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Abstract

Panoptic segmentation aims at generating pixel-wise class
and instance predictions for each pixel in the input image,
which is a challenging task and far more complicated than
naively fusing the semantic and instance segmentation re-
sults. Prediction fusion is therefore important to achieve ac-
curate panoptic segmentation. In this paper, we present RE-
FINE, pREdiction FusIon NEtwork for panoptic segmenta-
tion, to achieve high-quality panoptic segmentation by im-
proving cross-task prediction fusion, and within-task pre-
diction fusion. Our single-model ResNeXt-101 with DCN
achieves PQ=51.5 on the COCO dataset, surpassing state-
of-the-art performance by a convincing margin and is com-
parable with ensembled models. Our smaller model with a
ResNet-50 backbone achieves PQ=44.9, which is compara-
ble with state-of-the-art methods with larger backbones.

Introduction
As a step towards human-level visual scene understanding,
the newly proposed task, panoptic segmentation (Kirillov
et al. 2019b) has been drawing increasing attention in recent
years. Different from instance segmentation, which focuses
only on countable foreground instances, and semantic seg-
mentation, which focuses on regions without differentiating
instances, panoptic segmentation aims to provide a complete
scene segmentation map that has both instance-wise labels
for foreground objects and pixel-wise labels for background
regions.

Under this holistic scene parsing setup, a de-facto multi-
task strategy is generally adopted by state-of-the-art meth-
ods, in which both semantic segmentation and instance seg-
mentation are conducted with two interacting networks. The
semantic and instance segmentation results from both net-
works would be merged in the end to yield the desired
panoptic segmentation.

Recently, many research works have exploited the bene-
fits of the unified networks, with shared weights trained on

*Equal contribution
†Work done at SenseTime Research
‡Corresponding author

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Backbone

Semantic Segmentation Branch

Soft 
Occlusion 
Estimation

Instance Segmentation Branch

Iterative Bi-directional 
Prediction ProjectionBounding Box Branch

Figure 1: The proposed Prediction Fusion Network for
Panoptic Segmentation

both tasks, which show significant improvement over sep-
arately trained models (Li et al. 2019; Xiong et al. 2019;
Yang et al. 2019) on either task. Moreover, to fully utilize
the advantages of joint training, some works proposed to
fuse instance information and semantic information by in-
troducing designated fusion modules (Li et al. 2019, 2018).
In light of this strategy, notable progress has been made in
addition to the unified networks, where only the backbone is
shared by both segmentation branches.

However, there is an inherent challenge for obtaining the
final panoptic segmentation map: the fusion of predictions
by semantic and instance segmentation. The challenge is
of two-fold: 1) Cross-task synergy. Intrinsically, instance
segmentation prediction head focuses on fine-grained in-
stance details, while semantic segmentation prediction head
is more attentive to holistic context. The fusion of the diverse
predictions remains challenging in existing panoptic seg-
mentation pipelines. Instance prediction and semantic pre-
diction generally fail to reach a consensus. Existing works
(Fu, Berg, and Berg 2019; Chen et al. 2018a; Li et al. 2018)
only perform one-off uni-directional enhancement that uses
one task branch to improve another, not fully exploiting the
mutual benefits. 2) Inter-instance prediction fusion. To con-
vert multiple instance segmentation masks to a single can-
vas in the end to generate the final segmentation map, it is
necessary to have an accurate estimation of the spatial re-
lation between pairs of instances. The fusion is especially
crucial since an incorrect occlusion estimation would lead
to missing objects or incomplete masks in the final segmen-
tation map. The complex occlusion scenarios further exacer-
bate this issue. Existing works (Lazarow, Lee, and Tu 2020;
Yang et al. 2020) leverage appearance and shape priors of
predicted instance mask but neglect the mask quality associ-
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Figure 2: Qualitative results of the proposed and state-of-the-art panoptic segmentation methods. We compare with three meth-
ods, Heuristic Fusion (Kirillov et al. 2019a), Spatial Ranking Module (Liu et al. 2019) and OCFusion (Lazarow, Lee, and
Tu 2020). Our proposed method shows significant improvements, there are better consistency between instance and semantic
segmentation (row 1, less gap between semantic segmentation mask and instance segmentation mask, shown as black regions
around people), less erroneous occlusion estimation (row 2, the spoon is successfully predicted to be occluded at the middle),
and less false positive prediction (row 3, the less confident area is predicted have a continuous “unknown” label with much
fewer false positive “holes”)

