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Abstract

This paper represents object instance as a terrace, where the
height of terrace corresponds to object attention while the
evolution of layers from peak to sea level represents the com-
plexity in drawing the finer boundary of an object. A multi-
task neural network is presented to learn the terrace represen-
tation. The attention of terrace is leveraged for instance count-
ing, and the layers provide prior for easy-to-hard pathway of
progressive instance segmentation. We study the model for
counting and segmentation for a variety of food instances,
ranging from Chinese, Japanese to Western food. This paper
presents how the terrace model deals with arbitrary shape,
size, obscure boundary and occlusion of instances, where
other techniques are currently short of.

Introduction

Panoptic segmentation has recently been studied in (Kirillov
et al. 2019), aiming to combine the strength of object de-
tection (He et al. 2017) and semantic segmentation (Long,
Shelhamer, and Darrell 2015). Specifically, the goal is to
pixel-wise extract arbitrary shapes of semantic units, where
the shape is beyond bounding box and the unit-of-interest is
not only object category but also instance. Panoptic segmen-
tation naturally supports applications like instance counting,
which is often achieved by glance-based regression without
having to know the object locations (Chattopadhyay et al.
2017). This paper studies panoptic segmentation for food in-
stances on a plate as shown in Fig. 1. Food segmentation is
a fundamental step towards portion size estimation for nutri-
tion estimation (Myers et al. 2015). As studied in nutritional
science (Khanna et al. 2010), there is correlation between the
area and density of food. Under the situation where the scale
of food can be estimated, for example by fiducial marker (He
et al. 2013), counting the number of pixels per food item al-
ready provides basic information for calorie estimation.
Nevertheless, counting and segmenting food instances, as
shown in Fig. 1, is difficult. First, instance occlusion is a
common phenomenon in food presentation. When the in-
stances occlude or touch each others, the boundaries might
not be distinguishable, as shown in Fig. 1a and Fig. le. Sec-
ond, food items are often decorated and topped with dif-
ferent ingredients (Fig. 1b and Fig. 1d). Regularization is
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Figure 1: Challenges of counting and segmentation.

required to constrain over-segmentation of toppings as in-
stances. Third, as food images are usually captured in close
distance, distortion of size and shape can always be observed
due to perspective difference (Fig. 1c). Fourth, the unit of
items can be a piece, slice or even a scoop of dish as shown
in Fig. 1f. A combination of these factors in general results
in a variety of visual appearance in terms of shape and size.
To the best of our knowledge, there is yet to have any study
in the context of food instance segmentation to address these
challenges.

The contribution of this paper is proposal of a novel ter-
race based instance segmentation technique. The method
represents instance as a multi-layer terrace (see Fig. 3 for ex-
ample), where different layers signify the level of difficulty
in segmentation. Each layer provides prior to the shape as
well as size of an instance. An instance is segmented layer-
wise in progressive manner to preserve the shape and size.
To regularize instance segmentation to alleviate the adverse
effect such as due to food decoration, the height of terrace
is estimated as attention for glance-based counting. To this
end, terrace is end-to-end learnt as a multi-task neural net-
work for joint segmentation and counting. Last but not least,
terrace is class agnostic. The terrace can be clustered into
high-quality instance segmentation map as in (Kirillov et al.



Annotation Object category Counting Segmentation
(Chattopadhyay et al. 2017) image-level yes regression no
(Laradji et al. 2018) point-level yes blob partially
(Onoro and Lopez 2016) point-level no density map partially
(Cholakkal et al. 2019) image-level yes density map partially
(Tian et al. 2019) bounding box no object detection partially
(Bai and Urtasun 2017) instance map yes clustering yes
(Wang et al. 2019a) instance map yes clustering yes
(Neven et al. 2019) instance map yes clustering yes
(He et al. 2017) bounding box + instance map either object detection yes
Ours terrace polygon no clustering yes

Table 1: An overview of methods for object counting, detection and segmentation

2019; He et al. 2017; Neven et al. 2019) with minimum an-
notation effort. The ground-truth of an instance is a polygon,
which can be created in about 20 times faster than pixel-wise
instance labeling.

