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Abstract

Locating and classifying clothes, usually referred to as cloth-
ing detection, is a fundamental task in fashion analysis. Mo-
tivated by the strong structural characteristics of clothes, we
pursue a detection method enhanced by clothing keypoints,
which is a compact and effective representation of structures.
To incorporate the keypoint cues into clothing detection, we
design a simple yet effective Keypoint-Guided clothing De-
tector, named KGDet. Such a detector can fully utilize in-
formation provided by keypoints with the following two as-
pects: i) integrating local features around keypoints to bene-
fit both classification and regression; ii) generating accurate
bounding boxes from keypoints. To effectively incorporate
local features , two alternative modules are proposed. One is
a multi-column keypoint-encoding-based feature aggregation
module; the other is a keypoint-selection-based feature aggre-
gation module. With either of the above modules as a bridge,
a cascade strategy is introduced to refine detection perfor-
mance progressively. Thanks to the keypoints, our KGDet ob-
tains superior performance on the DeepFashion2 dataset and
the FLD dataset with high efficiency.

Introduction

Recently, fashion image understanding has drawn a lot of at-
tention (Liu et al. 2016a; Ge et al. 2019) due to its wide range
of applications, especially in online shopping scenarios. A
fundamental problem of fashion image analysis is clothing
detection, which is to locate and recognize garments effi-
ciently and accurately. It enables many tasks such as cloth-
ing attribute analysis, outfit matching, virtual try-on, efc.

There has been much work in the field of general object
detection (Ren et al. 2015; Redmon et al. 2016; Cai and Vas-
concelos 2018), while we focus on clothing detection. For
clothes, they usually have very distinct structural features,
characterized by keypoints. As shown in Figure 1, keypoints
effectively describe the structure of a garment, thus can help
to determine the bounding box and the clothing category.
Therefore, we propose to leverage the keypoints for fashion
detection.
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Figure 1: Keypoints effectively describe the structure of a
garment, thus can be used to generate high-quality bounding
boxes. Meanwhile, the structural information possessed by
keypoints can help determine the class of a garment. Here,
the keypoints near the shoulders validate that the garment is
a vest rather than a sling.

Then a question is raised: how can we incorporate the key-
point cues into clothing detection? At first glance, we can
bind clothing detection and keypoint estimation together in a
parallel manner, as is done in Mask R-CNN (He et al. 2017),
where the extracted feature from ROI-Align is used for ob-
ject detection and instance segmentation. More recently, Ge
et al. (2019) propose a Match R-CNN to integrate clothing
detection, landmark regression, segmentation, and clothing
retrieval into such a multi-task learning framework. How-
ever, in these methods, information of keypoints is not fully
utilized but only used to regularize the shared subnetwork to
extract features in an implicit way, which results in marginal
performance improvement (63.3 vs. 64.0).

Unlike the above solutions, in this paper, we propose a
method of serial connection centered on keypoint and de-
sign a simple yet effective Keypoint-Guided clothing Detec-
tor, named KGDet. Such a detector can make full use of key-
point information with the following two aspects: i) integrat-
ing local features around keypoints to benefit both classifica-
tion and regression; ii) generating accurate bounding boxes
from keypoints. Specifically, we design a unified framework



that first estimates a garment’s keypoints, and then explicitly
aggregates local features around these keypoints for subse-
quent refinement. In addition, we directly generate bounding
boxes from these predicted keypoints rather than separately
regressing them in another branch because the keypoints are
real points on a garment, which should be easier to locate
than the corner points of bounding box that do not actu-
ally exist. Different from previous methods (Ge et al. 2019;
Sidnev et al. 2019), where a parallel-connection paradigm
is employed, our method is built upon a series-connection
strategy between keypoints estimation and clothing detec-
tion to make full use of keypoint cues.