ated with the bounding box confidence.
To tackle the aforementioned issues, we propose a novel

panoptic segmentation pipeline, named REFINE, to harness
the full potential of the unified framework. It optimizes the
prediction fusion process to achieve high-quality panoptic
segmentation. Our main contributions are:

• we present the Iterative Bi-directional Prediction Projec-
tion module, which not only refines the segmentation per-
formance of each task by enriching the feature representa-
tions with the counterpart task’s predictions, but also cre-
ates back-propagation routes from one task’s supervision
to the other task’s prediction head, harmonizing the cross-
task predictions.

• we propose the Inter-instance Soft Occlusion Estimation
module to refine inter-instance occlusion prediction in dif-
ferent challenging scenarios, which exploits the bounding
box confidences for more accurate and adaptive instance
occlusion estimation.

Related Work
With the rapid development of deep-learning-based meth-
ods, research works on scene understanding, including ob-
ject detection, semantic segmentation, and instance segmen-
tation, have made remarkable progress. Despite the signifi-
cant improvement in every single task, none of them is capa-
ble of providing pixel-level accurate labels to all foreground
instances and background. Therefore, as a step into a higher-
level scene understanding, panoptic segmentation was pro-
posed in (Kirillov et al. 2019b) to bridge the gap.

Semantic Segmentation. As one of the most important
scene understanding tasks, semantic segmentation serves
as a fundamental component in computer vision. The very

first method utilizing deep learning to tackle such a prob-
lem, fully convolutional network (FCN) (Shelhamer, Long,
and Darrell 2014), unveils the power of the convolutional
neural network in semantic segmentation. Since then, the
encoder-decoder architecture is vastly adopted by the fol-
lowing works. Methods including UNet (Ronneberger, Fis-
cher, and Brox 2015), DeepLab series (Chen et al. 2018b),
DenseASPP (Yang et al. 2018) and PSPNet (Zhao et al.
2017) further pushed the boundary of semantic segmentation
by leveraging contextual information. However, the task of
semantic segmentation does not differentiate individual in-
stances and thus leaves the scene segmentation incomplete.

Instance Segmentation. Unlike semantic segmentation,
instance segmentation pays attention to the foreground in-
stances rather than background regions. It aims to segment
out each instance with both class labels and separate instance
labels. There exist two main categories of methods for in-
stance segmentation. One intuitive way is to predict pixel-
wise label based on semantic segmentation (Arnab and Torr
2017; Liang et al. 2017; Liu et al. 2018b). More recent
works, such as Mask-RCNN (He et al. 2017), PANet (Liu
et al. 2018a), take advantage of the bounding boxes to gen-
erate accurate instance masks. By jointly training both seg-
mentation and detection branches, the unified models yield
better results for both tasks. Due to the nature of proposal-
based instance segmentation, background segmentation is
not involved in the prediction. In HTC (Chen et al. 2019),
experiment results indicate that both semantic and instance
segmentation benefit from the joint training of both tasks,
making it possible to extend the method into panoptic seg-
mentation.