Related Works

Food instance counting and segmentation is seldom studied
in the literature. Having said that, there exist off-the-shelf
methods for this problem. Table 1 broadly classifies these
methods based on different factors: labeling effort, class spe-
cific versus agnostic, counting algorithm and completeness
of instance extraction. These methods operates either on ev-
eryday domain (e.g., COCO (Lin et al. 2014)), cityscapes
(Cordets et al. 2016) or surveillance videos. Directly apply-
ing them to address the challenges in food domain is not
seriously explored.

Regression is a powerful method and has been applied
for counting cells in microscope images (Hernidndez, Sul-
tan, and Pande 2018) and fruits on a tree (Chen et al.
2017). A general way is by modifying convolutional neu-
ral network (CNN) to output a continuous number as count.
These approaches are domain-specific and category agnos-
tic, demanding only image-level annotation and assuming
the same or similar instance size. Category-specified count-
ing is studied in (Chattopadhyay et al. 2017) to estimate
count individually for each object category. Inspired by (Cu-
tini and Bonato 2012), this approach divides an image into
non-overlapping grids and performs counting in divide-and-
conquer manner by sequential subtilizing on grids. As count-
ing is performed “by glance” without localizing objects,
these approaches are not applicable to food instance seg-
mentation.

More advanced approaches are by generating density map
(Onoro and Lopez 2016), blobs (Laradji et al. 2018) or in-
stance segmentation (Bai and Urtasun 2017; Wang et al.
2019a; Neven et al. 2019), which indicate instance locations,
as the basis of counting. Point and instance-level supervi-
sion that roughly annotates the object locations is required.
Density map is popularly adopted for counting crowd and
animals in surveillance videos. These approaches fit object
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sizes with Gaussian distribution. The object size often needs
to be explicitly estimated such as by camera perspective map
(Shi, Yang, and Chen 2019), which are not available in most
applications. Blob-based detection (Laradji et al. 2018) is
more applicable for general object detection. Nevertheless,
only a small portion of an instance can be extracted.

Object detection techniques, such as (Law and Deng
2019; Tian et al. 2019), generally support instance count-
ing. However, limited by bounding box representation, the
arbitrary shapes of objects cannot be described. The prob-
lem is addressed by proposal-based instance segmentation
(He et al. 2017; Bolya et al. 2019), which also produces
a mask outlining the object shape inside a bounding box.
Proposal-free approach, on the other hand, performs bottom-
up image processing, by first labeling of pixels into seman-
tic categories and then grouping them as instance masks
(Neven et al. 2019; Wang et al. 2019a; Bai and Urtasun
2017). In SECB (Spatial Embeddings and Clustering Band-
width (Neven et al. 2019)), each pixel value is embedded to
predict the centroid and size of the instance that it belongs
to for instance clustering. In PSENet (Wang et al. 2019a),
starting from predicting multiple scales of instance seeds,
pixels are progressively labeled across scales from the in-
stance seeds towards borders by 8-neighbourhood connec-
tivity analysis. Our proposed terrace model is also proposal-
free and the most similar approach is Deep watershed (Bai
and Urtasun 2017), which represents an instance as 16-level
watershed for pixel labeling. To produce the watershed, each
pixel predicts the direction that points to the nearest instance
boundary. Terrace also adopts multi-layer instance represen-
tation. However, different from Deep watershed, terrace en-
joys the simplicity in network design for not performing dis-
tance transform to predict direction for every pixel. Instead,
a counting subnetwork is included to regulate the forma-
tion of terrace. Terrace is also computationally efficient with
comparable speed as Yolact (Bolya et al. 2019) and enjoys
higher accuracy in instance counting and segmentation than
the existing approaches.

In food domain, instance localization are mostly based
on off-the-shelf techniques, such as semantic segmentation



conv 1x1
0,

Input

6

Regression-based
counting

propagate P

Instance Segmentation

Terrace map

Figure 2: Terrace model for multi-task instance segmentation and counting.

