if the interac-
tive futures collide. Training maximizes the lower bound on
the log-likelihood of the data. Social-DPF further uses mix-
ture density functions to describe human path and learns to
model multi-modal futures jointly for all pedestrians.

Related Works
Social Compliant Trajectory Prediction
Since Social LSTM was proposed, many research have
started investigating socially constrained RNN-based trajec-
tory prediction models. Attention mechanisms were firstly
utilized to improve Social LSTM by learning different
weights of neighbors on an agent (Fernando et al. 2018;
Sadeghian et al. 2019; Zhang et al. 2019). Some research
embedded relative motion (e.g., the relative location and ve-
locity ) between pedestrians, followed by pooling the em-
beddings to generate a global feature for interactions, which
is more intuitively than aggregating latent states of the RNNs
directly (Becker et al. 2018; Shi et al. 2019). Instead of set-
ting a neighborhood size, some research took into account
all people in a scenario or followed a radial basis function to
select a certain number of people(Kosaraju et al. 2019; Tang
and Salakhutdinov 2019).

Spatio-Temporal Graphs for Trajectory Prediction
Structural RNN (Jain et al. 2016), combining high-level
Spatio-termporal graphs (ST-graphs) with sequence model-
ing success of RNN, has made significant improvements on
problem of human motion modeling. Hence, there are many

research following this direction (Huang et al. 2019; Mo-
hamed et al. 2020). ST-graphs for trajectory prediction are
characterized with element points, spatial edges and tem-
poral edges that represent pedestrians, social interactions
and the temporal transition of trajectories respectively. ST-
graphs make it easy to illustrate the topography of human
motion and their interactions and provide a more direct and
natural way to model long-term path forecasting by model-
ing different elements using RNNs.

Multi-Modal Trajectory Prediction
Human motions under crowded scenarios imply a multiplic-
ity of modes. Given the observation, there are multiple plau-
sible future paths. Some studies have combined GAN and
RNNs to capture the uncertainty of long-term future paths
(Gupta et al. 2018; Sadeghian et al. 2019; Amirian, Hayet,
and Pettré 2019; Kosaraju et al. 2019). They usually con-
tain an RNN-based encoder-decoder generator and an RNN-
based decoder discriminator. Some research have applied
Mixture Density Network (MDN) to map the distributions
of future trajectories(Makansi et al. 2019; Shi et al. 2020).
The article (Makansi et al. 2019), based on MDN, proposed
a two-stage strategy that first predicted several samples of
future with winner-take-all loss and then iteratively grouped
the samples to multiple modes.

Loss Functions for Trajectory Prediction
The existing models can be classified as deterministic or
stochastic models (Amirian, Hayet, and Pettré 2019). Some
deterministic models utilizes L2 loss function to predict
a single path of future(Xue, Huynh, and Reynolds 2018;
Becker et al. 2018). The others, such as MDN-based meth-
ods modeling the trajectories as a mixture model of bi-
variate Gaussian models, are trained by minimizing the neg-
ative log-likelihood function over the modes (Alahi et al.
2016; Shi et al. 2020; Makansi et al. 2019). The stochastic
models, by contrast, are based on GAN and usually trained
by minimizing the loss functions containing an L2 loss and
an adversarial loss Lgan (Gupta et al. 2018; Sadeghian et al.
2019). To truly learn multi-modality , Social BiGAT de-
signed a loss function containing additional items to map
the latent noise to an output trajectory (Kosaraju et al. 2019).
However, the existing research have only accessed how ac-
curate the estimated futures are. They haven’t considered so-
cial interactions in loss functions.

Problem Formulation
We assume that each scenario is first preprocessed to obtain
2D spatial coordinates (xti, y

t
i) ∈ R and 2D walking speed

(uti, v
t
i) ∈ R of any pedestrian i at any time instant t. The ob-

servation of pedestrian i is the past trajectory, which is rep-
resented as: X1:τ−1

i = {(xti, yti , uti, vti)|t = 1, 2, · · · , τ −
1} while the future trajectory is Y τ :Ti = {(xti, yti)|t =
τ, · · · , T}. We assume there are N agents in the scenario,
i = 1, 2, · · · , N .