Panoptic Segmentation. Panoptic segmentation (Kir-
illov et al. 2019b) unifies the tasks of semantic segmenta-
tion and instance segmentation to assign each pixel a cate-
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Figure 3: The proposed Iterative Bi-directional Prediction Projection (IBPP). ⊕ denotes element-wise sum and ⊗ denotes
concatenation of features or predictions. Initial semantic predictions are first generated before the bi-directional projection
starts, which can repeat multiple times. The blue-shaded area indicates the projection of semantic segmentation predictions
onto instance segmentation; the green-shaded area indicates the projection of instance segmentation prediction onto semantic
segmentation. IBPP fosters synergy between two segmentation task branches in a recursive manner

gory label and to segment each foreground object instance
simultaneously. Panoptic FPN (Kirillov et al. 2019a) uses a
single backbone network, followed by Feature Pyramid Net-
work (FPN (Lin et al. 2017)) and multiple heads in both
instance and semantic branches. (Li et al. 2019) proposed
AUNet, which integrates attention modules guided by the
instance branch to improve the background segmentation re-
sults. UPSNet (Xiong et al. 2019) adopted a unified architec-
ture to predict both semantic and instance confidence scores
for each pixel.

Instance Occlusion Estimation. Instance occlusion esti-
mation is important in panoptic segmentation. In early meth-
ods, the occlusion relation was inferred from each instance’s
classification score. This heuristic does not provide accu-
rate occlusion estimation. OANet (Liu et al. 2019) predicted
spatial ranking scores and solved the mask overlaps, whose
results are in favor of instances with higher scores. OCFu-
sion (Lazarow, Lee, and Tu 2020) proposed an appearance-
based occlusion head to learn the occlusion relation be-
tween pairs of instances from their cropped feature maps and
masked bitmap. Similarly, SOGNet (Yang et al. 2020) pro-
posed a module to utilize information including bounding
boxes, class labels, and masked bitmap to build an occlusion
relation graph.

Proposed Method
To better fuse the predictions from both semantic segmen-
tation and instance segmentation tasks, our unified panoptic
segmentation framework train instance segmentation and the
semantic segmentation in a joint manner (see in Figure 1).
We propose novel bi-directional prediction projection and
instance-prediction occlusion estimation modules, which ef-
fectively tackles the semantic-instance prediction fusion and
inter-instance prediction fusion, respectively.

Iterative Bi-directional Prediction Projection
Although existing panoptic segmentation frameworks have
well exploited the advantages of feature sharing, the instance
segmentation predictions and semantic segmentation predic-
tions are still separately obtained, which inevitably requires
further processing to be effectively fused. We propose the

Iterative Bi-directional Prediction Projection (Iterative BPP)
to utilize the predictions of both semantic and instance seg-
mentation to iteratively assist the feature learning of each
other (see in Figure 3). We validate that our method is com-
patible with common operations (such as ROI Align (He
et al. 2017) and ROI Flatten (Fu, Berg, and Berg 2019)) and
it does not require specifically designed components that are
tailored to our purpose.

In the general pipeline of panoptic segmentation, there are
an instance segmentation head Hins and a semantic segmen-
tation head Hsem following the FPN structure: Hins takes in
instance feature fins ∈ R256×14×14 as inputs and outputs in-
stance masks mins ∈ R1×28×28; Hsem takes in semantic fea-
tures Fsem ∈ R256×(H/4)×(W/4) and outputs semantic pre-
dictions Psem ∈ RCsem×(H/4)×(W/4), i.e.,

mins = Hins(fins), Psem = Hsem(Fsem). (1)
In our framework, we further extend the semantic head
Hsem to predict both Cins foreground classes and Csem back-
ground classes, so that the predictions include both classes
for instance segmentation and semantic segmentation, i.e.,
Psem ∈ R(Csem+Cins)×(H/4)×(W/4).

In our proposed Iterative BPP, an initial semantic predic-
tion is first generated. After that, we iteratively project se-
mantic features and predictions to instance features to as-
sist instance segmentation performance and then project in-
stance predictions to semantic features for assisting seman-
tic segmentation performance. The iterations repeat and can
propagate useful information between the two tasks, and
gradually encourage them to reach consensus on the final
segmentation results. Our Iterative BPP is illustrated in Fig.
3, and has the following steps in each of the iterations:

1. In the very first iteration, we adopt the conventional se-
mantic segmentation head Hsem to obtain the initial se-
mantic prediction P (0)

sem .
2. At each iteration t, given foreground instance boxes, we

ROI Align semantic features Fsem and semantic predic-
tions Psem at the RoIs of the previous iteration t− 1 as

fsem = ROI-Align(Fsem), (2)

p(t−1)
sem = ROI-Align

(
P (t−1)

sem

)
(3)
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Figure 4: Our proposed soft occlusion estimation module. The blue-shaded area is the conventional occlusion estimation
pipeline. In contrast, we utilize an additional prior, confidence prior, to further enhance accurate occlusion relation estima-
tion

The ROI Aligned semantic features fsem capture semantic
information of the semantic segmentation but at the in-
stance locations. We propagate the semantic features fsem
to the instance branch and sum them together to obtain the
enhanced instance features fins + fsem.

In addition, the ROI Aligned semantic predictions p(t−1)
sem

are also propagated to the instance branch and concate-
nated with the enhanced instance features to refine the in-
stance prediction as

m
(t)
ins = H̃ins

([
(fins + fsem); p

(t−1)
sem

])
, (4)

where [·; ·] denotes concatenation and H̃ins is an instance
segmentation head. In this way, the segmentation branch
propagates features and predictions to assist the learning
of instance segmentation.

3. The refined instance predictions m(t)
ins are then propagated

to the semantic branch for refining the semantic segmen-
tation. We first adopt ROI Flatten (Li et al. 2018) to pool
all instance masks of size 1 × 28 × 28 onto a single full-
channel canvas Pins ∈ RCins×(H/4)×(W/4) as

P
(t)
ins = ROI-Flatten (m

(t)
ins). (5)

The newly projected instance-based canvas P (t)
ins is then

concatenated with the semantic feature map Fsem and in-
put into the new semantic segmentation head H̃sem

P (t)
sem = H̃sem

([
P

(t)
ins ;Fsem

])
. (6)

4. The above steps 2 and 3 can iteratively refine the in-
stance segmentation and semantic segmentation predic-
tions, m(t)

ins and P (t)
sem, in an alternative manner.

Comparing with methods only use the cross-task feature
to repeatedly refine the predictions (Chen et al. 2019), our
Iterative BPP has mainly two merits: (1) We for the first time
propose to propagate cross-task predictions as a stronger
prior, in addition to simple cross-task features, for predic-
tion refinement of the two tasks; (2) the cross-task propa-
gated predictions would receive more routes of gradients in
the loops and thus help to learn more discriminative features.

Different from existing uni-directional method in instance
segmentation (Fu, Berg, and Berg 2019) and semantic seg-
mentation (Chen et al. 2018a), our bi-directional projection

enables iterative refinement that generates more routes for
back-propagation gradients to flow, and thus enables better
feature learning. Other than forcing the predictions of the
two tasks to be consistent by adding an L2 regularization
term (Li et al. 2018), the Iterative BPP achieves unifying
cross-task predictions in an implicit and easy-to-optimize
manner.

Instance Prediction with Soft Occlusion Estimation
Given the semantic prediction and instance prediction, we
need to combine mask predictions of the two types to gen-
erate the panoptic segmentation map, which is generally
achieved by pasting instance masks onto the semantic seg-
mentation map one at a time according to the inter-instance
occlusion relations. Such occlusion relations are therefore
of great importance to obtain the high-quality panoptic seg-
mentation map.

Existing works (Lazarow, Lee, and Tu 2020; Yang et al.
2020) consider the following three types of important prior
information when estimating occlusion relation between
pairs of instance predictions:
• Inter-class occlusion priors. Given instances of two differ-

ent classes, instances of one class might be more likely to
occlude instances of the other class. For instance, for a tie
instance and a person instance in the same image, the tie
is more likely to occlude the person. This is because if the
tie, a relatively small instance, is occluded by the person,
it might not be captured by the camera at all.

• Inter-instance appearance priors. Given a pair of occlud-
ing/occluded instances, their appearances can provide
strong cues on estimating their occlusion relation.

• Inter-instance shape priors. Given a pair of occlud-
ing/occluded instances, the instance in front should ob-
tain a more complete mask compared with the one being
occluded, which might only have a partial mask. For in-
stance, a complete car prediction mask is more likely to
occlude a person with partial shape.
However, we argue that the abovementioned priors ne-

glect the quality of the bounding boxes (confidence scores).
Hence, we propose an additional prior:
• Inter-instance confidence priors. Given a pair of instances,

the instance in the front generally has a more complete ap-
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Figure 5: Confidence prior is crucial for occlusion estima-
tion. Multiple instance masks can be predicted for the same
instance. More complete instance masks are usually associ-
ated with higher confidence scores. For instance, for a kite-
kite pair, the kite with higher confidence is more likely to oc-
clude the one with lower confidence. Compared to the strong
baseline, SOE leverages all priors (including the confidence
prior) and predicts the better mask to be placed in the front

pearance than the one in the back. The instance in front is
therefore more likely to have higher classification scores.
We explain in Figure 5 that confidence prior is essential
for high quality occlusion estimation.

We design a soft penalization that leverages all four priors.
We therefore propose the Soft Occlusion Estimation (SOE,
see in Figure 4) to make an accurate estimation of pair-
wise inter-instance occlusion estimation. The estimated oc-
clusion confidences can be later used to determine the in-
stance predictions’ pasting order and to also modulate their
class scores.
A Strong Baseline. We first follow (Lazarow, Lee, and Tu
2020; Yang et al. 2020) and model the occlusion estimation
as a neural network, which takes appearance features, pre-
dicted class labels of a pair of overlapping instances i and
j, instance mask predictions as inputs and outputs an occlu-
sion confidence score between [0, 1]. More implementation
details are included in the supplementary material.
Soft Penalization. Based on the estimated inter-instance oc-
clusion score O(i, j) between a pair of instances i and j, we
further modulate the occlusion confidenceO(i, j) and multi-
ply it with the original maximal class score of each instance

Õ(i, j) = si exp

(
− (O(i, j)− 1)2

σ

)
, (7)

where si and sj are the maximal class scores out ofC classes
for instances i and j, respectively. The above soft-weighting
scheme term takes inter-instance confidence priors into ac-
count. As instances with higher class confidences si are
more likely to have complete appearances and masks, and
are more likely to occlude other masks. Hence, it should
be assigned a higher occlusion confidence. The Gaussian
penalty term exp(−(O(i, j) − 1)2/σ) increases gradually

when the occlusion confidence is low, while it shows more
significant effect when the occlusion confidence is closer to
one. This property is proven to be beneficial in (Bodla et al.
2017). The hyperparameter σ adjusts the impact of original
occlusion prediction logit O(i, j)’s impact to the final confi-
dence. We iterate over all overlapping pairs to estimate their
occlusion relations. If Õ(i, j) > Õ(j, i), the instance i is
considered to occlude instance j and should be pasted over
instance j’s mask in the final segmentation map.

Semantic Prediction Refinement with Unknown
Erasing
It is better to indicate uncertainty than to give wrong pre-
diction. This is reflected by Panoptic Quality, the accuracy
metric of panoptic segmentation

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

recognition quality (RQ)

. (8)

which penalizes an unknown class prediction (0.5FN) less
than an incorrect class prediction (0.5FN + 0.5FP). We in-
troduce Unknown Erasing (UE) to further refine the seman-
tic predictions before generating the panoptic segmentation
map. The UE first computes the pixel-wise average classi-
fication confidences for each continuous region (which we
name as connected components (CC)) in the semantic pre-
diction map. Areas whose average scores are below a thresh-
old are erased. Since small fragments with abnormally high-
confidence scores would not be erased and still contributes
to false positives, we dilate each CC to eliminate the iso-
lated small regions and compute the dilated regions’ scores
for erasing. The pseudo-code for UE can be found in the
supplementary material.

Experiments
In this section, we evaluate our approach on COCO dataset
(Lin et al. 2014) for panoptic segmentation. More ex-
periments (including those on Cityscapes (Cordts et al.
2016)) can be found in the supplementary material due to
space constraint. Comparisons with state-of-the-art methods
demonstrate the effectiveness of our overall framework. We
also evaluate each sub-module of our method together with a
detailed analysis. We further decompose our method to find
out the contribution of each component. Qualitative results
are shown in Figure 2.
Dataset and Evaluation metric. Evaluation is performed
on COCO2017 dataset (Lin et al. 2014). We take the default
118k/5k/20k split for train/val/test from COCO2017. For ex-
periments related to a single component, we report panoptic
segmentation results on the validation set. For the overall re-
sults, we report the panoptic segmentation performance on
the test set from the official split.
Implementation Details. We choose the off-the-shelf
Faster-RCNN with FPN and ResNet-50 backbone with
Group Normalization (Wu and He 2018) as our object de-
tector. Details can be found in the supplementary material.
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Method Backbone Image Size PQ PQth PQst SQ RQ Split
UPSNet† (Xiong et al. 2019) ResNet-50 800× 1333 42.5 48.5 33.4 78.0 52.4 val
Panoptic-FPN (Kirillov et al. 2019a) ResNet-101 800× 1300 40.9 48.3 29.7 - - test-dev
OANet (Liu et al. 2019) ResNet-101 800× 1333 41.3 50.4 27.7 - - test-dev
AUNet (Li et al. 2019) ResNeXt-152-DCN MS + Flip 46.5 55.9 32.5 81.0 56.1 test-dev
UPSNet (Xiong et al. 2019) ResNet-101-DCN MS + Flip 46.6 53.2 36.7 80.5 56.9 test-dev
OCFusion (Lazarow, Lee, and Tu 2020) ResNeXt-101-DCN MS + Flip 46.7 54.0 35.7 - - test-dev
SOGNet (Yang et al. 2020) ResNet-101-DCN MS + Flip 47.8 - - 80.7 57.6 test-dev
UTIPS (Li, Qi, and Torr 2020) ResNet-101-DCN 800× 1333 47.2 53.5 37.7 81.1 57.2 test-dev
DetectoRS (Qiao, Chen, and Yuille 2020) ResNeXt-101-DCN* MS + Flip 49.6 57.8 37.1 - - test-dev
Ours ResNet-50 800× 1333 44.9 51.7 34.7 79.4 54.2 val
Ours ResNet-101-DCN 800× 1333 49.6 57.5 37.7 81.7 59.3 test-dev
Ours ResNeXt-101-DCN 800× 1333 51.5 59.6 39.2 82.6 61.3 test-dev

Table 1: Comparison with state-of-the-art methods on COCO dataset with various backbones. MS + Flip refers to multi-
scale test with horizontal flipping. † denotes deformable convolution adopted in semantic branch. * denotes that it uses stuff
prediction from DeepLabv3+ with Wide-ResNet-41 as backbone. Our method outperforms the state-of-the-art methods with
convincing margins. Note that our method does not require any test-time augmentation. Please see the supplementary material
for Cityscapes (Cordts et al. 2016) results

Method Backbone PQ PQth PQst APb APm FPS
Panoptic-FPN (Kirillov et al. 2019a) ResNet-101 40.9 48.3 30.0 - - 10.0

Cascade Panoptic-FPN ResNet-101-DCN 46.1 - - 47.4 41.3 7.3
Ours ResNet-101-DCN 49.3 57.0 37.7 48.0 41.8 5.5

Table 2: Additional Comparisons on COCO val. Cascade Panoptic-FPN includes deformable convolutions and Cascade-
RCNN (Cai and Vasconcelos 2018), on top of the original Panoptic-FPN for better bounding box localization and mask predic-
tion. Interestingly, our method shows a significant improvement on PQ with a marginal improvement on AP. This shows that the
semantic segmentation and effective prediction fusion, instead of better bounding box prediction, contribute towards a better
panoptic segmentation. Moreover, although our method is designed for high performance, it still achieves a decent inference
speed (0.7x Cascade Panoptic-FPN)

Comparison with the State of the Arts
In this section, we compare our model with state-of-the-art
methods on panoptic segmentation. As shown in Table 1, we
report our result with three different setups to make a fair
comparison on COCO. With a plain ResNet-50 as the back-
bone, our approach has exceeded most of the existing meth-
ods. To validate our method works with a heavier network,
we then employ ResNeXt (Xie et al. 2017), as the backbone
with deformable convolution (Dai et al. 2017). The model
reaches PQ of 51.5, which exceeds all the state-of-the-art
single models by clear margins. No test-time augmentation
is adopted in our proposed method for all the results reported
in the table.

We further compare our method with a stronger target,
Cascade Panoptic-FPN1, which adds deformable convolu-
tions and Cascade-RCNN (Cai and Vasconcelos 2018) to
the original Panoptic-FPN in order to obtain better bound-
ing box localization and mask prediction. Cascade Panoptic-
FPN is trained for an even longer schedule, 270k iterations
while we train our model for 180k iterations under the same
setup. Interestingly, Table 2 shows our model achieves much
higher Panoptic Quality than Cascade Panoptic-FPN with a
limited advantage in bounding box AP. This highlights that
better semantic mask prediction and prediction fusion con-
tribute more to panoptic segmentation performance than a
better bounding box localization. This observation is in line
with (Xiong et al. 2019). Moreover, we find that our method

can still achieve a decent inference speed.

Component Analysis
In this section, we use various experiments to analyze the
contribution of each component proposed in this paper, as
shown in Table 3. Our baseline is built upon a Panoptic-FPN
(Kirillov et al. 2019a) with 39.6 PQ. In Table 3, we show
that each of our proposed modules contributes to an over-
all improvement: IBPP improves both instance and seman-
tic segmentation, SOE addresses occlusion issue for instance
segmentation and UE refines semantic segmentation results.

We take Panoptic-FPN with ResNet-50 as our baseline.
Since the effect of occlusion signifies with higher instance
segmentation quality, we then use the output of a model
trained with ResNeXt-101 as the input of Soft Occlusion Es-
timation.
Iterative Bi-directional Prediction Projection (IBPP).
IBPP is dedicated to propagating the predictions across tasks
to improve both ends. We perform three iterations of IBPP,
the same as Cascade-RCNN (Cai and Vasconcelos 2018),
which has been proved efficient in object detection.

In Table 4, we take a plain Panoptic-FPN (Kirillov et al.
2019a) model with ResNet-50 and ResNet-101 as our base-
line. By introducing bi-directional prediction projection,
predictions from the semantic branch and instance branch

1implemented in detectron2 with its version at commit 8999946
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IBPP SOE UE PQ PQth PQst

- - - 39.6 46.1 29.8
X - - 42.2 (+2.6) 48.4 32.9
X X - 44.2 (+2.0) 51.7 32.9
X X X 44.9 (+0.7) 51.7 34.7

Table 3: Component Analysis. IBPP: Iterative Bi-directional
Prediction Projection. SOE: Soft Occlusion Estimation. UE:
Unknown Erasing. IBPP is designed to enhance cross-task
interaction that benefits both instance and semantic segmen-
tation; SOE tackles occlusion and improves instance seg-
mentation; UE removes low confidence semantic mask pre-
diction. The experiment results observed justifies the effec-
tiveness of our design

Method Iteration Backbone PQ PQth PQst

Baseline 1 ResNet-50 39.6 46.1 29.8
IBPP 1 ResNet-50 41.0 47.5 30.7
IBPP 2 ResNet-50 41.6 48.0 31.5
IBPP 3 ResNet-50 42.2 48.4 32.9
Baseline 1 ResNet-101 40.9 48.3 30.0
IBPP 3 ResNet-101 43.4 49.4 34.4

Table 4: Results of a baseline (Panoptic-FPN (Kirillov et al.
2019a)) and IBPP. AP for both bounding box and instance
segmentation are shown in COCO style. A single iteration
of IBPP is already effective, showing thatsegmentation task
branches benefit from each other; more iteration further im-
proves the performance, demonstrating the effectiveness of
cascaded refinement. We cap the number of iterations at
three to match the setting of Cascade-RCNN(Cai and Vas-
concelos 2018) but more iterations are possible. Moreover,
IBPP gives significant improvements regardless of the back-
bone used

end up with better consistency (Figure 2). With different
backbones, IBPP leads corresponding baseline by 2.6 PQ
for ResNet-50 and 2.5 PQ for ResNet-101. Both PQth and
PQst are benefited significantly from such prediction-level
fusion.