(Aguilar et al. 2018), object detection (Ege et al. 2019; Deng
et al. 2019) and DeepLab (Myers et al. 2015). These works
do not investigate the problem of food counting. Although
localization of bounding boxes inherently supports counting,
the boxes cannot adequately describe the arbitrary shapes
of food items. Panoptic segmentation (Kirillov et al. 2019),
which locates and segments instances, is more applicable.

Terrace-based Instance Segmentation

Fig. 2 sketches the architecture of terrace model. Overall, the
network consists of two branches extended from ResNet-50
(He et al. 2016) backbone, respectively, for a terrace map
based on Fully Convolutional Network (FCN, (Long, Shel-
hamer, and Darrell 2015)) and a regression-based counting.
The terrace will be post-processed as an instance map. The
counting sub-network penalizes over- and under-creation of
terrace instances.

Regression-based counting has limitation that food in-
stances cannot be localized for downstream applications. In-
deed, a perfect way is by extracting instances explicitly for
counting. Nevertheless, counting by localization is particu-
larly difficult due to factors such as occlusion and obscure
food boundary. We model food item as a terrace with multi-
ple layers, indicating how each region is far from “sea level”,
i.e., either other items or background clutter. The centre of
a terrace is a “peak” that indicates the attended region for
counting. On the other hand, the outer most terrace layer
is a risky region that should be segmented in care. In sum,
the terrace map representation aims to compromise count-
ing by attending to peaks, and segmentation by preserving
the shape of food as far as possible in a progressive manner.

Terrace Model

In the terrace pathway, terrace layers are categorized into
k—+1 labels, where £ is the number of layers and the addition
label is for background. Denote p;, ,,, € RFTD*1 as output
of the last deconvolution layer of FCN for a pixel m in an
image n. The terrace height probability distribution at this
pixel is:

ey

p:mn = Softmax(pn,m)
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where p}; ,, € R+ Cross-entropy loss is employed to
regulate the predicted class labels:

- ZTILV Zﬁf Wi IOg(p:L,m,tnml) )
NM
where N and M are the number of images and pixels per
image respectively, py, ., is the probability score of
pixel (n,m) belonging to ground-truth label ¢,,,,, Wy is
the weight for label (or layer) k. In practice, the weight
W, should be decreased layer-wise from the inner most
layer (i.e., peak) towards outside (i.e., sea level). We set
the weight of inner most layer as 2.0, and the value is
decremented by 0.2 after each subsequent layer. For exam-
ple, a 5-layer terrace will have weights for k£ 4 1 labels as
[2.0,1.8,1.6,1.4,1.2,0.5], where the weight 0.5 is for pix-
els classified as background. In the instance labeling stage,
class label is picked as the final prediction for terrace layer.
A terrace map exhibits gradual increase or decrease in
height level when crossing layers. For an actual height level
tn,m, a close prediction of ¢,, ,, = 1 should be considered
better than a further distance such as ¢,, ,, & 2. Although
L1 ass penalizes misclassification errors, this relative dis-
tance has not been under consideration. We propose a regres-
sion loss function namely L prapr to address this gap. At
each pixel, a regression height level fnym is modeled as the
integration of its probability distribution over k + 1 terrace
levels:

Lepass =

{n,m - Vk+1p:1,m (3)
where Vi1 = [0,1,.., k] € R*>(*+1D amplifies the prob-
ability of a layer by a constant equals to its layer id, while
suppressing sea level (or background) to 0. Then, the height
loss Ly grear is computed as following:

211:/ Zn]\f |tn,m - En,m|
N “)

Opverall, the loss function for terrace sub-network is for-
mulated as:

Lygrgur =

&)

Lcontovr = Luerear + Lorass

Instance Labeling

Creation of instance map is basically a clustering process.
Starting from the terrace peaks as “seeds”, each layer is piled



sequentially by grouping pixels being most probably classi-
fied to that layer. Along the process, different terraces may
compete for pixels. As the network already learns to capture
instance shape by classifying pixels to different terrace lay-
ers, this mostly happens at the outermost layer. We adopt a
simple first-come first-serve strategy for instance labeling.
Specifically, a pixel is assigned to a terrace that first reaches
it during clustering. Note that, different from the conven-
tional clustering algorithms such as k-means, the terrace
map provides prior knowledge about the number and shapes
of instances. The shape can be arbitrary and is not neces-
sarily an ellipse as in the density map (Onoro and Lopez
2016). The layer-wise representation of terrace, neverthe-
less, is similar to density map, which allows growing of in-
stance shape in a “safely” manner. In such case, even when
food items are severely overlapped, the first few inner layers
of a terrace can be more “safely” piled before creeping into
“high risk” region to delineate instance border.