Our goal is to learn socially acceptable posterior dis-
tribution p(Y τ :Ti |X1:τ−1

i , X1:τ−1
1:N\i ). To this end, we jointly

model multiple ego-trajectories and their interactions with

2551



ST-
Graph

Figure 2: Overview of our model architecture. We utilize two
LSTMs to capture the spatial and temporal cues, specifically
one LSTM for single person’s trajectories, and one LSTM
for Social Memory which selectively integrates the latent
states coming from the single person’s LSTM. The details
of Social Memory are illustrated in Fig.3.

Φ. Therefore, the distribution of futures is denoted as fol-
lows:

p(Y τ :Ti |X1:τ−1
i , X1:τ−1

1:N\i ) = Φ(X1:τ−1
i , X1:τ−1

1:N\i ;w∗) (1)

where w∗ are the parameters of the model we aim to learn.
We denote the predicted future paths as Ŷ τ :Ti which are gen-
erated from the distributions.

Methodology
Overall Architecture
Social DPF is an encoder-decoder model using two sets of
LSTMs (LSTMs in the same set share weights) to represent
the movement of agents and their interactions in a scene,
as shown in Figure 2. Our model utilizes spatio-temporal
graphs to represent human motions and their interactions.
At any time instant, point elements of a graph are individu-
als characterized with location and velocity while the lines
between two points are spatial edges representing their cur-
rent interactions. We construct Social Memory, as depicted
in Figure 3, which not only can capture the current inter-
actions among people, it can also model how interactions
change over time. The Social Memory takes use of LSTMs
and are recurrent over time. The Social Memory takes hid-
den states from single person’s LSTM as input and selec-
tively integrate the inter-related hidden states through two
gates to generate social states. Then social states storing in-
teraction information are fed into single person’s LSTM to
generate latent features. Based on the latent features, our
model directly outputs the parameters of the distributions
of future trajectories through MDN combining a multilayer
perception with Gaussian mixture models (GMMs). For the
loss function, we use Lmode to estimate how closely the
predicted distribution matches the distribution of target vari-
ables in the training data, whereas Lcollision1 and Lcollision2
achieve access if the estimated futures of agents collide with
each other. Our loss function is based on Winner-Takes-All

(WTA) loss which can prevent the model from collapsing
into a single mode (Makansi et al. 2019).

Social Memory
The hidden states from single person’s LSTM at time instant
t − 1 are represented as {ht−1i |i = 1, · · · , N} which are
the input for Social Memory. We assume that a person with
index i is the agent.

h̃tj = ψ1(Ht−1
i , ht−1j ;w∗H) (2)

where ψ1(·) is the LSTM for Social Memory and its weights
w∗H are also shared among people in a scene,Ht−1

i is the so-
cial state of agent i at t−1 which stores the representation on
how an agent interacts with other people, j ∈ {1, · · · , N}\i.
To connect the current motions, we design a motion gate.
The motion gate selectively obtains the motion information
among people which have a genuine effect on the agent’s
path and contributes to a candidate social state.

at−1j = φ1(ht−1i

⊙
ht−1j ;w∗1)

γti =
∑N\i
j=1 a

t−1
j

⊙
h̃tj

(3)

where φ1(·) is a fully connected layer that connects an agent
and other people, which are depicted as purple lines on ST-
graph in Figure 2. Here, γti is the candidate social state
from the motion gate, representing the interaction informa-
tion between an agent and neighbors. We then construct out-
put gate. The output gate learns the role of the neighbors in
the agent’s social interactions, which controls the extent to
which social interactions remains in the social states.

gt−1j = φ2(ht−1j ;w∗2)

ot−1i =
∑N\i
j=1 gt−1j + φ3(Ht−1

i ;w∗3)
(4)

where ot−1i is the feature from output gate, φ2(·) and φ3(·)
are fully connected layers with dropout = 0.50, φ2(·) is
with Sigmoid non-linearity, w∗2 and w∗3 are their weights re-
spectively.

Ht
i = γtj

⊙
ot−1i (5)

where Ht
i is the social states which are then concatenated

with the agent’s current states for predicting the distributions
of futures. The Social Memory is recurrent, thus Ht

i is also
fed into the Social Memory in the next time step.