Here, a key component is the design of the feature aggre-
gation module for local feature integration around keypoints.
An ideal one should satisfy two requirements: i) as the defi-
nitions of keypoints vary across categories of clothes, and all
the keypoints of all classes are estimated before classifica-
tion, the module needs to select a subset of keypoints which
are valid for a garment; ii) given the selected keypoints, ag-
gregation of features around them is required. For the first
requirement, we propose two solutions: i) a multi-column
keypoint-encoding-based feature aggregation module that
leverages a network to automatically do the information ex-
traction; ii) a keypoints-selection-based feature aggregation
module, which selects a part of keypoints according to their
regressed confidence scores. As to the second requirement,
we handle it with the deformable convolution (Dai et al.
2017), which extracts and fuses features from different posi-
tions guided by a learnable deformable offset. Here, we use
the offset of selected keypoints as the deformable kernel.

Under ideal circumstances, the more accurate the key-
points are estimated, the better the clothing detection per-
formance is. Based on this hypothesis, we further propose a
cascade strategy to refine the predicted keypoints and cloth-
ing detection performance repeatedly. Then the above fea-
ture aggregation modules can be regarded as a bridge be-
tween two cascaded stages.

Our main contributions are summarized as follows:

* we empirically show that keypoints are important cues to
help improve the performance of clothing detection and
further design a simple yet effective KGDet model that
incorporates keypoint cues into clothing detection;

* we provide two alternative modules to aggregate features
around keypoints: i) a multi-column keypoint-encoding-
based feature aggregation module; ii) a keypoint-
selection-based feature aggregation module;

* extensive experiments validate the effectiveness of our
method as well as the positive correlation between cloth-
ing detection and keypoint estimation. The proposed
KGDet achieves superior performance on the DeepFash-
ion2 dataset and FLD dataset with high efficiency.

Related Work
Fashion Image Understanding

The understanding of fashion images is of great commer-
cial value and has inspired much research work. In a survey
paper (Cheng et al. 2020), computer vision applications on
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fashion are categorized into four research topics: fashion de-
tection ! (Liu et al. 2016b; Yan et al. 2017; Ge et al. 2019),
fashion analysis (Chen, Gallagher, and Girod 2012; Chen
et al. 2015; Han et al. 2017; Hidayati et al. 2017; Caba Heil-
bron et al. 2019), fashion synthesis (Yoo et al. 2016; Dong
et al. 2019), and fashion recommendation (Song et al. 2019;
Wang, Wu, and Zhong 2019; Vasileva et al. 2018). Fashion
detection and analysis belongs to the understanding of fash-
ion images, and fashion synthesis and recommendation rely
on image understanding.

Early methods for fashion image understanding depend
on hand-crafted features (Liu et al. 2012; Kiapour et al.
2014). Recently, with the help of CNNs and large-scale fash-
ion datasets, more and more deep-learning-based applica-
tions burst out. For instance, the DeepFashion (Liu et al.
2016a) dataset enables clothing recognition, attribute analy-
sis, and clothing retrieval in simple scenes. Later, The Deep-
Fashion2 dataset (Ge et al. 2019) adds to the difficulty of
these problems because it contains multiple garments in a
single image and defines finer fashion landmarks for differ-
ent clothing categories. Our study focuses on multi-class and
multi-instance clothing detection since it is closer to the re-
alistic scenario of fashion image understanding, either for
customers or businesses.

Fashion Detection and Landmark Detection

Although clothing detection is the foundation of fashion
image understanding, little research work is devoted to it
specifically. For example, the Match R-CNN (Ge et al. 2019)
is adapted from the region-proposal based detector Mask R-
CNN (He et al. 2017) with extra branches for fashion land-
mark estimation and fashion retrieval; the DeepMark (Sid-
nev et al. 2019) model is a fashion-version of the anchor-free
detector CenterNet (Zhou, Wang, and Krédhenbiihl 2019). In
contrast, based on the essential properties of clothing, we
design a new method that is guided by fashion landmarks to
detect garments in particular.