Denote the label for the inner most layer of a terrace map
as k. The label is decremented by k£ — 1 when continuing to
the next subsequent layer. The clustering algorithm is sum-
marized as following:

» Step 1: Perform the connected component analysis to
cluster pixels being labeled as layer k. Instance ids are
then assigned to each cluster. The pixels neighbouring to
the border of layer k is put in a queue S.

e Step 2: Set k = k — 1 and initialize an empty queue B.

2a: Retrieve a pixel p from the queue .S and traverse the
neighbours of p.

2b: Propagate the instance id of p to the pixels that are
classified to layer k. Add these pixels to queue S.

2¢c: If any of the neighbours are not classified to k'"
layer, p is regarded as a pixel located at the border
across two layers. Add p to the queue B.

2d: Repeat step-2a until the queue S' is empty.

 Step 3: Copy queue B to queue S.
¢ Step 4: Repeat step 2 until k£ = 1.

The algorithm, which is linear to the number of pixels in
terms of time complexity, is simple and efficient to imple-
ment.

Modeling Terrace Height as Attention for Counting

By simply enumerating the number of instances in step-1
of the clustering algorithm, terrace map can be utilized for
counting. Nevertheless, when scene complexity is high, false
terraces could be predicted resulting in excessive number
of counts. For regularization, a regression-based counting
is plugged in for simultaneous counting and segmentation.
To focus counting on the terrace peaks, a connection is cre-
ated to fuse the feature maps of the last convolution layer
and a small version of attention map predicted from the first
deconvolution layer, as shown in Fig. 2. The learning of at-
tention weights in this map is equivalent to estimating the
height of terrace.

Denote the first deconvolution layer as ¢; € R*+DxS
where S is the resolution. Similar intuition as Equation 1,
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Dimsum Sushi Cookie Mixed dishes

#categories 27 11 100 135
#counting 6 6 9 6
#images 3,760 2,877 5,920 9,254

Table 2: Statistics on the number of food categories and im-
ages in four food datasets.

the attention of each terrace layer is learnt by:

(6)
where ¢F € R +1Dx1 The terrace height is estimated by:
(7

where Vi1 = [0,1,..,k] € RP>(*+1) as defined in Equa-
tion 3. The terrace height is subsequently used to weight the
feature map f; of the last convolution layer, as following:

.. Hifi
I 2 (8)
where k in the denominator is to normalize the terrace
height. The transformed map f; will be further undergone
average pooling and passed through a fully-connected layer
for regression counting. The loss function of regression-
based counting (RC) minimizes the mean absolute error be-
tween the actual (r,,) and predicted (7,,) counts over training
examples, as following:

q; = softmax(q;)

Hr =Viqiq7

1 N
Lpe = N;m—m 9)

To this end, the loss function of multi-task terrace is:

LregrracE = ArcLrc+AconTourLconTour (10)
where \gc and A\conTou R are trade-off parameters.

Experimental Setup

Dataset

The experiments are conducted on four datasets: Dimsum,
Sushi, Cookie and Mixed dishes, with statistics summa-
rized in Table 2. The first three datasets, represent Chinese,
Japanese and Western food respectively, are constructed by
crawling images from search engines. The images are man-
ually screened to contain one to nine food items. In some
of the images, the items are pieces cut from a whole food.
The last dataset, Mixed dishes, is contributed by (Wang et al.
2019b), where each image is composed of multiple dishes
placed on a plate. The images are collected from different
canteens in a university. The details of datasets are provided
in the supplementary document.