Path Forecasting
As mentioned in Section 3, the agent i at time instant t is
characterized with location (xti, y

t
i) and velocity (uti, v

t
i). We

embed them respectively to obtain the input for single per-
son’s LSTM.

f ti = [φ4((xti, y
t
i);w

∗
4), φ5((uti, v

t
i);w

∗
5)] (6)

where φ4(·) and φ5(·) are fully connected layers with ReLU
non-linearity andw∗4 andw∗5 are the embedding weights. We
get the social states Ht

i of agent i at time t and concatenate
it with f ti to predict the next state of the agent.

hti = ψ2(ht−1i , [f ti , H
t
i ];w

∗
h) (7)
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Here, ψ2(·) is single person’s LSTM and its weights w∗h
are shared between all people in a scenario. To capture the
multi-modality of future paths, we utilize MDN which com-
bines a multilayer perception with GMMs. The next location
of agent are given by the following:

ŷt+1
i ∼ N2(αti, µ

t
i, σ

t
i) (8)

where priors αti, means µti and standard deviation σti are
the output Gaussian mixture components of pedestrian i at
time t. αti = {(αg)ti|g = 1, . . . ,M}, µt = {(µg)ti|g =
1, . . . ,M}, σti = {(σg)ti|g = 1, . . . ,M} where µg =
(µx, µy), σg = (σx, σy) and M is the number of Gaussian
models of MDN. Each Gaussian model is a bivariate Gaus-
sian model. The probability density function of the next lo-
cation conditioned on hti is denoted as follows:

p(ŷt+1
i |hti) = αtip(ŷ

t+1
i |µti, σti) (9)

We learn the mixing coefficients µti, σ
t
i and αti through the

network. To constrain αti to lie within the range [0, 1] and to
sum to unity, we use the softmax function. Function exp()
is used to avoid standard deviation σti smaller than or equal
to zero.

αg =
exp(ag)∑M

k=1 exp(ak)
µg = ug
σg = exp(zg)

(10)

where {ag|g = 1, · · · ,M}, {ug|g = 1, · · · ,M} and
{zg|g = 1, · · · ,M}is obtained through fully connected lay-
ers φα(hti), φµ(hti) and φσ(hti) respectively.

Loss Function
To avoid collisions and truly learn the multi-modality of hu-
man motion, we design the loss function as indicated Eq.11,
which combines three items for predicting the socially ac-
ceptable future trajectories for pedestrians.

L = Lmode + λ1Lcollision1 + λ2Lcollision2 (11)
where Lmode is used to assess how accurate the estimated
distributions are in predicting the future trajectories. In ad-
dition, Lcollision1 and Lcollision2 are introduced to prevent
pedestrians colliding in crowds. To avoid collisions with
others, the estimated distribution of the agent should first
uncover the future locations of other people. We utilize
Lcollision1 to capture this effect. Moreover, the estimated
distributions at each time instant should be differ from each
other. We use Lcollision2 to measure the different probability
distributions of one person from others.

For Lmode, instead of computing the negative log-
likelihood function over all components of a mixture model,
which easily collapses the model into a single mode, we
always base the winner selection on the probability of the
mixture model and multiply the winner probability with the
learned weight as follows:

Lmode = − 1

N

T−1∑
t=τ

N∑
i=1

log(αtip(Ŷ
t+1
i |µti, σti)) (12)

FC

FC

+

+

x
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t

x

LSTM
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LSTM
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Figure 3: Illustration of Social Memory.

where, αti = (αg)
t
i, µ

t
i = (µg)

t
i, σ

t
i = (σg)

t
i and g =

arg max
g

p(Ŷ t+1|µtg, σtg). We assume that the predicted fu-

ture path would be exactly the same as the ground truth and
the neighbors are not supposed to lie within the estimated
distribution of an agent. To achieve this effect, we introduced
Lcollision1 as follows:

Lcollision1 = − 1

N ∗ (N − 1)

T−1∑
t=τ

N∑
i=1

N\i∑
j=1

log(1− αtip(Y t+1
j |µti, σti))

(13)

where, αti, µ
t
i, σ

t
i are the same as in Eq.12. When neigh-

bors don’t lie within the probability distribution of an agent,
Lcollision1 tends to be zero which has no effect on the entire
loss function.

Here,Lcollision2 measures the amount of overlap between
the predicted distributions of the pedestrians. If two pre-
dicted distributions can’t be separate, the pedestrians tend
to collide. We utilized Bhattacharyya distance to establish
Lcollision2 as follows:

Lcollision2 =
1

N ∗ (N − 1)

T−1∑
t=τ

N∑
i=1

N\i∑
j=1

log(

∫
z

αti

√
qti(z)q

t
j(z)dz)

(14)

where, qti(z) = N2(z|µti, σti), qtj(z) = N2(z|µtj , σtj). A
smaller Lcollision2 means that there is less overlap between
two predicted distributions.

Experiments
In this section, the proposed model is evaluated on two
publicly available datasets: UCY(Lerner, Chrysanthou, and
Lischinski 2007) and ETH(Pellegrini et al. 2009). The two
datasets contain 5 sets, which are UCY-zara01, UCY-zara02,
UCY-univ, ETH-hotel, ETH-eth in 4 crowded scenarios with
totally 1536 trajectories. We firstly preprocess those two
datasets by resampling them at 2.5fps and transforming the
coordinates of people into world coordinates in meters.

Implementation Details. Our model is trained end-to-
end by minimizing the proposed loss function (Eq. 11). The
experiments are implemented using Pytorch under Ubuntu
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Method Note Evaluation (ADE(m)/FDE(m))
ETH-eth ETH-hotel UCY-univ UCY-zara01 UCY-zara02 AVG

Linear kalman filter 1.65/2.84 0.99/1.70 0.86/1.51 0.83/1.44 0.54/0.96 0.97/1.69
LSTM offset is input 0.71/1.40 1.15/2.09 0.72/1.49 0.48/0.98 0.38/0.77 0.69/1.35

Social LSTM social pooling 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Sophie 20 samples 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

Social GAN 20 samples 0.72/1.29 0.48/1.01 0.56/1.18 0.34/0.69 0.31/0.65 0.48/0.96
Social BiGAT 20 samples 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00

Social STGCNN 20 samples 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
S-DPF-L1,2,3G1 set1, G1,20 samples 0.89/1.16 0.53/0.95 0.82/1.30 0.49/0.74 0.59/0.90 0.66/1.01
S-DPF-L1,2,3G2 set1, G2,20 samples 0.76/0.96 1.24/1.26 0.94/1.32 0.88/1.12 0.81/1.01 0.93/1.13
S-DPF-L1G1,2 set2,L1,20 samples 0.71/0.95 0.35/0.54 0.62/0.78 0.40/0.65 0.45/0.57 0.51/0.70

S-DPF-L1,2G1,2 set2, L1,2,20 samples 0.66/0.94 0.42/0.58 0.59/0.74 0.37/0.64 0.41/0.51 0.49/0.68
S-DPF-L1,3G1,2 set2, L1,3,20 samples 0.61/0.91 0.40/0.54 0.57/0.75 0.36/0.63 0.39/0.49 0.47/0.66

S-DPF-L1,2,3G1,2-V1 set3, entire model,1 sample 0.69/1.35 0.39/0.84 0.61/1.00 0.40/0.89 0.39/0.84 0.50/0.98
S-DPF-L1,2,3G1,2-V2 set3, entire model,20 samples 0.66/0.92 0.34/0.50 0.50/0.69 0.34/0.59 0.32/0.45 0.43/0.63

Table 1: Quantitative results of baselines versus our method across datasets for predicting 12 future timesteps(4.8 sec) given
8 timesteps observations(3.2 sec)(lower is better). The results of Social LSTM, Social GAN are from (Gupta et al. 2018), the
results of Sophie, Social BiGAT, Social STGCNN are from (Sadeghian et al. 2019; Kosaraju et al. 2019; Mohamed et al. 2020)
respectively.

Datasets Collision Evaluation (colliding persons per frame(%))
GT Linear S-GAN S-STGCNN S-DPF

ETH-eth 0.037 0.202 0.397 0.783 0.030
ETH-hotel 0.000 0.187 0.738 1.443 0.012
UCY-univ 0.304 2.408 2.519 3.741 0.512

UCY-zara01 0.000 0.523 0.186 1.100 0.039
UCY-zara02 0.044 0.833 0.904 3.100 0.114

Table 2: Average % of colliding people each frame in
ETH&UCY. Two pedestrians are considered collided if their
Euclidean distance is less than 0.2m.

16.04 LTS using a GTX 1080 GPU. The size of the hidden
states of all LSTMs is set to 128. The embedding layers are
composed of a fully connected layer with size 64 for Eq.
6 and 128 for the others. The batch size is set to 8 and all
the methods are trained for 200 epochs. The optimizer RM-
Sprop is used to train the proposed model with a learning
rate 0.001. We clip the gradients of the LSTM with a maxi-
mum threshold of 10 to stabilize the training process. We set
λ1 and λ2 in Eq. 11 as 0.1. The model outputs GMMs with
three components.

Evaluation Approach. The proposed model is trained
and tested on the two datasets with leave-one-out approach:
trained on four sets and tested on the remaining set. We ob-
serve the trajectory for 8 timesteps (3.2 sec) and show the
prediction results for 12 timesteps (4.8 sec). To evaluate the
performance, we compare our method with other state-of-
the-art models on two generally used matrices.

1. Average displacement error (ADE): average L2 dis-
tance over all the prediction results and the ground truth.

2. Final displacement error (FDE): distance between pre-
diction results and ground truth at the final timestep.

Baselines.The proposed model is compared with the fol-
lowing baselines.

1. Linear method. The second order Kalman Filter uses
the position, velocity, acceleration.

2. LSTM. Human motion is modeled without considering
human interactions. Offset is used as the input.

3.Social LSTM. It pools all hidden states of LSTMs for
social interactions.

4. Social GAN. GAN-based model which considers social
interactions and predicts multiple plausible futures.

5. Sophie. GAN-based model which considers both social
and physical interactions to make more realistic predictions.

6. Social-BiGAT. This method uses a generator, lo-
cal/global discriminators and a latent noise encoder to con-
struct a reversible mapping between predicted paths and
learned latent features of trajectories.

7.Social STGCNN: The method substitutes aggregation
methods by modeling the interactions as a graph.

Ablation Study To describe how our model works, we
also represent the results of various versions of our model
Social DPF in an ablation setting using LkGm. Here, Lk sig-
nifies which loss the model is trained with (where k = 1, 2, 3
indicates Lmode, Lcollision1 and Lcollision2, respectively. ).
In addition, Gm signifies which gate the model contains
(where m = 1, 2 indicate the motion gate and output gate,
respectively). For entire Social DPF, we also test two ver-
sions in a setting by:V1 uses the means of the distribu-
tions with maximum weights for testing; V2 draw 20 sam-
ples from the entire distributions for testing. We conducts
three sets of ablation studies: set 1 containing L1,2,3Gm
(m = 1, 2), set 2 containing LkG1,2 (k = 1, 2, 3), set 3
containing L1,2,3G1,2-Vn(n = 1, 2) that is the entire model
of Social DPF.

Quantitative Evaluation
ETH and UCY. We compare our model to various base-
lines in Table 1, reporting the average displacement error
(ADE) and final displacement error (FDE) for 12 timesteps
of human movements. In general, the linear method per-
forms worse than the other methods because it is limited to
modeling the social context or multi-modality of human mo-

2554



Social
GAN

Social
STGCNN

Social
DPF

(a) avoid standing people (b) group meeting

current location GT observation

(c) follow and overtake

Figure 4: Comparison between Social GAN, Social STGCNN and our method over three sets of scenarios.

tion. Social LSTM only achieves an accuracy similar to that
of LSTM, although it is trained with synthetic data and then
fine-tuned on the benchmarks(Gupta et al. 2018). LSTM use
offset as the input, which stabilizes the learning process and
improves the performance. Sophie, Social GAN, Social Bi-
GAT and Social STGCNN capturing the uncertainty of long-
term movement all achieve better results than Social LSTM
and basic LSTM.

The first set of our models tests how the motion gate and
output gate perform with Social DPF. The models L1,2,3G1
and L1,2,3G2 solely modeling human interactions with mo-
tion gate and output gate respectively made a poor perfor-
mance. By comparing the first and the third sets, we can
easily find that motion gate and output gate together help So-
cial DPF to better capture the long-term interactions among
people. Interestingly, the motion gate seems to have a larger
effect than output gate, which also reveals the importance
of connecting inter-related dynamics. The second set of our
models test the performance of each item of our loss func-
tion. As expected, L1,2G1,2 and L1,3G1,2 achieve better re-
sults than L1G1,2 on most of the datasets, which demon-
strates that collision loss is able to help our model performs
better. Interestingly, L1,3G1,2 performs slightly better than
L1,2G1,2, which potentially implying Lcollision2 is more
helpful than Lcollision1. On the other hand, L1G1,2 solely
utilizing the proposed new aggregation mechanism for the
social context performs well on average, which also demon-
strates the ability of the proposed aggregation mechanism
to model long-term social interactions. To further illustrate
that collision loss can help to generate socially acceptable
results, we also qualitatively compare the results of L1G1,2
and L1,2,3G1,2 in the next section (Qualitative Evaluation).
The final model, L1,2,3G1,2, consisting of collision loss and
two gates, outperforms the previous models, suggesting that
combining both collision loss and new aggregation mecha-
nism allows for robust predictions.

Collision Avoidance. To better understand our model’s
ability to produce socially acceptable futures, we also uti-
lize another evaluation metric that reflects the percentage of
near-collisions as in (Sadeghian et al. 2019). We consider
two pedestrians to have collided if they come closer than
0.20m to each other. The average percentages of pedestrian
collisions in ETH and UCY datasets are calculated as shown
in Table 2 (average percentage of pedestrian collisions is the
average of 20 samples from estimated distributions). Social
DPF consistently outperforms other baselines in term of col-
lision avoidance.

Qualitative Evaluation
To investigate the ability of social DPF to forecast socially
acceptable futures distributions, we visualize three sets of
scenarios from ETH-hotel and UCY-zara02 and compare the
predictions of two state-of-the-art models, Social GAN and
Social STGCNN, to that of our model (Fig.4). To compare
their distributions more intuitively, we plot the entire dis-
tributions Social DPF predicted. In scenarios (a) where the
walking pedestrians should adjust their courses to overtake
people standing in front of them. Social GAN and Social
STGCNN forecasted the futures distributions implying an
incorrect walking direction or velocity, which further lead to
collisions among people. Scenarios (b) depict groups meet-
ing where collisions would also happen if pedestrians main-
tained their momentum. Social DPF jointly models the dy-
namics between movements and better aligns the predictions
to social constraints than Social GAN and Social STGCNN.
Scenarios (c) illustrate people following and overtaking in
which Social DPF outperformed Social GAN and Social
STGCNN by better predicting the walking speed, directions
and avoidance behaviors.

To further illustrate that Social DPF is able to forecast
multiple plausible distributions of futures, we also show
three real-scenarios: overtaking, avoiding standing people,
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Figure 5: Multiple futures distributions that are socially acceptable. We show two sets of possible futures under each scenario
where intense social interactions occur. The dynamics of people walking are shown in the 3D figures(we plot the average
location of the distributions). Time is the z-axis and the same marker denote the same mode.

no collision loss with collision loss

Figure 6: Comparison of collision loss.

and two-groups meeting where people have to alter their
course to avoid collisions, as shown in Fig.5. In each sce-
nario, two possible distributions (distributions of each agent
with maximum and second maximum weights) of futures
associated with velocity, walking direction are illustrated to
show how people interact and navigate. In (a), the agent 1
will behave either in a mild way (I) or in an aggressive way
(II) to overtake agent2. In (b), the agent 1 will collide with
the standing pedestrian if he/she doesn’t change walking di-
rection. The agent 1 will overtake the standing people on
the right or on the left. In (c), two groups meet in in front
of Zara store, and the results show multiple plausible inter-
actions between them. The pedestrians’ distributions of the
same mode seems to show a global coherency and confor-
mity to social norms which also help Social DPF to predict
socially acceptable results for pedestrians in a scene.

We also consider two real-world scenarios from ETH-eth
and UCY-zara02 where intense social interactions occur to

investigate how collision loss perform with Social DPF, as
shown in Fig.6. In scenario1, two groups meet in a corner.
Collision will happen if the agents doesn’t change the walk-
ing course. In scenario2, the agent is merging into a group.
Although Social DPF without collision loss is able to fore-
cast the distributions of futures by adjusting walking direc-
tion or speed, Lcollision1 and Lcollision2prevent the agent
from colliding with others which can help the model to pre-
dict socially acceptable results better.

Conclusion
We propose a trajectory prediction framework Social DPF,
which jointly takes into account multiple interacting move-
ments and predicts multi-modal socially acceptable distri-
butions of futures. We introduce a novel aggregation mech-
anism called Social Memory to learn the long-term dynamic
representations among pedestrians in a shared environment.
Social Memory selectively integrates and stores the interac-
tion information through two gates, motion gate and output
gate. To better model the social constraints, we introduce
collision loss to alleviate collision on futures distributions.
Social DPF outperforms other state-of-the-art models over a
number of publicly available datasets. We also demonstrate
that it is able to provide more socially acceptable distribu-
tions by qualitatively analyzing the performance of Social
DPF under scenarios such as group meeting, collision avoid-
ance comparing to other baselines. Our model forecasting
distributions of the same mode tend to show a global co-
herency and conformity to social norms. Future work will
continue to explore it and extend our model to forecast all
possible future modes of an interacting group. We also in-
tend to consider multiple objects, such as bicycles, cars, and
test the model performance with more benchmarks.
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