
DPFPS: Dynamic and Progressive Filter Pruning for Compressing Convolutional
Neural Networks from Scratch

Xiaofeng Ruan1,2*, Yufan Liu1,2∗, Bing Li1,4†, Chunfeng Yuan1, Weiming Hu1,2,3

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2 School of Artificial Intelligence, University of Chinese Academy of Sciences

3 CAS Center for Excellence in Brain Science and Intelligence Technology
4 PeopleAI Inc.

{ruanxiaofeng2017, yufan.liu}@ia.ac.cn, {bli, cfyuan, wmhu}@nlpr.ia.ac.cn

Abstract

Filter pruning is a commonly used method for compress-
ing Convolutional Neural Networks (ConvNets), due to its
friendly hardware supporting and flexibility. However, exist-
ing methods mostly need a cumbersome procedure, which
brings many extra hyper-parameters and training epochs. This
is because only using sparsity and pruning stages cannot ob-
tain a satisfying performance. Besides, many works do not
consider the difference of pruning ratio across different lay-
ers. To overcome these limitations, we propose a novel dy-
namic and progressive filter pruning (DPFPS) scheme that
directly learns a structured sparsity network from Scratch.
In particular, DPFPS imposes a new structured sparsity-
inducing regularization specifically upon the expected prun-
ing parameters in a dynamic sparsity manner. The dynamic
sparsity scheme determines sparsity allocation ratios of dif-
ferent layers and a Taylor series based channel sensitivity cri-
teria is presented to identify the expected pruning parame-
ters. Moreover, we increase the structured sparsity-inducing
penalty in a progressive manner. This helps the model to be
sparse gradually instead of forcing the model to be sparse
at the beginning. Our method solves the pruning ratio based
optimization problem by an iterative soft-thresholding algo-
rithm (ISTA) with dynamic sparsity. At the end of the train-
ing, we only need to remove the redundant parameters with-
out other stages, such as fine-tuning. Extensive experimental
results show that the proposed method is competitive with
11 state-of-the-art methods on both small-scale and large-
scale datasets (i.e., CIFAR and ImageNet). Specifically, on
ImageNet, we achieve a 44.97% pruning ratio of FLOPs by
compressing ResNet-101, even with an increase of 0.12%
Top-5 accuracy. Our pruned models and codes are released
at https://github.com/taoxvzi/DPFPS.

Introduction
With the development of computer science and artifi-
cial intelligence, ConvNets have significantly improved
performance in several fields, such as image classifica-
tion (Krizhevsky, Sutskever, and Hinton 2012), object detec-
tion (Girshick et al. 2014), object tracking (Bertinetto et al.

*Equal contribution.
†Corresponding author.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

FinetuningPruning

Multi-pass

Original
network

Well-trained
network

Compressed
networkCumbersome pruning procedure

(a)

PruningTraining with DPFPS

Original network Structured sparsity network Compressed network

(b)

Figure 1: Block diagrams of two types of filter pruning.
(a) This pruning procedure needs pre-trained models and
fine-tuning after pruning, even a multi-pass scheme. (b) Our
method directly learns a structured sparsity network from
scratch, without any fine-tuning or multi-pass.

2016) and video understanding (Venugopalan et al. 2015).
However, a large number of parameters and FLoating-point
OPerations (FLOPs) make it difficult to deploy ConvNets
in the application of embedded or mobile devices. There-
fore, model compression and acceleration of ConvNets is a
fundamental problem that has been extensively studied in
recent years. Several techniques, including weight sparsity,
low-rank approximation, parameter quantization, and filter
pruning, have been applied to the study of model compres-
sion and acceleration. Among them, filter pruning methods
have been widely explored and possessed excellent perfor-
mances on the compression and acceleration ratio because
of their hardware-friendly capabilities without the support
of special libraries. For example, by using SSL (Wen et al.
2016), convolutional layer computation of AlexNet is accel-
erated on average 5.1x and 3.1x speedups against CPU and
GPU, respectively, with off-the-shelf libraries.

Though previous filter pruning algorithms have achieved
promising results, there still exist several problems. Specif-
ically, a common procedure of filter pruning (Liu et al.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

2495

2019b) includes three stages: (1) training, (2) pruning, and
(3) fine-tuning, as shown in Figure 1(a). Firstly, well-trained
models usually need to be obtained. In some studies (Wen
et al. 2016; Liu et al. 2017), structured sparsity networks
are learned by imposing the structured sparsity regulariza-
tion. Some other studies (Li et al. 2016; Luo, Wu, and Lin
2017) directly use available pre-trained models. Then, when
well-trained models are pruned, there are two typical issues:
(1) it is often difficult to match the pre-setting pruning ra-
tio for the sparse rate of the network (after trained with a
sparsity-inducing constrain), and (2) a dedicated handcrafted
pruning criterion needs to be designed to identify the unim-
portant neurons and remove them. In order to achieve the
pre-setting pruning ratio, some non-zero parameters are also
removed. This is bound to bring accuracy drop. Hence, to re-
store performances, it is critical to fine-tune pruned models.
However, when pruned models are fine-tuned, many hyper-
parameters (e.g., the learning rate, epochs of fine-tuning,
multi-pass times) need to be set again. This makes the multi-
stage procedure to be more cumbersome.