The terrace polygon of a food item is manually created
for training and validation sets. An annotator only marks the
corners of an instance. The line segments between corners
are then automatically drawn to form a polygon that approx-
imately encloses the item. The part of instance which is oc-
cluded will not be delineated by polygon. On each instance,



we calculate the distance from a pixel to its nearest instance
boundary. The distances for all the pixels in an instance are
then quantized into k different layers, such that each layer
has equal thickness. The pixel-wise instance map, labeled
with the aid of GrabCut (Rother, Kolmogorov, and Blake
2004), is created for each testing image for evaluation pur-
pose. Each dataset is split into the proportion of 70:20:10 for
training, testing and validation respectively.

Performance Measures

The measure mean absolute error (MAE) proposed in
(Onoro and Lopez 2016; Laradji et al. 2018) does not take
into account the case when count is correctly predicted by
chance. For instance, if the model results in a falsely de-
tected instance and a missing instance, the number of count
is still correct. We propose a new version of MAE, named
MAE", taking into account localization error. MAE* mea-
sures error by enumerating the number of false positives and
negatives, as following

N
1
MAE* = — FP,|+|FN, 11
N;(I |+ ) (11)

where N is the total number of testing images, F'P,, and
F'N,, are respectively the sets of false positives and nega-
tives in an image. To determine these two sets, one-to-one
bipartite graph matching is performed to align the ground-
truth and predicted instances based on IoU (Intersection of
Union). The instances which is not matched are then identi-
fied as either false positives or negatives.

The performance of instance segmentation is measured by
Panoptic Quality (PQ) proposed by (Kirillov et al. 2019). PQ
first performs one-to-one matching to align ground-truth and
segmented instances. A match is considered as a true posi-
tive (TP) if its IoU between two instances is more than 0.5.
Otherwise, a ground-truth instance is regarded as a false neg-
ative (FN), and a segmented instance is treated as false pos-
itive (FP). Denoting p and g as the segmented and ground-
truth instances respectively, PQ of an image is defined as

Z(p,g)ETP IoU(p, g)
[TP|+ 3|FP| + 3| FN]|

PQ = (12)
In the experiment, the performance is measured by the aver-
age of PQ values over all testing images.

Network Setting

All the proposed models are trained using ResNet-50 (He
et al. 2016) as backbone. These models are pre-trained
on ImageNet! dataset. Inspired by (Loshchilov and Hutter
2017), stochastic gradient descent with warm restarts strat-
egy is employed to adjust the learning rate in the ranges of
[1076,10~%]. The cycle length is set equal to 32 times higher
than the batch size per epoch. All the models are trained with
Adam optimizer and the batch size is set to 16. In the exper-
iment, the model training is stopped after 512 epoches when
training loss converges. The trade-off parameters in Equa-
tion 10 are set to Arc = A\conTour = 1.

"http://www.image-net.org/
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Figure 3: The terrace maps with different number of layers.

Single-task ‘ Multi-task
MAE*  PQ | MAE® PQ
Dimsum 0.22 86.13% 0.18 87.29%
Cookie 0.21 87.99% 0.17 89.15%
Sushi 0.27 83.35% 0.22 84.98 %
Mixed dishes  0.52  67.92% 045 69.30%

Table 3: Performance comparison between terrace models
without (single-task) and with a counting pathway integrated
(multi-task) for instance counting (MAE®) and segmentation

PQ)