Fashion landmark detection is to estimate the keypoints
(e.g., collar, hemline and waistline) on a garment (Liu et al.
2016b; Yan et al. 2017; Ge et al. 2019; Li et al. 2019;
Lee et al. 2019). Liu et al. (2016b) introduce this task and
collect a fashion landmark dataset (FLD). Further, a Deep
Fashion Alignment (DFA) model is proposed. Wang et al.
(2018) utilize a knowledge-guided fashion network to solve
the fashion landmark detection problem. Later, Ge et al.
(2019) brings the difficulty of this task to a new level with
finer keypoint annotations in the DeepFashion2 dataset. Yu
et al. (2019) and Lee et al. (2019) use layout-graph reason-
ing and a global-local embedding module for fashion land-
mark detection, respectively. All these methods rely heavily
on clothing detection, but few of them look into the corre-
lation between fashion landmarks and clothing detection. In
this work, we prove that fashion landmarks is beneficial to
clothing detection.

'In this paper, we do not strictly distinguish between fashion
detection and clothing detection, fashion landmark and clothing
keypoint.
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Figure 2: The architecture of the KGDet network, which consists of an initial stage and two refinement stages. Each stage
contains two branches: a classification branch and a regression branch. The blue arrow refers to the convolution operation
unless otherwise specified. For the depth of feature maps, C refers to the number of classes, K and K’ refer to the number of

keypoints and informative keypoints, respectively.

Our Approach

Given an input image, the model outputs a bounding box
and the corresponding class, and keypoints of each garment.
As shown in Figure 2, the KGDet network consists of an
initial stage and two refinement stages. In each stage, there
is a classification branch and a regression branch. On the
classification branch, we predict a score map for each cloth-
ing class. On the regression branch, we firstly regress all the
keypoints, then compress them into a compact set of points
(we call them informative keypoints, which can be viewed
as a representative subset of the keypoints). These informa-
tive keypoints are used to generate bounding boxes through
a transformation. Finally, we utilize keypoint-guided feature
aggregation module as a bridge between stages to refine the
clothing detection performance gradually.

KGDet Network

Backbone. We use the ResNet (He et al. 2016) along with
the Feature Pyramid Network (FPN) (Lin et al. 2017a) as
our backbone. According to the training sample assignment
strategy of RepPoints (Yang et al. 2019), we find that 99.4%
of the garments in the DeepFashion2 dataset (Ge et al. 2019)
are assigned to P5-P7 levels of FPN. Therefore, we reduce
the computation burden of our model by leaving out the fea-
ture maps P3 and P4. The specific statistics can be found in
supplementary material.

Before feeding feature maps from the FPN into all three
stages, we use three 3 x 3 convolution layers to decouple the
feature maps for classification and those for regression. The
difference between an initial stage and a refinement stage
is that we use a deformable convolution (Dai et al. 2017)
at the beginning of a refinement stage with the informative
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keypoints serving as the deformable offset.

Classification. We represent an object by its center point,
just like other anchor-free detectors (Zhang et al. 2018; Tian
et al. 2019; Yang et al. 2019). We predict a score map
C € REXWXC \where H and W are the height and width of
the feature map, and C' is the number of categories. A high
activation point on the score map C indicates a candidate
object center point of a particular class.

Specifically, on the classification branch, we forward the
feature maps for classification through a 3 x 3 convolution
and a 1 x 1 convolution to generate the score map C. For
ground-truth assignment, we align the center point of each
ground-truth bounding box onto the score map, and set the
k-nearest grids around the point as positive samples (k = 9
by default). To train this classification branch, we use a focal
loss (Lin et al. 2017b) L5 with v = 2.0 and o« = 0.25.

Keypoint Regression. Similar to RepPoints (Yang et al.
2019), we represent a keypoint with its offset vector from
the center of the object, and directly regress the offset values
instead of using the heatmap representation.