To address the above issues, we propose a novel Dy-
namic and Progressive Filter Pruning (DPFPS) scheme that
directly learns a structured sparsity network from Scratch,
without pre-trained, fine-tuning, or multi-pass, as shown
in Figure 1(b). In our proposed method, to meet the pre-
setting pruning ratio, structured sparsity-inducing regular-
ization is only imposed upon the expected pruning param-
eters, as shown in Figure 2. Different from fixed sparsity in
each layer, our method dynamically updates sparsity alloca-
tion ratios in different layers. The dynamic sparsity scheme
determines sparsity allocation ratios of different layers and
a Taylor series based channel sensitivity criteria is presented
to identify the expected pruning parameters. In this manner,
reserved filters can have more space to learn sufficient in-
formation, leading to better performance. For redundant fil-
ters, the constraint can make them towards zero and boost
the generation of a compact network. As a result, the dy-
namic sparsity allocation scheme makes it unnecessary to
pre-define pruning architecture. Moreover, a group Lasso
based progressive penalty is designed as the structured spar-
sity regularization, which increases gradually as training
proceeds (i.e., from zero to a proper value). This encour-
ages all the filters to learn useful information at the be-
ginning and forces the redundant filters to be sparse in the
late period. Our method solves the pruning ratio based opti-
mization problem by an iterative soft-thresholding algorithm
(ISTA) with dynamic sparsity. At the end of the training, we
only need to remove the redundant parameters without other
stages, such as fine-tuning, and the additional time consump-
tion is also acceptable.

Our contributions are listed as follows:

• Our method dynamically updates sparsity allocation ra-
tios in different layers and only imposes regularization
upon the expected pruning parameters.

• Moreover, we design a group Lasso based progressive
sparsity penalty to increasingly induce sparsity in ex-
pected pruning parameters.

• Our method solves the pruning ratio based optimiza-


4 5

4 54 5

4 54 5

epoch i epoch i+1



max

T t
)() (cls DPSSL toss L   pΘ

standard loss regularization

Dynamic sparsity Progressive sparsity

(30 / 15)()
1

max
t T

t
e


  



Layer 1

Layer i

Layer L

Non‐zero parameters

Expected pruning parameters

Zero parameters

67.2% 62.5%

75.0% 79.9%

81.3% 83.2%

•••
•••


%xx% Sparsity allocation ratio

Figure 2: An illustration of DPFPS. (1) Sparsity allocation
ratios and expected pruning parameters are dynamically up-
dated. (2) The sparsity penalty increases gradually as train-
ing proceeds.

tion problem by an iterative soft-thresholding algorithm
(ISTA) with dynamic sparsity. At the end of the training,
we only need to remove the redundant parameters without
other stages, such as fine-tuning. Extensive experimental
results show that the proposed method is competitive with
11 state-of-the-art methods.

Related Work
Recent works on weight sparsity, parameter quantization,
low-rank decomposition, filter pruning, and knowledge dis-
tillation can be found in some papers (Idelbayev and
Carreira-Perpinan 2020; Jin, Yang, and Liao 2020; Liu et al.
2019a, 2020; Ruan et al. 2020). In this section, we review
related works in filter pruning, which focus on two aspects
of structured sparsity networks and fine-tuning.

Structured Sparsity Networks. Learning a structured
sparsity network is a straightforward pruning method, which
is widely used to compress and accelerate neural net-
works (Wen et al. 2016; Alvarez and Salzmann 2016; Singh
et al. 2019; Lin et al. 2020b). Wen et al. (Wen et al. 2016)
used group Lasso regularization to achieve a structured spar-
sity learning (SSL). Furthermore, a sparse group Lasso idea
was applied to automatically determine the number of neu-
rons in each layer of the network during learning (Alvarez
and Salzmann 2016). Although a structured sparsity net-
work was directly learned, the pruning ratio depended on
the penalty term and the excessively pruned model needed
to be fine-tuned to regain accuracy. In this paper, given a
pre-setting pruning ratio, we directly learn a structured spar-
sity network from scratch and do not need any fine-tuning
after pruning.

Fine-tuning. Due to hurting the performance after prun-
ing the network, the original performance needed to be re-
stored by fine-tuning techniques (Han et al. 2015). Some
methods pruned the well-trained models by minimizing re-
construction error and then fine-tuned the pruned mod-
els (He, Zhang, and Sun 2017; Jiang et al. 2018). Al-
though these methods have excellent convergence perfor-
mance, the pruning process is often cumbersome, includ-
ing obtaining the pre-trained model, pruning and recover-
ing accuracy by minimizing layer-wise reconstruction error,
and fine-tuning. Additionally, although the fine-tuning tech-

2496

niques (Ding et al. 2018; Yu et al. 2018; Molchanov et al.
2019; Peng et al. 2019; Ding et al. 2019a) are helpful to re-
gain the original accuracy, many hyper-parameters need to
be set and this is cumbersome.

The Proposed Method
In this section, we first introduce the problem formulation.
Then, we provide details of progressive structured sparsity
regularization. Finally, we present the dynamic sparsity al-
gorithm.

Preliminary and Problem Formulation
In an L-layer ConvNet, the i-th convolutional layer parame-
ters (ignoring biases) can be represented as a 4-dimensional
tensor: W(i) ∈ Rc(i)×r(i)×k

(i)
1 ×k

(i)
2 , where c(i) and r(i) are

the numbers of output and input channels (feature maps),
and k(i)1 × k

(i)
2 corresponds to the 2-dimensional spatial ker-

nel. We reorganize the parameters from the original space
W(i) ∈ Rc(i)×r(i)×k

(i)
1 ×k

(i)
2 to (W(i))2Dout ∈ Rc(i)×r(i)k

(i)
1 k

(i)
2

or (W(i))2Din ∈ Rr(i)×c(i)k
(i)
1 k

(i)
2 , where (W(i))2Dout and

(W(i))2Din denote the matrix-forms of tensor W(i) along
out and in channels, respectively. ThenW(i)

j can be rewrit-

ten as a 3-dimensional tensor: K(i)
j ∈ Rr(i)×k

(i)
1 ×k

(i)
2 (j =

1, ..., c(i)) to represent the j-th filter kernel in the i-th convo-
lutional layer, which corresponds to the weights of the j-th
output channel. Besides convolutional layers, the parame-
ters of BatchNorm layers are denoted as {γ(i)j , β

(i)
j } ∈ R,

which scale and shift the normalized value. To integrate the
above parameters, we define Θ as all parameters set in the
network, i.e. Θ = ∪

i∈N1,j∈N2

(K(i)
j ∪ {γ

(i)
j , β

(i)
j }), where

N1 = {1, ..., L}, N2 = {1, ..., c(i)}.
We consider pruning the network as a constrained op-

timization problem (Boyd and Vandenberghe 2004), given
input-output pairs (x,y) from data set D, which has the
form

min
Θ

∑
(x,y)∈D

L(F(Θ,x),y),

s.t. PR0 − PR(Θ) ≤ 0.

(1)

where F(·) is the ConvNet forward function, L(·) is the
standard loss function (e.g., the cross-entropy loss for classi-
fication tasks), PR(·) is an evaluation metrics, e.g., pruning
ratio of parameters or FLOPs, and PR0 is a pre-setting prun-
ing ratio. It is not convenient to directly constrain PR(Θ),
so we use the layer-wise form to rewrite the problem (1) as
the unconstrained problem (Zhang et al. 2018)

min
Θ

∑
(x,y)∈D

L(F(Θ,x),y) +
L∑
i=1

ti(W(i)), (2)

where ti(·) is an indicator function of W(i), which has the
form

ti(W(i)) =

{
0, card(W(i)) ≤ p(i),
+∞, otherwise.

(3)

where card(·) returns the number of nonzero of filters’ `2-
norm in its layer, i.e. the number of

∥∥∥W(i)
j, :

∥∥∥
2
6= 0 (j row

of W(i)), and p(i) denotes the desired number of preserved
filters in the i-th layer. Because the second term of Equa-
tion (2) is not differentiable, the problem cannot be directly
addressed by stochastic gradient descent.

Progressive Structured Sparsity Regularization

In previous works (Wen et al. 2016; Liu et al. 2017), struc-
tured sparsity regularization is widely used to introduce the
objective function as an unconstrained optimization prob-
lem, which is formulated as:

min
Θ

∑
(x,y)∈D

L(F(Θ,x),y) + λR(Θ). (4)

where R(·) is the penalty function to make ConvNet be
sparse and λ is the penalty coefficient. However, the hyper-
parameter λ does not directly control the pruning ratio. To
meet the pre-setting pruning ratio, the pruned model may
need to be fine-tuned to recover the accuracy or obtained by
some empirical knowledge (e.g., several attempts).

To address this weakness, different from previous sparsity
strategy (Wen et al. 2016; Liu et al. 2017), during training,
we control the pruning ratio like Equation (2) and impose the
structured sparsity regularization upon the expected pruning
filters like (4). Specifically, we divide parameters set Θ into
two subsets: Θp and Θp, where Θp is the expected prun-
ing filters that are “unimportant” and Θp is the preserved
filters. Therefore, based on our proposed structured sparsity
regularization, the loss function can be expressed as:

Loss =
∑

(x,y)∈D

L(F(Θ,x),y) + λRDPSS(Θp). (5)

where RDPSS(·) is our designed dynamic and progressive
structured sparsity regularization (DPSS), which only works
on the expected pruning parameters Θp.

Inspired by the Group Lasso (Yuan and Lin 2006) method,
we use `21-norm as the sparsity regularization, which has the
form:

RDPSS(Θp) =

L∑
i=1

c(i)−p(i)∑
j=1

∥∥∥(W(i)
j, :)

2D
out

∥∥∥
2
+
L−1∑
i=1

c(i)−p(i)∑
j=1

∥∥∥(W(i+1)
j, :)2Din

∥∥∥
2
.

(6)
When the channels are removed, parameters of both the

current and the next layers are pruned. So, we impose the
regularization upon the corresponding parameters in the cur-
rent and the next layers.

In Equation (5), the second term RDPSS(Θp) is con-
vex but not differentiable. In order to solve the non-
smooth unconstrained optimization problem, we make use
of ISTA (Beck and Teboulle 2009) and update (W(i)

j, m)2D ∈

2497

Θp by {(W(i)
j, m)2D}(n+1) = Sλ({(W(i)

j, m)2D}(n)), where

Sλ((W
(i)
j, m)2D)

=

(W(i)
j, m)2D − λ(W(i)

j, m)2D

||(W(i)
j, :)

2D||2
, if ||(W(i)

j, :)
2D||2 > λ,

0, otherwise.
(7)

Because we train the network from scratch, to avoid ex-
cessive restraint in the early training phase, we introduce a
penalty coefficient λ with a gradually increased value (i.e.
from zero to a proper value). In particular, for simplicity, we
use the sigmoid function to reflect the value of λ at the t-th
iteration and λ(t) is updated by

λ(t) =
λmax

1 + e−(
30t
T −15)

. (8)

where λmax is the maximum of the penalty coefficient and
T is total iterations.

Dynamic Sparsity Algorithm
Channel Sensitivity Criteria. To identify the unimportant
parameters set Θp, it is critical to calculate the sensitivity
of channels. From the perspective of the loss function, the
sensitivity of parameter w can be represented by

S(w) = |L(F(Θw→0,x),y)− L(F(Θw,x),y)| (9)

where Θw→0 denotes that parameter w tends to 0.
Like (Ding et al. 2019b), using Taylor series, the loss

function can be represented

L (F(Θw,x),y)

= L(F(Θw→0,x),y)−
∂L (F(Θ,x),y)

∂w
w + o

(
w2
)
(10)

where o
(
w2
)

is a remainder term. Because w is very small,
o
(
w2
)

can be ignored.
Filter pruning removes filter-wise parameters and not just

a single parameter, so the sensitivity of channel j concerning
the current layer in the i-th layer is

Sc((W
(i)
j, :)

2D
out)

= |L(F(Θ
(W(i)

j, :)
2D
out→0,x),y)− L(Θ(W(i)

j, :)
2D
out
,x),y)|

≈ |∂L (F(Θ,x),y)

∂(W(i)
j, :)

2D
out

(W(i)
j, :)

2D
out|

= |
r(i)k

(i)
1 k

(i)
2∑

m=1

∂L (F(Θ,x),y)

∂(W(i)
j, m)2Dout

(W(i)
j, m)2Dout|

(11)
While the channels are removed in the current layer, the

corresponding input channels are pruned in the next layer (Li
et al. 2019). So, the sensitivity concerning the next layer is

Sn((W
(i+1)
j, :)2Din)

≈ |
c(i+1)k

(i+1)
1 k

(i+1)
2∑

m=1

∂L (F(Θ,x),y)

∂(W(i+1)
j, m)2Din

(W(i+1)
j, m)2Din |

(12)

Algorithm 1: The Proposed Method.
Input: Network, Dataset D, λmax, α, pruning ratio

PR0.

1 e = 0;
2 For each layer i, initialize the sparsity allocation ratio

sr(i);
3 while e < Epoch do
4 for each iteration ∈ epoch e do
5 Update: Θ← Θ−α∇L(Θ) using datasetD;
6 For each layer i, calculate the sensitivity set

of channels: S(i)
channel =

{St(K(i)
1), St(K(i)

2), ..., St(K(i)

c(i)
)} via

Equation (13);
7 For each layer i, sort and truncate the

smallest-dsr(i) ∗ c(i)e of S(i)
channel to

identify Θp and index;
8 Update λ via Equation (8);
9 for each (W(i))2D[index(i)] ∈Θp do

10 Update (W(i))2D[index(i)] via Equation
(7);

11 end
12 end
13 For each layer i, recalculate sr(i);
14 e = e+ 1;
15 end
16 Prune the redundant filters (

∥∥∥W(i)
j, :

∥∥∥
2
= 0) and return

the compressed network with acceptable accuracy.

We consider the impact of the current and next layers and
the total sensitivity of channel j in the i-th layer St(W(i)

j) is

St(W(i)
j) = |

r(i)k
(i)
1 k

(i)
2∑

m=1

∂L (F(Θ,x),y)

∂(W(i)
j, m)2Dout

(W(i)
j, m)2Dout

+

c(i+1)k
(i+1)
1 k

(i+1)
2∑

m=1

∂L (F(Θ,x),y)

∂(W(i+1)
j, m)2Din

(W(i+1)
j, m)2Din |

(13)

Dynamic Sparsity Ratio Allocation. To adaptively learn
a structured sparsity network, our method dynamically up-
dates sparsity allocation ratios in different layers. Specifi-
cally, at the end of every epoch, We leverage the sparsity
result from the epoch to recalculate the sparsity allocation
ratio of every layer in the subsequent epoch. We denote
relative sparsity allocation ratio in the i-th layer as sr(i),
sparsity ratio (zero parameters ratio) as sr(i)zero, and sparsity-
inducing ratio (the redundant non-zero parameters ratio) as
sr

(i)
inducing . To avoid introducing extra layer-wise parame-

ters, we use a uniform ratio to calculate the sparsity-inducing
ratio across all layers. Then, sparsity allocation ratios are
equal to sparsity ratios and sparsity-inducing ratios. During
training, as sparsity ratios of different layers continuing to
change, our sparsity allocation ratios are dynamically up-

2498

Model
Architecture Method Training Settings Test Accuracy PR

Pre-defined? Pre-trained? Fine-tuning? Params FLOPs

VGG-Small

Baseline N/A N/A N/A (93.85±0.07)% 0 0
Li et al. (Li et al. 2016) 4 4 4 93.40% 63.90% 34.21%
NRE (Jiang et al. 2018) % 4 4 93.40% 92.72% 67.64%

Slimming (Liu et al. 2017) % % 4 93.48% 86.65% 43.50%
HRank (Lin et al. 2020a) % 4 4 93.43% 82.90% 53.50%

SFP (He et al. 2018a) 4 % % 92.66% 69.17% 69.24%
SSS (Huang and Wang 2018) % % % 93.20% 66.67% 69.70%

Ours % % % (93.52±0.15)% 93.32% 70.85%

ResNet56

Baseline N/A N/A N/A (93.81±0.14%) 0 0
Li et al. (Li et al. 2016) 4 4 4 93.06% 13.70% 27.60%

CP (He, Zhang, and Sun 2017) 4 4 4 91.80% -- 50.00%
AMC (He et al. 2018b) % 4 4 91.90% -- 50.00%

HRank (Lin et al. 2020a) % 4 4 93.17% 42.40% 50.00%
SFP (He et al. 2018a) 4 % % (92.26±0.31)% -- 52.60%

FPGM (He et al. 2019) 4 % % (92.93±0.49)% -- 52.60%
ASFP (He et al. 2020) 4 % % (92.44±0.07)% -- 52.60%

Ours % % % (93.20±0.11)% 46.84% 52.86%

Table 1: The pruning results of VGG-Small and ResNet56 on CIFAR-10. The “Pre-defined?” refers to whether a fixed pruning
ratio is pre-set in each layer through empirical studies. The “--” indicates that the results are not listed in the original paper.

dated. So, our method does not require pre-define the prun-
ing architecture and can adaptively learn an optimal struc-
tured sparsity network.

Computational Complexity Analysis. In our proposed
method, additional computation mainly comes from iden-
tifying and updating the expected pruning parameters. Be-
cause the gradients of parameters are obtained by a back-
ward process in the SGD algorithm and updating the param-
eters are achieved by ISTA, the additional time consumption
of DPFPS is acceptable. The detailed procedure of DPFPS
is presented in Algorithm 1.

Experiments
Experimental Setup
1) Datasets and Networks: We evaluate DPFPS on two
datasets: CIFAR (Krizhevsky and Hinton 2009) and Im-
ageNet (Russakovsky et al. 2015). The same data aug-
mentation strategies are used as PyTorch official exam-
ples (Paszke et al. 2017). On CIFAR-10, we evaluate the
proposed method using VGG-16 (Simonyan and Zisserman
2014) and ResNet56 (He et al. 2016). As the original VGG-
16 is specially designed for ImageNet classification, we use
a variation version (i.e. VGG-Small) taken from (Zagoruyko
2015) in our experiment. On ImageNet dataset, we evaluate
DPFPS on ResNets (including ResNet 34, 50, and 101) and
MobileNet v2 (Sandler et al. 2018).

2) Implementation Details: All networks are trained from
scratch. It takes 200 and 100 epochs on CIFAR-10 and Im-
ageNet datasets, with an initial learning rate of 0.1, and a
mini-batch size of 64 and 256, respectively. The learning rate
is multiplied by 0.1 at 50% and 75% of the training epochs
on CIFAR-10, and at 30, 60, and 90 epoch on ImageNet.
We utilize an SGD optimizer with a weight decay of 10−4
and a momentum of 0.9. For MobileNet v2 on ImageNet,

0.001 0.01 0.1 1 10
40.0%

60.0%

80.0%

92.0%
92.5%
93.0%
93.5%
94.0%

maxλ

params 90%PR =A
cc

ur
ac

y
VGG-Small@CIFAR-10

Figure 3: Test accuracy in different λmax settings.

we use the settings like AMC (He et al. 2018b). All experi-
ments are implemented on multiple NVIDIA RTX 2080 Ti
GPUs and Intel(R) Xeon(R) Gold 5118 CPU by PyTorch.
On CIFAR-10, considering fluctuations caused by different
random seeds in the experimental results, we use the mean
and standard deviation to report the results by conducting
the same experiment 5 times.

3) Parameter Settings: In our experiments, the parame-
ter λmax impacts the structured sparsity results, so we study
the performances in different λmax settings. As shown in
Figure 3, we tune λmax exponentially in a relatively wide
range (i.e. [0.001, 10]). When λmax is set to be a small value,
the test accuracy is low. This is because inadequate sparsity
produces low precision after pruning the network, like (Wen
et al. 2016; Liu et al. 2017), leading to needing fine-tuning
the pruned network to recover the precision. When λmax is
set to be a big value, excessive sparsity causes the network
parameters not to be learned well. In our experiment deploy-
ment, the parameter λmax = 0.01 can meet the experiment
results. For simplicity, we set the parameter λmax to 0.01
in all experiments, though we can obtain better results by

2499

Model
Architecture Method Training Settings Test Accuracy

PRFLOPsPre-defined? Pre-trained? Fine-tuning? Top-1 Top-5

ResNet34

Baseline N/A N/A N/A 73.92% 91.62% 0
Li et al. (Li et al. 2016) 4 4 4 72.17% -- 24.20%
SFP (He et al. 2018a) 4 % % 71.83% 90.33% 41.10%

FPGM (He et al. 2019) 4 % % 72.11% 90.69% 41.10%
ASFP (He et al. 2020) 4 % % 71.72% 90.65% 41.10%

Ours % % % 72.25% 90.80% 43.29%

ResNet50

Baseline N/A N/A N/A 76.15% 92.87% 0
ThiNet (Luo et al. 2019) 4 4 4 74.03% 92.11% 36.80%

CP (He, Zhang, and Sun 2017) 4 4 4 -- 90.80% 50.00%
HRank (Lin et al. 2020a) % 4 4 74.98% 92.33% 43.77%

SFP (He et al. 2018a) 4 % % 74.61% 92.06% 41.80%
FPGM (He et al. 2019) 4 % % 75.03% 92.40% 42.20%
ASFP (He et al. 2020) 4 % % 74.88% 92.39% 41.80%

Ours % % % 75.55% 92.54% 46.20%

ResNet101
Baseline N/A N/A N/A 77.37% 93.56% 0

SFP (He et al. 2018a) 4 % % 77.03% 93.46% 42.20%
Ours % % % 77.27% 93.68% 44.97%

MobileNet v2

Baseline N/A N/A N/A 72.00% -- 0
0.75x MobileNet v2 (Sandler et al. 2018) % % % 69.80% -- 26.54%

AMC (He et al. 2018b) % 4 4 70.80% -- 26.54%
Ours % % % 71.10% -- 24.89%

Table 2: The pruning results of ResNets and MobileNet v2 on ImageNet.

0% 20% 40% 60% 80% 100%
90%

91%

92%

93%

94%

Te
st

 a
cc

ur
ac

y

Ours

SSS

Slimming

paramsPR

SFP

Figure 4: Performance comparison with different baselines.

fine-tuning λmax in different experiments.
4) Evaluation Metrics: To evaluate the performance of

DPFPS, we use the parameters or FLOPs pruning ratio:

PRParams/FLOPs = 1− #Pruned Params/FLOPs

#Original Params/FLOPs
(14)

where “#Pruned Params/FLOPs” denote the remaining
parameters or FLOPs after the model is pruned, respectively.

Performance Comparison with Different Baselines
We use VGG-Small on CIFAR-10 and compare DPFPS with
three baselines: SFP, SSS and Slimming. As shown in Fig-
ure 4, when PRParams is less than 50%, SFP is inferior to
other methods. This is because SFP adopts the fixed prun-
ing structure and does not learn an optimal pruning network.
With the increase of PRParams, for SSS, the larger penalty
needs to be imposed upon the parameters. When PRParams
reaches 65%, the test accuracy of SSS sharply reduces. So,

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

40%

60%

80%

100%

Epoch

L
os

s

A
ccuracy

Our_accuracy
Our_loss
Baseline_accuracy
Baseline_loss
MW_accuracy
MW_loss

Figure 5: Analysis of training convergence.

for the need of a large pruning ratio, due to excessive re-
straint, SSS is inappropriate and fine-tuning is needed to
recover the precision like Slimming. In all the baselines,
DPFPS achieves the best trade-off curve between test ac-
curacy and pruning ratio, exceeding the fine-tuning method
(i.e. Slimming). These show that our dynamic and progres-
sive structured sparsity regularization is effective. More im-
portantly, our proposed method alleviates the cumbersome
pruning process, without any pre-trained, fine-tuning, or
multi-pass scheme, which is efficient.

Performance Comparison with State-of-the-Art
Methods
We also compare DPFPS with 11 state-of-the-arts.

On CIFAR-10, we compare our method with Li et al.,
NRE, Slimming, SFP, CP, AMC, FPGM, SSS, ASFP, and
HRank, shown in Table 1. For VGG-Small, the proposed
method achieves an accuracy of 93.52% with 93.32% prun-
ing ratio of parameters and 70.85% pruning ratio of FLOPs,

2500

、

1

2

3

4

5

6

7

8

9

0
1

2

3

1

1

1

1

r

r

r

r

r

r

r

r

r

e

e

e

e

e

e

e

e

e
r

r

r

r

y

y

y

y

y

y

y

y

y
e

e

e

e

a

a

a

a

a

a

a

a

a

y

y

y

y

a

a

a

a

L

L

L

L

L

L

L

L

L

L

L

L

L

0.8

0.6

0.4

0.2

4
、
、
、 今、 ＂

、
、

(a) Sparsity allocation ratio. (b) Sparsity ratio.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

PR
pa
ra
m
s

7030

(c) Sparsity ratio of the network.

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13
0

200

400

600

Ours

Baseline

(d) Channel number.

Figure 6: Analysis of visualization in the different layers and network.

Method VGG-Small@CIFAR-10 ResNet34@ImageNet
Accuracy PRFLOPs Top-1 PRFLOPs

Ours(no) 93.01% 76.26% 72.22% 38.88%
Ours 93.26% 77.43% 72.25% 43.29%

Table 3: The comparison results with and without the pro-
gressive penalty.

much better than all the competing methods. Compared with
the baseline, our method prunes VGG-Small more than 93%
parameters and 70% FLOPs, with a slight accuracy loss. For
more compact architecture ResNet56, our method prunes
more than 52% pruning ratio of FLOPs and outperforms
other methods in performance.

On ImageNet, our method is compared with Li et al.,
ThiNet, CP, SFP, FPGM, ASFP, AMC, and HRank. The re-
sults are reported in Table 2. For ResNet34, the proposed
method achieves the best performance. For ResNet50, our
method obtains the highest accuracy, with a second highest
pruning ratio of FLOPs (46.21% vs 50.00%). For a deeper
network of ResNet101, we obtain the highest pruning ra-
tio, even with an increase of 0.12% Top-5 accuracy. For
lightweight network compression (i.e., MobileNet v2), our
method also obtains the best accuracy. Thus, it can be con-
cluded that the proposed method is superior to all the com-
peting methods, due to introducing the dynamic and progres-
sive structured sparsity regularization.

Analysis and Discussion
Training Convergence Analysis. In terms of training con-
vergence, Figure 5 plots the training loss and test accuracy
curves of our proposed method, WM, and baseline on VGG-
Small@CIFAR-10. To achieve thinner models, WM is used
to uniformly prune the channels of each layer, such as Mo-
bileNet. We set PRParams = 90% in our method and WM.
Due to our regularization with a gradually increased value, at
early training epochs, our training loss and test accuracy are
consistent with the original network, better than WM. As the
penalty continues to increase, our training loss and test accu-
racy are slightly worse than the baseline but better than WM.
But after 100 epochs, our method achieves nearly the same
training loss and test accuracy as the baseline and better than
WM. It can be concluded that the proposed method has com-
parable convergence speed and final performance with the
baseline and better than WM.

Efficacy Analysis. To evaluate the effectiveness of our
method, on one hand, we analyze the sparsity ratio over

Dataset Method FLOPs (Backbone) mAP

PASCAL VOC2007 Faster R-CNN 4.08G 0.734
Ours 2.81G 0.726

Table 4: Results on PASCAL VOC 2007 dataset.

epoch and pruned structure on VGG-Small@CIFAR-10. As
shown in Figure 6(a) and 6(b), during training, our method
dynamically allocates the sparsity ratio to each layer and
adaptively learns the sparsity of each layer in the network,
which is beneficial to learn a structured sparsity network
with a good performance, as shown in Figure 6(c). Addi-
tionally, we visualize the number of each layer between our
method and baseline in Figure 6(d), which shows that deep
layers have more redundant than shallow layers. These re-
sults show our method is effective due to our dynamic struc-
tured sparsity regularization. On the other hand, we also an-
alyze the effectiveness of the progressive penalty. As shown
in Table 3, our method is superior to the regularization with-
out the progressive penalty. These results show our method
is effective due to the progressive structured sparsity regu-
larization.

Its Application to Detection Tasks. As described above,
our method is effective in image classification. To further
analyze the generalization of our method, we use ResNet50
as a backbone network to deploy Faster R-CNN (Ren et al.
2015) for object detection, and then compress Faster R-
CNN by reducing 30% FLOPs of the backbone network.
In the experimental implementation, we evaluate the per-
formance with mean Average Precision (mAP) on PASCAL
VOC 2007 (Everingham et al. 2015) dataset. As shown in
Table 4, our pruned model shows a good result. The mAP
of our method is slightly lower than the baseline, but the in-
ference speed is faster than the baseline. This demonstrates
that our method has good generalization on other tasks.

Conclusion
In this paper, we have proposed a novel Dynamic and Pro-
gressive Filter Pruning scheme (DPFPS) that directly learns
a structured sparsity network from Scratch. It has imposed a
new structured sparsity-inducing regularization specifically
upon the expected pruning parameters in a dynamic sparsity
manner. Moreover, We have designed a group Lasso based
progressive penalty regularization, making the sparsity pro-
cess to be soft and alleviating the harm on model perfor-
mance. Extensive experiments have shown that our method
is competitive with state-of-the-art methods.

2501

Acknowledgments
This work was supported in part by the National
Key Research and Development Program of China
(Grant No. 2020AAA0106800, No. 2018AAA0102802,
No.2018AAA0102803, and No. 2018AAA0102800), in part
by the Natural Science Foundation of China (Grant No.
62036011, No. 61902401, No. 61972071, No. 61906052,
No. 61772225, No. 61721004, No. U1803119, No.
U1736106, and No. 6187610), in part by the NSFC-General
Technology Collaborative Fund for Basic Research (Grant
No. U1936204), in part by the Beijing Natural Science
Foundation (Grant No. JQ18018), in part by the Key Re-
search Program of Frontier Sciences, CAS, Grant No.
QYZDJ-SSW-JSC040, in part by the National Natural Sci-
ence Foundation of Guangdong (No. 2018B030311046),
and in part by the CAS External cooperation key project.
The work of Bing Li was also supported by the Youth Inno-
vation Promotion Association, CAS.

References
Alvarez, J. M.; and Salzmann, M. 2016. Learning the Num-
ber of Neurons in Deep Networks. In Advances in Neural
Information Processing Systems, 2270–2278.

Beck, A.; and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences 2(1): 183–202.

Bertinetto, L.; Valmadre, J.; Henriques, J. F.; Vedaldi, A.;
and Torr, P. H. 2016. Fully-convolutional siamese networks
for object tracking. In Proceedings of European Conference
on Computer Vision, 850–865.

Boyd, S.; and Vandenberghe, L. 2004. Convex optimization.
Cambridge university press.

Ding, X.; Ding, G.; Guo, Y.; Han, J.; and Yan, C. 2019a.
Approximated Oracle Filter Pruning for Destructive CNN
Width Optimization. In Proceedings of International Con-
ference on Machine Learning, 1607–1616.

Ding, X.; Ding, G.; Han, J.; and Tang, S. 2018. Auto-
balanced Filter Pruning for Efficient Convolutional Neural
Networks. In Proceedings of AAAI Conference on Artificial
Intelligence, 6797–6804.

Ding, X.; Ding, G.; Zhou, X.; Guo, Y.; Han, J.; and Liu, J.
2019b. Global Sparse Momentum SGD for Pruning Very
Deep Neural Networks. In Advances in Neural Information
Processing Systems, 6382–6394.

Everingham, M.; Eslami, S. M.; Van Gool, L.; Williams, C.
K. I.; Winn, J.; and Zisserman, A. 2015. The Pascal Visual
Object Classes Challenge: A Retrospective. International
Journal of Computer Vision 111(1): 98–136.

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 580–
587.

Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network. In

Advances in Neural Information Processing Systems, 1135–
1143.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.

He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; and Yang, Y.
2020. Asymptotic Soft Filter Pruning for Deep Convolu-
tional Neural Networks. IEEE transactions on Cybernetics
50(8): 3594 – 3604.

He, Y.; Kang, G.; Dong, X.; Fu, Y.; and Yang, Y. 2018a.
Soft filter pruning for accelerating deep convolutional neural
networks. In Proceedings of International Joint Conference
on Artificial Intelligence, 2234–2240.

He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.-J.; and Han, S.
2018b. AMC: AutoML for Model Compression and Ac-
celeration on Mobile Devices. In Proceedings of European
Conference on Computer Vision, 815–832.

He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019. Filter
pruning via geometric median for deep convolutional neural
networks acceleration. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 4340–
4349.

He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for ac-
celerating very deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision, 1389–
1397.

Huang, Z.; and Wang, N. 2018. Data-Driven Sparse Struc-
ture Selection for Deep Neural Networks. In Proceedings of
European Conference on Computer Vision, 317–334.

Idelbayev, Y.; and Carreira-Perpinan, M. A. 2020. Low-
Rank Compression of Neural Nets: Learning the Rank of
Each Layer. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 8049–8059.

Jiang, C.; Li, G.; Qian, C.; and Tang, K. 2018. Efficient
DNN Neuron Pruning by Minimizing Layer-wise Nonlinear
Reconstruction Error. In Proceedings of International Joint
Conference on Artificial Intelligence, 2298–2304.

Jin, Q.; Yang, L.; and Liao, Z. 2020. AdaBits: Neural Net-
work Quantization With Adaptive Bit-Widths. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2146–2156.

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Citeseer.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems, 1097–1105.

Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P.
2016. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710 .

Li, J.; Qi, Q.; Wang, J.; Ge, C.; Li, Y.; Yue, Z.; and Sun,
H. 2019. OICSR: Out-In-Channel Sparsity Regularization
for Compact Deep Neural Networks. In Proceedings of the

2502

IEEE Conference on Computer Vision and Pattern Recogni-
tion, 7046–7055.
Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.;
and Shao, L. 2020a. HRank: Filter Pruning Using High-
Rank Feature Map. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1529–1538.
Lin, S.; Ji, R.; Li, Y.; Deng, C.; and Li, X. 2020b. Toward
Compact ConvNets via Structure-Sparsity Regularized Fil-
ter Pruning. IEEE Transactions on Neural Networks and
Learning Systems 31(2): 574–588.
Liu, N.; Ma, X.; Xu, Z.; Wang, Y.; Tang, J.; and Ye, J.
2020. AutoCompress: An Automatic DNN Structured Prun-
ing Framework for Ultra-High Compression Rates. In
Proceedings of AAAI Conference on Artificial Intelligence,
4876–4883.
Liu, Y.; Cao, J.; Li, B.; Yuan, C.; Hu, W.; Li, Y.; and Duan,
Y. 2019a. Knowledge Distillation via Instance Relationship
Graph. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 7096–7104.
Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; and Zhang,
C. 2017. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE International
Conference on Computer Vision, 2736–2744.
Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2019b.
Rethinking the Value of Network Pruning. In International
Conference on Learning Representations.
Luo, J.; Zhang, H.; Zhou, H.; Xie, C.; Wu, J.; and Lin, W.
2019. ThiNet: Pruning CNN Filters for a Thinner Net. IEEE
Transactions on Pattern Analysis and Machine Intelligence
41(10): 2525–2538.
Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level
pruning method for deep neural network compression. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 5058–5066.
Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; and Kautz, J.
2019. Importance Estimation for Neural Network Pruning.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 11264–11272.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch. In Advances
in Neural Information Processing Systems Workshop.
Peng, H.; Wu, J.; Chen, S.; and Huang, J. 2019. Collabora-
tive Channel Pruning for Deep Networks. In Proceedings of
the International Conference on Machine Learning, 5113–
5122.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-
cnn: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing
Systems, 91–99.
Ruan, X.; Liu, Y.; Yuan, C.; Li, B.; Hu, W.; Li, Y.; and May-
bank, S. 2020. EDP: An Efficient Decomposition and Prun-
ing Scheme for Convolutional Neural Network Compres-
sion. IEEE Transactions on Neural Networks and Learning
Systems 1–15.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision 115(3): 211–252.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4510–4520.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 .
Singh, P.; Verma, V. K.; Rai, P.; and Namboodiri, V. P. 2019.
Play and Prune: Adaptive filter pruning for deep model com-
pression. In Proceedings of International Joint Conference
on Artificial Intelligence, 3460–3466.
Venugopalan, S.; Rohrbach, M.; Donahue, J.; Mooney, R.;
Darrell, T.; and Saenko, K. 2015. Sequence to sequence-
video to text. In Proceedings of the IEEE International Con-
ference on Computer Vision, 4534–4542.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks. In
Advances in Neural Information Processing Systems, 2074–
2082.
Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V. I.; Han,
X.; Gao, M.; Lin, C.-Y.; and Davis, L. S. 2018. Nisp: Prun-
ing networks using neuron importance score propagation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 9194–9203.
Yuan, M.; and Lin, Y. 2006. Model selection and estimation
in regression with grouped variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68(1):
49–67.
Zagoruyko, S. 2015. 92.45% on CIFAR-10 in Torch. Torch
Blog .
Zhang, T.; Ye, S.; Zhang, K.; Tang, J.; Wen, W.; Fardad, M.;
and Wang, Y. 2018. A Systematic DNN Weight Pruning
Framework using Alternating Direction Method of Multipli-
ers. In Proceedings of European Conference on Computer
Vision, 184–199.

2503