Experimental Results
Ablation Studies

The number of layers in a terrace is an ad-hoc parameter.
Ideally, a larger value facilitates network to attend to the
centre-of-mass for counting, while allowing finer levels of
instance segmentation. Nevertheless, as each layer corre-
sponds to one class, a larger number of layers can unnec-
essarily increase the complexity of learning. We experiment
the single-task terrace model with the number of layers set
to be {3,5,7}. When there is only 3 layers, the terrace suf-
fers from accurate localization of instance border for case
when instances are overlapped. By increasing the number to
7, on the other hand, the terrace struggles to classify pixels
into different layers, making the post-processing step cum-
bersome and produces erroneous segments. Fig. 3 shows the
terrace maps of different layers of a sushi image. A terrace
map is sequentially grown from the inner layer towards out-
side. When the appearance of a food item is complex, the er-
ror in a layer could propagate to the next subsequent layers.
Overall, the empirical studies show that setting the number
of layers to 5 is a good tradeoff, and shows both the best
MAE* and PQ in three of the datasets. In the remaining ex-
periment, we set the number of layers to 5 for terrace model.
Table 3 compares the performances of counting and in-
stance map segmentation between the terrace model with-
out counting pathway (single-task) and the proposed terrace
with a counting included (multi-task). In terms of counting,
multi-task shows better MAE* by reducing the error from
4% to 11%. The panoptic quality is also improved for all
datasets. The most significant segmentation improvements
are observed on Sushi dataset, where the additional counting
branch successfully constrains the terrace maps from over-
fitting on the ingredients and sauces on top of sushi items.



Counting (MAE") |

Segmentation (PQ (%))

D C S M| D C S M

Multi-task Terrace 0.18 0.17 0.22 045 | 87.29 89.15 8498 69.30

SECB (Neven et al. 2019) 0.39 029 0.52 0.62 | 84.38 87.88 80.22 65.56

PSENet (Wang et al. 2019a) 0.31 031 052 077 | 8571 87.75 81.17 65.68

Deep watershed (Bai and Urtasun 2017)  0.57 037 0.61 0.75 | 78.62 8536 76.00 61.48

Mask R-CNN (He et al. 2017) 0.33 042 0.55 1.02 | 82.81 81.10 78.87 54.52

Yolact (Bolya et al. 2019) 0.32 0.58 047 0.83 | 82.34 81.83 78.15 60.61
CornerNet (Law and Deng 2019) 045 0.84 0.63 1.36 NA NA NA NA
FCOS (Tian et al. 2019) 0.35 025 046 075 | NA NA NA NA
LC-FCN (Laradji et al. 2018) 0.52 1.17 1.00 473 | NA NA NA NA
Glance-based (Chattopadhyay et al. 2017) 0.24 0.23 0.27 0.63 | NA NA NA NA
Density map (Onoro and Lopez 2016) 0.30 033 037 0.69 | NA NA NA NA

Table 4: Performance comparison with the existing approaches on Dimsum (D), Cookie (C), Sushi (S) and Mixed dishes (M)
datasets. NA means not applicable. Note that glance-based and density map are not available for objects localization.

With reference to Fig. 4, we summarize the strength and
weakness of terrace model. The generated terrace map man-
ages to delineate item shape satisfactorily, even in case when
the presentation of food is complex (Fig. 4a) and with back-
ground clutter (Fig. 4b). Both counting and segmentation
are benefited from this representation. The map, neverthe-
less, could be sensitive to food items with different parts.
Specifically, different parts of an item are enumerated sep-
arately, resulting in over count. This is particularly true in
Cookie dataset where the shapes are diverse and decorated
into parts, as the example shown in Fig. 4c. Multi-task ter-
race, with additional branch for regression counting, is ef-
fective in constraining the erroneous counting. Note that, for
multi-task terrace, the predicted counts in counting and seg-
mentation branches are not necessarily consistent. For com-
plex dish placement, such as the example of mixed dishes in
Fig. 4d, direct enumeration of items in instance map often
yields better performance.

Performance Comparison

As no tailor-made method exists for both food counting
and segmentation, we compare terrace model to state-of-the-
art techniques in object counting, detection and segmenta-
tion. For instance segmentation, we compare to three strong
proposal-free methods including SECB (Spatial Embedding
and Cluster Bandwidth, (Neven et al. 2019)), PSENet (Wang
et al. 2019a), Deep watershed (Bai and Urtasun 2017) and
two proposal-based methods Mask R-CNN (He et al. 2017)
and Yolact (Bolya et al. 2019). In SECB, each pixel is learnt
to predict an offset vector pointing to the instance centre and
a margin estimating the size of instance. Different from “ter-
race levels”, PSENet models each instance with 6 masks of
different scales ranging from 50% to 100% of the instance
size. The mask is expanded progressively across the scales
for pixel labeling. Deep watershed produces a contour mask
of 16 floors to model an instance. