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Abstract

Deep neural networks are the default choice of learning mod-
els for computer vision tasks. Extensive work has been car-
ried out in recent years on explaining deep models for vision
tasks such as classification. However, recent work has shown
that it is possible for these models to produce substantially
different attribution maps even when two very similar im-
ages are given to the network, raising serious questions about
trustworthiness. To address this issue, we propose a robust
attribution training strategy to improve attributional robust-
ness of deep neural networks. Our method carefully analyzes
the requirements for attributional robustness and introduces
two new regularizers that preserve a model’s attribution map
during attacks. Our method surpasses state-of-the-art attribu-
tional robustness methods by a margin of approximately 3%
to 9% in terms of attribution robustness measures on several
datasets including MNIST, FMNIST, Flower and GTSRB.

Introduction

In order to deploy machine learning models in safety-critical
applications like healthcare and autonomous driving, it is de-
sirable that such models should reliably explain their predic-
tions. As neural network architectures become increasingly
complex, explanations of the model’s prediction or behav-
ior are even more important for developing trust and trans-
parency to end users. For example, if a model predicts a
given pathology image to be benign, then a doctor might
be interested to investigate further to know what features or
pixels in the image led the model to this classification.
Though there exist numerous efforts in the literature on
constructing adversarially robust models (Qin et al. 2019;
Wang et al. 2020; Zhang et al. 2019; Madry et al. 2018;
Chan et al. 2020; Xie et al. 2019a), surprisingly very little
work has been done in addressing issues in robustness of the
explanations generated by a model. One aspect of genuine-
ness of a model can be in producing very similar interpre-
tations for two very similar human-indistinguishable images
where model predictions are the same. (Ghorbani, Abid, and
Zou 2019) demonstrated the possibilities to craft changes in
an image which are imperceptible to a human, but can in-
duce huge change in attribution maps without affecting the
model’s prediction. Hence building robust models, against
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such attacks proposed in (Ghorbani, Abid, and Zou 2019), is
very important to increase faithfulness of such models to end
users. Fig 1 visually explains the vulnerability of adversarial
robust models against attribution-based attacks and how at-
tributional training (a la adversarial training) addresses this
to a certain extent. Such findings imply the need to explore
effective strategies to improve attributional robustness.

The limited efforts until now for attributional training rely
on minimizing change in attribution due to human imper-
ceptible change in input (Chen et al. 2019) or maximizing
similarity between input and attribution map (Kumari et al.
2019). We instead propose a new methodology for attribu-
tional robustness that is based on empirical observations.
Our studies revealed that attributional robustness gets neg-
atively affected when: (i) an input pixel has a high attri-
bution for a negative class (non-ground truth class) during
training; (ii) an attribution map corresponding to the posi-
tive or true class is uniformly distributed across the given
image, instead of being localized on a few pixels; or and
(iii) change of attribution, due to an human imperceptible
change in input image (without changing predicted class la-
bel), is higher for a pixel with low attribution than for a pixel
with high attribution (since this leads to significant changes
in attribution). Based on these observations, we propose a
new training procedure for attributional robustness that ad-
dresses each of these concerns and outperforms existing at-
tributional training methods. Our methodology is inspired
by the rigidity (and non-amorphous nature) of objects in im-
ages and instigates the fact that number of true class pix-
els are often small compared to total number of pixels in an
image, resulting in a non-uniform (or skewed) pixel distri-
bution of the true class attribution across spatial locations
in the image. Complementarily, for the most confusing neg-
ative class, ensuring the attribution or saliency map is not
localized helps indirectly improve the localization of the at-
tribution of the true class.

The key contributions of our work can be summarized
as follows: (i) We propose a class attribution-based con-
trastive regularizer for attributional training which forces
the true class attribution to assume a skewed shape distri-
bution, replicating the fact that few input pixels attribute
highly compared to other pixels for a true class prediction.
We also drive pixels of the attribution map corresponding to
the negative class to behave uniformly (equivalent to not lo-
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Figure 1: Original image and human-imperceptible attributional attacks (same predicted class) and their corresponding saliency
maps under: (Left) adversarial training (Madry et al. 2018); (Middle) RAR (Chen et al. 2019); and (Right) our proposed robust
attribution training for a test sample from Flower dataset. Note that the attacks/perturbed images in each column are different,
since the attack is carried out based on the model trained on that particular method.

calizing) through this regularizer; (ii) We also introduce an
attribution change-based regularizer to weight change in at-
tribution of a pixel due to an indistinguishable change in the
image (both the aforementioned contributions have not been
attempted before to the best of our knowledge); (iii) We pro-
vide detailed experimental results of our method on differ-
ent benchmark datasets, including MNIST, Fashion-MNIST,
Flower and GTSRB, and obtain state-of-the-art results for
attributional robustness across these datasets.