Specifically, on the regression branch, we feed the fea-
tures for regression into a 3 x 3 convolution and a 1 x
1 convolution to predict the offset of keypoints AK €
RHXWX2K  where H and W are the height and width of
the feature map, and K is the total number of keypoints of
all categories. The keypoint offset vector at location (i, j) is

AK;; = [z}, Ayl ..., Axk, AyK]" e 2K
which encodes the offset values from the location (4, j) to
all the K keypoints in x-axis and y-axis direction. Then we
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Figure 3: Keypoint-Guided Feature Aggregation.

have the offset vector of the p-th keypoint
T
AK; = [Azy, Ayl

Finally, the predicted coordinate of the p-th keypoint at lo-
cation (7, j) is

. ) T

K}, = [(Azp +1) x s, (Ayg +J) x 8],

where s is the stride of the feature map.
In the training stage, we use the smooth /; distance
between the predicted keypoint coordinate K; ; and the

ground-truth keypoint coordinate K; ; at locations of posi-
tive samples as our loss function Ly,. Note that for each gar-
ment, only a subset of keypoints occur in an image. There-
fore, we only count the loss of these keypoints that occur.

Informative Keypoints. One of the vital element of our
method is the informative keypoints. They serve as a repre-
sentative subset of all the predicted keypoints. We use them
not only to generate bounding boxes but also to aggregate
features for succeeding refinement. The reason we use the
informative keypoints rather than all the keypoints is that
the total number of keypoints can be as large as 294 (e.g.,
DeepFashion2 (Ge et al. 2019)), and for each garment, only
a small proportion of keypoints occur in view.

To obtain the informative keypoints, we propose two solu-
tions, including keypoint-encoding and keypoint-selection.
Keypoint-encoding is to generate the informative keypoints
AK’ by feeding the predicted offset of keypoints AK
through a 1 x 1 convolution. Keypoint-selection is to select
a subset of keypoints according to a particular standard.

From Informative Keypoints to the Bounding Box.
Given the fact that the keypoints of a garment align well with
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the spatial span of the garment (refer to Figure 1), we gener-
ate the bounding box by a transformation from a set of rep-
resentative keypoints, i.e., the informative keypoints K'. We
adapt the transformation trick from RepPoints (Yang et al.
2019) detector, where the mean value and the standard devi-
ation of a point set are used as the center point and the scale
of the rectangle box. Two globally shared multipliers A, and
Ay are learned to adjust the scale of the box. Having the pre-

dicted offset of informative keypoints AK’ € RH*Wx2K"
we can get the offset vector at location (i, j) by

’ 7 T !
AK/;; = Ax,lf,,Ay,i,,...Axg,Ay,ﬁi] € R2K,

where K’ is the number of informative keypoints. Then the
bounding box is

B, . = Yo —_ .7+ Ayk/
J Wy )\:v . SAxk/
hay Ay - SAY

where Az, and Ay are the mean values of all the infor-
mative keypoints, while sa;,, and say,, are the standard
deviations.

When train the model, we choose the smooth [; distance
between the predicted bounding box B; ; and the ground-

truth bounding box ]/?\)Z ; at locations of positive samples as
the loss function Ly, and minimize it.

Keypoint-Guided Feature Aggregation

It is well stated in previous work (He et al. 2017; Wang
et al. 2019; Chen et al. 2019) that the alignment of fea-
tures profoundly influences the performance of a detector.
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Figure 4: Visualization of our results on DeepFashion2 (Ge et al. 2019). Our cascaded keypoint-guided feature aggregation
network can accurately detect clothing and its keypoints in various scenarios.

We design a keypoint-guided feature aggregation paradigm
that sparsely samples features from the locations of infor-
mative keypoints. This operation collects more information
compared to methods that only use features at the center
point of an object. Meanwhile, it avoids gathering back-
ground information in region-proposal-based methods (He
et al. 2017) because keypoints always lie on the object.
Moreover, the keypoint-based informative keypoints reveal
a stronger ability of information extraction in contrast with
the points learned by the network itself (Yang et al. 2019),
which will be shown in our experiments.

Corresponding to the two approaches to obtain informa-
tive keypoints, we propose two modules to perform fea-
ture aggregation with the aid of deformable convolution
(Dai et al. 2017): 1) the multi-column keypoint-encoding
based feature aggregation module; ii) the reliable-keypoint-
selection based feature aggregation module.

Multi-Column Keypoint-Encoding Based Feature Ag-
gregation Module. For feature aggregation with the
keypoint-encoding approach, a simple practice is to use a
1 x 1 convolution to compress K keypoints into K’ aggrega-
tions points, then conduct deformable convolution with the
informative keypoints as the deformation offset. To enhance
the expressive ability of the aggregated features, we use
three parallel 1 x 1 convolutions to generate three different
sets of informative keypoints. Then we aggregate features
with three separate deformable convolutions on each path
(Figure 3 right). In the end, the aggregated features on all
paths are concatenated before fed forward. The encoded off-
sets are learned automatically through the back-propagation
of the network. This process is depicted in Figure 3 (right).

Reliable-Keypoints-Selection Based Feature Aggrega-
tion Module. Another intuitive way to aggregate features
is by keypoint-selection. To build a criterion for point se-
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lection, we use the ground-truth label for the visibility of
each keypoint to train a classifier, predicting whether this
keypoint appears in view. As is shown in Figure 3 (left),
the predicted keypoint offset K contains K offset vectors of
keypoints at each spatial position. Then, we collect n key-
points whose visibility scores are among the top-n (n = 9
by default) as the informative keypoints. Finally, we perform
the deformable convolution with the selected keypoint off-
set. These points are expected to be reliable sources to aggre-
gate features and to help locate the boundary of the garment.

The Cascade Strategy. We adopt the cascade strategy,
which has been proven effective in object detection (Cai and
Vasconcelos 2018). Our keypoint-guided feature aggrega-
tion strategy serves as a bridge between every two stages,
enhancing the feature maps for the later stage. Note that the
score map of each stage is separately regressed, while the
offset of points is calculated the accumulated offset of all
the previous stages.

Network Training

Loss Function. We apply supervision on the output of all
three stages, so the complete loss of our KGDet is

LM

box?

3
L= ZLcls + )‘1L(t + AL

t=1

(1)

where ¢ is the index of stage. We empirically set Ay = 0.1
and A\, = 1 to balance different loss terms.

Training Details. We input images with resolution no
larger than 1333 x 800. We train our network with learning
rate 5e~3, momentum 0.9, weight decay le—*, batch size 8
with 4 NVIDIA P40 GPUs, and the SGD optimizer is em-
ployed to train the whole network. We only use randomly
horizontal flip as data augmentation.



method keypoint backbone APhox  AP3Y APTS param. FLOPs time (ms)
Match R-CNN (Ge et al. 2019) ResNet-50-FPN 63.8 78.9 74.5 - - -
RetinaNet (Lin et al. 2017b) ResNet-50-FPN 63.2 79.0 73.6  3635M 209.67G 48.5
FCOS (Tian et al. 2019) ResNet-50-FPN 64.1 80.2 747  31.87TM 19721 G 38.3
RepPoints (Yang et al. 2019) ResNet-50-FPN 63.3 79.7 740 36.61M 189.79G 55.2
RepPoints-Kp v ResNet-50-FPN 64.0 80.1 749 38.09M 208.84 G 67.6
Ours v ResNet-50-FPN 67.9 80.9 75.0 59.13M 107.50 G 44.6
RetinaNet (Lin et al. 2017b) ResNet101-FPN  65.7 81.1 753 5535M 285.74G 62.1
FCOS (Tian et al. 2019) ResNet101-FPN 65.9 81.7 75.7  5081M 27328 G 52.6
RepPoints (Yang et al. 2019) ResNet101-FPN 65.4 80.8 752  55.60M  265.86 G 69.0
RepPoints-Kp v ResNet-101-FPN  66.0 81.3 75.5 57.08M 28491 G 81.3
Ours v ResNet-101-FPN  68.4 82.3 76.7 78.13M 183.57G 58.5

Table 1: Clothing detection performance comparison of state-of-the-art detectors on the DeepFashion2 (Ge et al. 2019) Dataset.

Inference Details. Given an image with the same reso-
lution as in the training stage, we forward it through our
trained network, and obtain the predicted bounding boxes,
class labels, and keypoints. We use the same NMS operation
as Mask R-CNN (He et al. 2017) for bounding box post-
processing. The keypoints at the corresponding position is
bundled with the bounding box to go through the same post-
processing operation, which means if the bounding box is
removed, then the corresponding keypoints at this position
is also moved out.

Experimental Setup
Datasets

We evaluate the proposed method on the DeepFashion2 (Ge
et al. 2019) and Fashion Landmark Detection (FLD) (Liu
et al. 2016b) dataset .

DeepFashion2 (Ge et al. 2019) is a large-scale fashion
dataset containing four benchmarks (clothing detection, key-
point estimation, segmentation and commercial-consumer
clothes retrieval), with 294 class-relevant keypoints defined
for 13 categories of clothes. Since only a subset of the
dataset is released (192K images for training, 32K for vali-
dation, and 63K for test), our experiments are conducted on
this publicly available portion.

FLD (Liu et al. 2016b) defines 8 keypoints for 3 main
types of clothes. There are 83K images for training, 19K for
validation, and 19K for test.

More details about datasets (distribution of categories and
object sizes) are shown in the supplementary materials.

Evaluation Metrics

For clothing detection, the metrics are AP0 . APS | and
APyox. The first two are the averaged precision under dif-
ferent thresholds of the Intersection over Union (IoU). The
last one is the mean value of the averaged precision across
ten thresholds.

For fashion landmark detection, the metrics include APkp ,
APIZS, and APy, which are defined in the same way as cloth-
ing detection except that we use the Object Keypoint Simi-

larity (OKS) as the threshold.

50
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Baselines

We select varied types of baselines (with or without region-
proposal, anchor-based or anchor-free):

Match R-CNN (Ge et al. 2019) is proposed along with
the DeepFashion2 dataset. It is extended with extra multi-
task branches that perform keypoint estimation and cloth-
ing retrieval from Mask R-CNN (He et al. 2017) which is
based on region-proposal. RetinaNet (Lin et al. 2017b) is a
single-stage detector which regresses bounding boxes from
prior anchors without region-proposal. FCOS (Tian et al.
2019) directly regresses bounding boxes from center point
features, thus regarded as an anchor-free method. RepPoints
(Yang et al. 2019) is also an anchor-free detector. It models
an object with learned representative points, then extracts
features from these points with the deformable convolution
(Dai et al. 2017). RepPoints-Kp is an extension of RepPoints
(Yang et al. 2019) implemented by ourselves. It has a key-
point regression head parallel of the box head.

Evaluation Results:
Improvement, Correlation and Extension

In this section, we firstly answer the question whether key-
points are beneficial to clothing detection. Based on this,
we explore the correlation between clothing detection and
keypoint estimation. Since we design two alternative mod-
ules for feature aggregation, we compare the performance of
them. Finally, we train our KGDet model on the FLD (Liu
et al. 2016b) dataset to demonstrate its effectiveness.

Can Keypoints Help Improve Clothing Detection?

To answer the question of whether keypoints can help im-
prove clothing detection, we should first figure out how to
integrate keypoints into a detection model. A simple solu-
tion is to add an separate keypoint regression branch, which
is among our baselines (RepPoints-Kp). Another one is our
KGDet network which deeply incorporates keypoints into
the process of clothing detection. In Table 1, we compare
the clothing detection performance of the two and other re-
cent detectors. Firstly, we can see that our simple solution
(RepPoints-Kp) benifits from the additional keypoint su-
pervision and has a performance gain of about 0.7% com-
pared to the vanilla RepPoints (Yang et al. 2019) model.
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Figure 5: Correlation between clothing detection and key-
point estimation performance on the DeepFashion2 (Ge
et al. 2019) Dataset. Each point corresponds to a model (for
details see Table 4), whose size is proportional to the number
of informative keypoints.

This validates that keypoints do help with clothing detection,
although the improvement is marginal. While, our KGDet
model outperforms RepPoints-Kp as well as other baseline
models % by a large margin. This validates the superiority of
our keypoint-guided clothing detection design.

As shown in Figure 4, our KGDet network can accurately
detect garments and their keypoints in various scenarios. As
to the failure cases, in (h), (i), and (j), outwears and shirts
are mistaken for tops because the buttons and zips are either
vague or occluded. The dress in (1) is confused with a skirt,
and the skirt in (m) is wrongly recognized as a part of the
shirt, both caused by complex outfit combinations.

Correlation Between Keypoint Estimation and
Clothing Detection

Although keypoint estimation is not our goal, it is a vital
intermediate task that boosts our detector. It is worth figur-
ing out the correlation between the performance of the two
tasks in our model. For simplicity and efficiency, we directly
regress keypoints in the form of offset from an object’s cen-
ter points. But, as is stated by previous researches (Sun et al.
2018; Nie et al. 2019), it is hard to precisely regress a large
offset with the convolutional neural network. Therefore, we
strengthen our model by using more informative keypoints,
and refine the predictions in a cascaded way. From Figure 5,
we get two observations: i) the performance of clothing de-
tection is positively relevant to that of keypoint estimation;
ii) more stages and informative keypoints are beneficial to
both tasks. Note that if we disable the supervision of key-
points, the APyox of model #4 drops for 1.2%.

Impact of Different Design Modules

Here we show the comparison of the two feature aggrega-
tion modules in Table 2. For our implementation, keypoint-
encoding is superior to keypoint-selection.

2The performance of Match R-CNN (Ge et al. 2019) is reported
in https://github.com/switchablenorms/DeepFashion2.
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agg. module | APwx APpo APLS | APy, AP} AP[Y
kp. encoding | 65.8 77.9 721 |31.7 654 253
kp. selection | 64.1 753 70.5 | 29.5 629 233

Table 2: Comparison of the two proposed feature aggrega-
tion modules on the Deepfashion2 dataset with ResNet-50-
FPN as the backbone, and features aggregated from 9 points.

Extension to the FLD Dataset

In Table 3, we compare our method with baseline models on
the FLD (Liu et al. 2016b) dataset, whose definition of cate-
gories and keypoints are simpler. Our method takes the lead
by the AP and AP75; metrics, indicating higher localization
precision, which owes to the keypoint supervision.

method APy, AP AP
RetinaNet (Lin et al. 2017b) 69.3 90.4 77.8
FCOS (Tian et al. 2019) 68.7 89.9 78.0
RepPoints (Yang et al. 2019) 69.1 91.3 78.2
Ours 70.8 90.2 79.0

Table 3: Performance of clothing detection on the FLD (Liu
et al. 2016b) dataset. We use ResNet-50-FPN as the back-
bone for all the models below.

Conclusion

In this paper, we leverage keypoint cues to improve clothing
detection, and propose a KGDet that can integrate the local
feature from keypoints for classification and generate accu-
rate bounding box from keypoints for regression. To better
gather representative keypoints to help clothing detection,
we design two alternative modules, which are the multi-
column-keypoint-encoding-based feature aggregation mod-
ule and the reliable-keypoint-selection-based feature aggre-
gation module, respectively. Extensive experiments show
the effect of keypoints to improve clothing detection, and
the proposed KGDet achieves superior performance on the
DeepFashion2 dataset and FLD dataset with high efficiency.

backbone

ID #pts. #stages

FPN levels lossiy flip APy APpox

# 9 2 ResNet-50 Ps — Pr v 30.2 63.9
#1 25 2 ResNet-50 Ps —P; v 30.8 64.5
#2 49 2 ResNet-50 Ps —P; vV 31.6 652
#3 83 2 ResNet-50 Ps —P; 327 66.3
#4 83 3 ResNet-50 Ps — Pr v 33.8 679
#5 83 3 ResNet-101 Ps—-Pr V 359 68.4
#6 83 3 ResNet-50 Ps—P; v v 356 683
#1 83 3 ResNet-50 P, —P; v v 368 69.1

Table 4: Clothing detection performance improves with key-
point estimation. “#pts”: the number of informative points;
“#stages”: the number of stages; "FPN levels”: the levels of
FPN’s feature maps as input; "flip”: feeding in an input im-
age and its horizontal mirror into the model, and fusing the
output when training and testing.
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