We also ablate the effect of the different number of iter-
ations in IBPP in Table 4. IBPP outperforms the baseline
by 1.4 PQ when only one iteration of refinement is applied.
With iterative refinements, the performance of IBPP pro-
gressively improves. Notice that in this section, Soft Occlu-
sion Estimation is not involved and only IBPP is added to
the baseline model.
Soft Occlusion Estimation (SOE). In this section, we
demonstrate that a better inter-instance prediction fusion
can be achieved with the proposed SOE. An IBPP model
with a ResNeXt-101 backbone serves as our baseline in this
section. We reproduced four popular occlusion estimation
methods on our baseline: heuristic fusion (Kirillov et al.
2019b), SHR (Wang et al. 2019), SRM (Liu et al. 2019), and
OCFusion (Lazarow, Lee, and Tu 2020) . As shown in Ta-
ble 5, our proposed occlusion estimator outperforms SHR,
SRM and OCFusion. Compared with OCFusion which only
utilizes mask prediction and mask feature as inputs, we show

Method σ PQth SQth RQth

Heuristic Fusion - 54.8 83.9 57.6
SHR - 56.9 84.1 67.2
SRM - 57.1 83.6 67.8
OCFusion - 58.4 83.9 69.2
Strong Baseline - 58.5 83.9 69.3
SOE 2.0 58.8 84.1 69.5
SOE 2.5 58.9 84.2 69.5
SOE 4.0 58.6 84.2 69.1

Table 5: Comparison of our proposed Soft Occlusion Esti-
mation module with existing occlusion estimation solutions
and analysis on the hyperparameter σ. We empirically show
that σ = 2.5 gives the optimal result. Our method outper-
forms SHR (Wang et al. 2019), SRM (Liu et al. 2019) and
OCFusion (Lazarow, Lee, and Tu 2020)

Mask Pred Mask Feat Label σ PQth SQth RQth

- - - - 54.8 83.9 57.6
X - - - 57.4 83.8 67.8
X X - - 58.4 83.9 69.2
X X X - 58.5 83.9 69.3
X X X X 58.9 84.2 69.5

Table 6: Ablation study of confidence prior. Mask Pre-
diction: shape prior; Mask Feature: appearance prior; La-
bel: class prior; σ: confidence prior; The first row shows a
heuristic baseline. We follow (Lazarow, Lee, and Tu 2020;
Yang et al. 2020) and build a strong baseline (row 4) that
utilizes shape, appearance and class priors. We then show
that our soft penalization that utilizes confidence prior can
further improve the performance

that our approach makes use of all available informative cues
and result in more accurate occlusion estimations. A soft-
weighting scheme is introduced to fully utilize the power of
different cues. We weight the occlusion prediction with dif-
ferent hyper-parameter σ and the optimum is archived with
σ = 2.5. We show in Table 5 that the performance improved
by 0.4 PQth after we adopted the soft-weighting scheme. We
show a component analysis of SOE in Table 6, which indi-
cates that confidence prior is complementary to other priors
(occlusion, appearance, and shape priors), and leads to fur-
ther improvement of panoptic segmentation performance.

Conclusion
We present an effective prediction fusion network to achieve
high-accuracy panoptic segmentation. The proposed method
consists of two modules, Iterative Bi-directional Predic-
tion Projection for better interaction between the two task
branches, and Soft Occlusion Estimation for robust spatial
relation prediction. Our unified framework achieves state-
of-the-art performance on the COCO dataset. As the future
work, we aim to make our method faster and lighter.
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