An illustrative preview of the effectiveness of our method
is shown in Fig 1. The last column shows the utility of our
method, where the attribution/saliency map (we use these
terms interchangeably in this work) seems stronger, and
minimally affected by the perturbation. The middle column
shows a recent state-of-the-art (Chen et al. 2019), whose at-
tribution shows signs of breakdown from the perturbation.

Related Work

We divide our discussion of related work into subsections
that capture earlier efforts that are related to ours from dif-
ferent perspectives.

Adversarial Robustness: The possibility of fooling neu-
ral networks by crafting visually imperceptible images was
first shown by (Szegedy et al. 2013). Since then, we have
seen extensive efforts over the last few years in the same
direction. (Goodfellow, Shlens, and Szegedy 2015) intro-
duced one-step Fast Gradient Sign Method (FGSM) attack
which was followed by more effective iterative attacks such
as (Kurakin, Goodfellow, and Bengio 2016), PGD attack
(Madry et al. 2018), Carlini Wagner attack (Carlini and Wag-
ner 2017), Momentum Iterative attack (Dong et al. 2018),
Diverse Input Iterative attack (Xie et al. 2019b), Jacobian-
based saliency map approach (Papernot et al. 2016), etc. A
parallel line of work has also emerged on finding strategies
to defend against stronger adversarial attacks such as Ad-
versarial Training (Madry et al. 2018), Adversarial Logit
Pairing (Kannan, Kurakin, and Goodfellow 2018), Ensem-
ble Adversarial Training (Tramer et al. 2018), Parsevals Net-
work (Cisse et al. 2017), Feature Denoising Training (Xie
et al. 2019a), Latent Adversarial Training (Kumari et al.
2019), Jacobian Adversarial Regularizer (Chan et al. 2020),
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Smoothed Inference (Nemcovsky et al. 2019), etc. The re-
cent work of (Zhang et al. 2019) explored the trade-off be-
tween adversarial robustness and accuracy.

Interpretability Methods: The space of work on robust
attributions is based on generating neural network attribu-
tions which is itself an active area of research. These meth-
ods have an objective to compute the importance of in-
put features based on the prediction function’s output. Re-
cent efforts in this direction include gradient-based meth-
ods (Simonyan, Vedaldi, and Zisserman 2013; Shrikumar
et al. 2016; Sundararajan, Taly, and Yan 2017), propagation-
based techniques (Bach et al. 2015; Shrikumar, Greenside,
and Kundaje 2017; Zhang et al. 2016; Nam et al. 2019) or
perturbation-based methods (Zeiler and Fergus 2014; Pet-
siuk, Das, and Saenko 2018; Ribeiro, Singh, and Guestrin
2016). Another recent work (Dombrowski et al. 2019) devel-
oped a smoothed explanation method that can resist manip-
ulations, while our work aims to develop a training method
(not explanation method) that is resistant to attributional at-
tacks. Our work is based on integrated gradients (Sundarara-
jan, Taly, and Yan 2017) which has often been used as a
benchmark method (Chen et al. 2019; Singh et al. 2019) and
is theoretically well-founded on axioms of attribution, and
shown empirically strong performance.

Attributional Attacks and Robustness: The perspective
that neural network interpretations can be broken by mod-
ifying the saliency map significantly with imperceptible in-
put perturbations - while preserving the classifier’s predic-
tion - was first investigated recently in (Ghorbani, Abid, and
Zou 2019). While the area of adversarial robustness is well
explored, little progress has been made on attributional ro-
bustness i.e. finding models with robust explanations. (Chen
et al. 2019) recently proposed a training methodology which
achieves current state-of-the-art attributional robustness re-
sults. It showed that attributional robustness of a model can
be improved by minimizing the change in input attribution
w.r.t an imperceptible change in input. Our work is closest to
this work, where an equal attribution change on two different
input pixels are treated equally, irrespective of the original
pixel attribution. This is not ideal as a pixel with high ini-
tial attribution may need to be preserved more carefully than



a pixel with low attribution. (Chen et al. 2019) has another
drawback as it only considers input pixel attribution w.r.t.
true class, but doesn’t inspect the effect w.r.t. other negative
classes. We find this to be important, and have addressed
both these issues in this work. Another recent method (Singh
etal. 2019) tried to achieve better attributional robustness by
encouraging the observation that a meaningful saliency map
of an image should be perceptually similar to the image it-
self. This method fails specifically for images where the true
class contains objects darker than the rest of the image, or
there are bright pixels anywhere in the image outside the
object of interest. In both these cases, enforcing similarity
of saliency to the original image objective shifts the attribu-
tion away from the true class in this method. We compare
our method against both these methods in our experiments.

Background and Preliminaries

Our proposed training method requires computation of in-
put pixel attribution through the Integrated Gradient (IG)
method (Sundararajan, Taly, and Yan 2017), which has been
used for consistency and fair comparison to the other closely
related methods (Chen et al. 2019; Singh et al. 2019). It
functions as a technique to provide axiomatic attribution to
different input features proportional to their influence on the
output. Computation of IG is mathematically approximated
by constructing a sequence of images interpolating from a
baseline to the actual image and then averaging the gradi-
ents of neural network output across these images, as shown
below:

D SROf(xh R (x—xp) 1

f A A 0 m 0
IG] (x0,%x) = (x XO)><]§=1 p —
(D

Here f : R™ — C represents a deep network with C as
the set of class labels, X is a baseline image with all black
pixels (zero intensity value) and % is the pixel location on
input image x for which IG is being computed.
Adversarial Attack: We evaluate the robustness of our
model against two kinds of attacks, viz. Adversarial Attack
and Attributional Attack, each of which is introduced herein.
The goal of an adversarial attack is to find out minimum per-
turbation § in the input space of x (i.e. input pixels for an im-
age) that results in maximal change in classifier(f) output. In
this work, to test adversarial robustness of a model, we use
one of the strongest adversarial attacks, Projected Gradient
Descent (PGD) (Madry et al. 2018), which is considered a
benchmark for adv accuracy in other recent attributional ro-
bustness methods (Chen et al. 2019; Singh et al. 2019). PGD
is an iterative variant of Fast Gradient Sign Method (FGSM)
(Goodfellow, Shlens, and Szegedy 2015). PGD adversarial
examples are constructed by iteratively applying FGSM and
projecting the perturbed output to a valid constrained space
S. PGD attack is formulated as follows:

Xt = Projxys (X' + a(VxL(0,X,y))  (2)

Here, 6 denotes the classifier parameters; input and output
are represented as x and y respectively; and the classifica-
tion loss function as £(6,x,y). Usually, the magnitude of
adversarial perturbation is constrained in a L,-norm ball
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(p € {0,2,00}) to ensure that the adversarially perturbed
example is perceptually similar to the original sample. Note
that x**! denotes the perturbed sample at (i + 1)" iteration.
Attributional Attack: The goal of an attributional attack is
to devise visually imperceptible perturbations that change
the interpretability of the test input maximally while pre-
serving the predicted label. To test attributional robustness of
a model, we use Iterative Feature Importance Attack (IFTA)
in this work. As (Ghorbani, Abid, and Zou 2019) convinc-
ingly demonstrated, IFIA helps generate minimal perturba-
tions that substantially change model interpretations, while
keeping their predictions intact. The IFIA method is for-
mally defined as below:
arg maxg D(I(x; f), I(x+8; f))
subject to: |[0]|cc < €
such that: max f(x;60) = max f(x+ 0;6)
Here, I(x, f) is a vector of attribution scores over all in-
put pixels when an input image X is presented to a classifier
network f parameterized by 6. D(I(x; f), I(x+; f)) mea-
sures the dissimilarity between attribution vectors I(x; f)
and I(x + §; f). In our work, we choose D as Kendall’s
correlation computed on top-k pixels as in (Ghorbani, Abid,
and Zou 2019). We describe this further in the Appendix due
to space constraints.

3)

Proposed Methodology

We now discuss our proposed robust attribution training
strategy in detail, which: (i) enforces restricting true class
attribution as a sparse heatmap and the negative class attri-
bution to be a uniform distribution across the entire image;
(ii) enforces the pixel attribution change caused by an im-
perceptible perturbation of the input image to consider the
actual importance of the pixel in the original image. Both
these objectives are achieved through the use of a regular-
izer in our training objective. The standard multiclass clas-
sification setup is considered where input-label pairs (X,y)
are sampled from training data distribution D with a neural
network classifier f, parametrized by 6. Our goal is to learn
0 that provides better attributional robustness to the network.
Considering Negative Classes: We observe that “good” at-
tributions generated for a true class form a localized (and
sparse, considering the number of pixels in the full image)
heatmap around a given object in the image (assuming an
image classification problem setting). On the other hand, this
implies that we’d like the most confusing/uncertain class at-
tribution to not be localized, viz. i.e. resemble a uniform dis-
tribution across pixels in an image. As stated earlier, this
hypothesis is inspired by the rigidity (and non-amorphous
nature) of objects in images. To this end, we define the Max-
imum Entropy Attributional Distribution as a discrete uni-
form distribution in input pixel space as Py g, where attribu-
tion score of each input pixel is equal to mnmber of pizels - We
also define a True Class Attributional Distribution (Prc )
as a distribution of attributions over input pixels for the true
class output, denoted by f7!, when provided the perturbed
image as input. Note that attributions are implemented using
the IG method (as described in Sec ), and Prc 4 hence aver-
ages the gradients of the classifier’s true class output when



input is varied from xq to x’. We also note that IG is simply
a better estimate of the gradient, and hence can be computed
w.r.t. every output class (we compute it for the true class
here). Here x( is a baseline reference image with all zero
pixels, and x’ represents the perturbed image. x’ is chosen
randomly within an [,-norm e-ball around a given input x.
We represent Prc 4 then as:

Prca(x) = softmaz (IG;(TCI (xo, x’)) )

where [G/7c1(. ) is computed for every pixel in x,
and the softmax is applied over all P pixels in x, i.e.
softmaz(u;) = PM)___

D iep exp(Uy)

In a similar fashion, we define a Negative Class Attribu-
tional Distribution (Pnc ), where IG is computed for the
most confusing negative class (i.e. class label with second
highest probability) in a multi-class setting, or simply the
negative class in a binary setting. Py¢ 4 is given by:

Pyneoa = softmaz(IGE " (xo,%'))

&)

We now define our Class Attribution-based Contrastive
Regularizer (CACR) as:

Lcoacr = KL(Pyg||Pvca) — KL(PyEe||Prca) (6)

where K L stands for KL-divergence. We show how CACR
is integrated into the overall loss function to minimize, later
in this section. CACR enforces a skewness in the attribution
map, corresponding to the true class, across an input image
through the "— K L(Pyg||Prca)” term, and a uniform at-
tribution map corresponding to the most confusing negative
class through the K L(Pyg||Pyvca)” term. The skewness
in case of the true class forces the learner to focus on a few
pixels in the image. This regularizer induces a contrastive
learning on the training process, which is favorable to attri-
butional robustness, as we show in our results.

Enforcing Attribution Bounds: If a pixel has a positive
(or negative) attribution towards true class prediction, it may
be acceptable if a perturbation makes the attribution more
positive (or more negative, respectively). In other words, we
would like the original pixel attribution to serve as a lower
bound for a positively attributed pixel, or an upper bound for
anegatively attributed pixel. If this is violated, it is likely that
the attribution map may change. To implement this thought,
we define A(x) as a base attribution i.e. computed using
standard IG method attribution w.r.t the true class for the
input image X, given by:

A(x) = IGE°" (x0,%) %

Similarly, we define V.A(x) as the change in attribution w.r.t
the true class given the perturbed image, i.e. (a similar defi-
nition is also used in (Chen et al. 2019)):

VA(X) = IGEeT (x,X') = IG{ (x0, X' ) —IGL (x0, X)

(®)
The abovementioned desideratum necessitates that the sign
of every element of A ® V.A, where ® is the element-
wise/Hadamard product, be maintained positive across all
pixels. To understand better, let us consider the i*" pixel in
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A to be positive (negative). This implies that the i*" pixel
is positively (negatively) affecting classifier’s true class pre-
diction. In such a case, we would like the i*" component of
VA also to be positive (negative), i.e. it further increases
the magnitude of attribution in the same direction (posi-
tive/negative, respectively) as before.

However, even when the sign(A © V.A) is positive for a
pixel, we argue that an equal amount of change in attribu-
tion on a pixel with higher base attribution is more costly
compared to a pixel with lower base attribution, i.e. we also
would want the magnitude of each element in A ® VA to be
low, in addition to the overall sign being positive.

Our second regularizer, which we call Weighted Attribu-
tion Change Regularizer (WACR), seeks to implement the
above ideas. This is achieved by considering two subsets of
pixels in a given input image x: a set of pixels P, for which
sign(A ©® V.A) is negative, i.e. sign(A) is not the same as
sign(V.A); and a set of pixels P, for which sign(.A) is same
as sign(V.A). We then minimize the quantity below:

Lwacr =S(VA) +S(AGVA)

pEP; PEP;

©))

where we choose S(-) can be any size function, which we

use as Lj-norm in this work, and p € P, U P is a pixel

from the image x. In Eqn 9, we note that:

* the first term attempts to reduce attribution change in pix-
els where sign(.A) is not the same as sign(V.4). We argue
that this reduction in VA is not required for pixels in P,
since an attribution change helps reinforce correct attribu-
tions for pixels in Ps.

* the second term attempts to lower the change in attribu-
tion more in pixels with higher base attribution. We argue
that this is not required for pixels in Pj, since bringing
down the attribution change irrespective of the base attri-
bution is the focus for P;.

Overall Optimization: We follow an adversarial training
approach (Madry et al. 2018) to train the model. Adversarial
training is a two-step process: an (i) Outer minimization; and
an (ii) Inner maximization. The inner maximization is typ-
ically used to identify a suitable perturbation that achieves
the objective of an attribution attack, and the outer mini-
mization seeks to use the regularizers described above to
counter the attack. We describe each of them below:

Outer Minimization: Our overall objective function for the
outer minimization step is given by:

meinlCE (x',¥;:0) + AN(Lcacr + Lwacr) (10)

where [op is the standard cross-entropy loss used for the
multi-class classification setting. We use A as a common
weighting coefficient for both regularizers, and use A = 1
for all the experiments reported in this paper. We show
effects of considering different \ values on our proposed
method in in Sec . As Py, Pnca and Prco 4 are all dis-
crete distributions, we calculate Lo 4o R as:

Prrg(x;)
Prnca(xi)

i=1 Proa(xi)



| Method | Nat. acc. | Adv.acc. | Top-K [ Kendall] [ Method | Nat. acc. | Adv.acc. | Top-K [ Kendall|
Natural 86.76% 0.00% 8.12% | 0.4978 Natural 90.86% 0.01% 39.01% | 0.4610
Madry et al. | 83.82% 41.91% 55.87% | 0.7784 Madry et al. | 85.73% 73.01% 46.12% | 0.6251
RAR 82.35% 47.06% 66.33% | 0.7974 RAR 85.44% 70.26% 72.08% | 0.6747
Ours 83.09% 51.47% 69.50% | 0.8121 Ours 85.45% 71.61% 81.50% | 0.7216
Table 1: Results on Flower dataset Table 2: Results on Fashion-MNIST dataset
| Method | Nat. acc. | Adv.acc. [ Top-K | Kendall] [ Method | Nat. acc. | Adv.acc. [ Top-K | Kendall|
Natural 99.17% 0.00% 46.61% | 0.1758 Natural 98.57% 21.05% 54.16% | 0.6790
Madry et al. | 98.40% 92.47% 62.56% | 0.2422 Madry etal. | 97.59% 83.24% 68.85% | 0.7520
RAR 98.34% 88.17% 72.45% | 0.3111 RAR 95.68% 77.12% 74.04% | 0.7684
Ours 98.41% 89.53% 81.00% | 0.3494 Ours 97.57% 82.33% 77.15% | 0.7889
Table 3: Results on MNIST dataset Table 4: Results on GTSRB dataset
0.8- - g re [ | T D.8- . D8 = = =
0.6 . . OUR - D.6r OUR . T - D.6- . D.6" - OUR
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Figure 2: (Best viewed in color) Variance in attribution robustness metrics, Top-k intersection score and Kendall’s correlation,
for proposed method and RAR over all test samples on different datasets. Blue=Top-k intersection score; Green=Kendall’s
correlation. Our method achieves significant improvement on both metrics over RAR for all datasets, while the variance is

fairly similar to variance in RAR

| Method | Nat. acc. | Adv.acc. | Top-K [ Kendall] | Method | Nat. acc. | Adv.acc. | Top-K [ Kendall|
Natural 93.91% | 0.00% | 38.22% | 0.5643 Natural 99.43% | 19.0% | 68.74% | 0.1648
Madry etal. | 92.64% | 69.85% | 80.84% | 0.8414 Madry etal. | 98.36% | 87.49% | 86.13% | 0.8842
Singhetal. | 9321% | 33.08% | 79.84% | 0.8487 Singhotal. | 98.47% | 84.66% | 91.96% | 0.8934
Ours 90.31% | 74.26% 95.50%| 0.9770 Ours 98.41% 85.17% 92.14%| 0.9502

Table 5: Results on Flower dataset (WRN 28-10 architecture) Table 6: Results on GTSRB dataset (WRN 28-10 architecture)

where P corresponds to the total number of pixels in the in-
put image, as before. P 4 (X;) corresponds to the 1st order
partial derivative of neural network output (corresponding to
most confusing negative class) w.r.t the i*”* input pixel. Sim-
ilarly, Prc a(x;) corresponds to the 1st order partial deriva-
tive of neural network output (corresponding to true class)
w.r.t the i*" input pixel.

Inner Maximization: In order to obtain the attributional at-
tack, we use the following objective function:

)ZCE<x’7y; 0) + S(VA) (12)

max

X'eN(X,e

where VA = IG£7¢ (x,X')

Earlier computations of IG were computed w.r.t fpoy or
fncor1, which were the softmax outputs of the true class and
the most confusing negative class respectively. Here, we de-
note A to denote the computation of IG using the loss value
corresponding to the true class. This is because our objective
here is to maximize loss, while our objective was to maxi-
mize the true class softmax output in the outer minimization.
We use Lp¢ as the cross-entropy loss for the true class, and
Li-norm as S(-). Since the inner maximization is iterative
by itself (and solved before the outer minimization), we ran-
domly initialize each pixel of X’ within an [.-norm ball of x
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and then iteratively maximize the objective function in Eqn
12. We avoid the use of L& 4¢ g in our inner maximization,
since Loacr is expensive due to an extra IG calculation
w.r.t. negative class, which can increase the cost due to the
many iterations in the inner maximization loop.

We note that the proposed method is not an attribution
method, but a training methodology that uses IG. When a
model is trained using our method, all axioms of attribution
will hold for IG by default, as for any other trained model.
We also show that our loss function can be used as a sur-
rogate loss of the robust prediction objective proposed by
(Madry et al. 2018). Please refer to Appendix for the proof.
An algorithm for our overall methodology is also presented
in the Appendix due to space constraints.

Experiments and Results

We conducted a comprehensive suite of experiments and ab-
lation studies, which we report in this section and in Sec .
We report results with our method on 4 benchmark datasets
i.e. Flower (Nilsback and Zisserman 2006), Fashion-MNIST
(Xiao, Rasul, and Vollgraf 2017), MNIST and GTSRB (Stal-
Ikamp et al. 2012). The Flower dataset (Nilsback and Zis-
serman 2006) contains 17 categories with each category
consisting of 40 to 258 high-definition 128 x 128 RGB
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Figure 3: Visualizing effects of different regularization terms. Columns (a), (b), (c) represent saliency maps of original and
perturbed image considering only Lo acr, only Ly acr and both regularizers respectively in outer minimization (Eqn 10).
All models predicted correctly while perturbing the original image using this attack (as in (Ghorbani, Abid, and Zou 2019))

flower images. MNIST and Fashion-MNIST (Xiao, Rasul,
and Vollgraf 2017) consist of 28 x 28 grayscale images from
10 categories of handwritten digits and fashion products re-
spectively. GTSRB (Stallkamp et al. 2012) is a physical traf-
fic sign dataset with 43 classes and around 50,000 images in
total. We compare the performance of our method against
existing methods: RAR (Chen et al. 2019) for attributional
robustness, Singh et al (Singh et al. 2019), and Madry et
al (Madry et al. 2018) which uses only standard adversarial
training. Note that (Singh et al. 2019)’s code is not publicly
available, and we hence compared their results only on set-
tings reported in their paper.

Architecture Details: We used a network consisting of
two convolutional layers with 32 and 64 filters respectively,
each followed by 2 x 2 max-pooling, and a fully connected
layer with 1024 neurons, for experiments with both MNIST
and Fashion-MNIST datasets. We used the Resnet model in
(Zagoruyko and Komodakis 2016) to perform experiments
with Flower and GTSRB datasets and performed per im-
age standardization before feeding images to the network
consisting of 5 residual units with (16, 16, 32, 64) filters
each. We also compared our results with a recently proposed
method (Singh et al. 2019) using WRN 28-10 (Zagoruyko
and Komodakis 2016) architecture as used in their paper.
More architecture details for each dataset are provided in
the Appendix; on any given dataset, the architectures were
the same across all methods used for fair comparison.
Performance Metrics: Following (Chen et al. 2019)(Singh
et al. 2019), we used top-k intersection, Kendall’s correla-
tion and Spearman correlation metrics to evaluate model’s
robustness against the IFIA attributional attack (Ghorbani,
Abid, and Zou 2019) (Sec ). Top-k intersection measures in-
tersection size of the £ most important input features before
and after the attributional attack. Kendall’s and Spearman
correlation compute rank correlation to compare the simi-
larity between feature importance, before and after attack.
We also report natural accuracy as well as adversarial accu-
racy, the latter being a metric to evaluate adversarial robust-
ness of our model against adversarial attack, such as PGD
(as described in eq.2). Here, adversarial accuracy refers to
the accuracy over the adversarial examples generated from
perturbations on the original test set using PGD (Eqn 2).
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We used a regularizer coefficient A = 1.0 and m = 50 as
the number of steps used for computing IG (Eqn 1) across
all experiments. Note that our adversarial and attributional
attack configurations were kept fixed across ours and base-
line methods. Please refer the Appendix for more details on
training hyperparameters and attack configurations for spe-
cific datasets.

Results: Tables 1, 2, 3 and 4 report comparisons of natu-
ral/normal accuracy, adversarial accuracy, median value of
top-k intersection measure (shown as Top-K) and median
value of Kendall’s correlation (shown as Kendall), as used in
(Chen et al. 2019), on test sets of Flower, Fashion-MNIST,
MNIST and GTSRB datasets respectively. (Note that (Singh
et al. 2019) did not report results on these architectures, and
we report comparisons with them separately in later tables.)
Our method shows significant improvement in performance
on the Top-K and Kendall metrics - the metrics for attribu-
tional robustness in particular - across these datasets. Natural
and adversarial accuracies are expected to be the highest for
natural training and adversarial training method, Madry et
al (Madry et al. 2018) respectively, and this is reflected in
the results. A visual result is presented in Fig 1. More such
qualitative results are presented in the Appendix. We show
the variations in top-K intersection value and Kendall’s cor-
relation over all test samples for all the aforementioned 4
datasets using our method and RAR (Chen et al. 2019) in
Fig 2. Our variance is fairly similar to the variance in RAR.

Tables 5 and 6 report the performance comparison (same
metrics) on the Flower and GTSRB datasets using the
WRN 28-10 architecture and hyperparameter settings used
in (Singh et al. 2019). Note that RAR doesn’t report results
with this architecture, and hence is not included. We outper-
form Singh et al (Singh et al. 2019) by significant amounts
on the Top-K and Kendall metrics, especially on the Flower
dataset. A comparison with Tables 1 and 4 makes it evident
that the use of the WRN 28-10 architecture leads to signifi-
cant improvement in attributional robustness.

Our results vindicate the methodology proposed in this
work for the state-of-the-art results obtained for attributional
robustness. Although we have additional loss terms, our em-
pirical studies showed an increase of atmost 20-25% in train-
ing time over RAR. Note that at test time, which is perhaps



| Dataset | Nat. acc. | Adv.acc. | Top-K [ Kendall] | Dataset | Nat. acc. | Adv.acc. | Top-K [ Kendall|
Flower 83.09% 49.26% 67.95% | 0.8012 Flower 82.35% 50.00% 68.41% | 0.8065
F-MNIST 85.43% 71.25% 78.77% | 0.6974 F-MNIST 85.44% 71.32% 79.11% | 0.7000
MNIST 98.35% 88.66% 76.62% | 0.3203 MNIST 98.37% 88.78% 77.88% | 0.3217

Table 7: Results of using only Loacr

Table 8: Results of using only Ly acr

| Dataset | Nat. acc. | Adv.acc. [ Top-K | Kendall] [ Dataset | Nat. acc. | Adv.acc. [ Top-K | Kendall|
Flower 82.47% | 50.97% 69.04 0.8101 Flower 82.44% | 50.81% 68.63% | 0.8087
F-MNIST 85.45% 71.56% 80.19% | 0.7138 F-MNIST 85.44% 71.43% 79.86% | 0.7091
MNIST 98.39% 89.61% 79.18% | 0.3337 MNIST 98.43% 89.59% 78.83% | 0.3283

Table 9: Proposed method with regularizer coeff for Lo acr=1Table 10: Proposed method with regularizer coeff for
Lcacr=0.7 and Ly acr=1

and CWACRZO.7

Dataset Madry RAR OURS
Flower 0.7234 0.8015 0.9004
F-MNIST || 0.7897 0.8634 0.9289
MNIST 0.9826 0.9928 0.9957
GTSRB 0.8154 0.8714 0.9368

Table 11: Spearman correlation between attributions from
diff methods w.r.t. attribs from a naturally trained model

more important in deployment of such models, there is no
additional time overhead for our method.

Ablation Studies and Analysis

Quality of Saliency maps: It is important that attributional
robustness methods do not distort the explanations signif-
icantly. One way to measure the quality of the generated
explanations is through the deviation of attrib maps before
and after applying our method. To judge the quality of our
saliency maps, we compared the attributions generated by
our method with the attributions of the original image from a
naturally trained model and report the Spearman correlation
in Table 11 for all datasets. The results clearly show that our
saliency maps change lesser from original ones than other
methods. We also conducted a human Turing test to check
the goodness of the saliency maps by asking 10 human
users to pick a single winning saliency map that was most
true to the object in a given image among (Madry, RAR,
Ours). The winning rates (in same order) were: MNIST:
[30%,30%,40%]; FMNIST: [20%,40%,40%]; GTSRB:
[20%,30%,50%]; Flower: [0%,30%,70%], showing that our
saliency maps were truer to the image than other methods,
especially on more complex datasets.

Effect of Regularizers: We analyzed the effect of each reg-
ularizer term which we introduced in the outer minimization
formulation in Eqn 10. For all such studies, the inner max-
imization setup was kept fixed. We compared attributional
and adversarial accuracies, median values of Top-K inter-
section and Kendall’s correlation achieved with and with-
out Loacr and Ly acr in the outer minimization. The
results reported in Tables 7 and 8 suggest that the perfor-
mance deteriorated substantially by removing either Lo acr
or Ly acr, when compared to our original results in Tables
1,2 and 3 for Flower, Fashion-MNIST and MNIST datasets.

Fig 3 shows the same effect visually with a sample test
image from the Flower dataset. Lo4cr not only captures
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the effect of positive class, but also diminishes the effect
of most confusing negative class. Absence of Lo acr may
hence consider attributions towards pixels which don’t
belong to the positive class. We can see that removing
Lcacr increased the focus on a leaf which is not the true
class (flower) in Fig 3(b) as compared to Fig 3(a). L acr
penalized a large attribution change on true class pixels (i.e.
pixels with high base attribution). This can be viewed from
images in Fig 3(b) where keeping Lo 4cr forces minimal
attribution change to true class pixels, compared to pixels
outside the true class. Fig 3(c) shows the result of using
both regularizers which shows the best performance. More
such qualitative results are also provided in the Appendix.

Effect of Reqularizer Coefficients: To investigate the rela-
tive effects of each proposed regularizer term, we performed
experiments with other choices of regularizer coefficients.
Tables 9 and 10 show the results. Our results suggest that the
performance on attributional robustness drops for both cases
across all datasets, when Lo 4o g and Ly acr are weighted
lesser (original experiments had both weights to be 1). The
drop is slightly more when Lo acr is weighted lesser, al-
though this is marginal.

Additional ablation studies, including the effect of the
KL(PyE||Pvca) in Eqn 6 and the use of Base Attribu-
tion in Ly oo R, are included in the Appendix due to space
constraints.

Conclusions

In this paper, we propose two novel regularization tech-
niques to improve robustness of deep model explanations
through axiomatic attributions of neural networks. Our ex-
perimental findings show significant improvement in attri-
butional robustness measures and put our method ahead of
existing methods for this task. Our claim is supported by
quantitative and qualitative results on several benchmark
datasets, followed by earlier work. Our future work includes
incorporating spatial smoothing on the attribution map gen-
erated by true class, which can provide sparse and localized
heatmaps. We hope our findings will inspire discovery of
new attributional attacks and defenses which offers a signif-
icant pathway for new developments in trustworthy machine
learning.
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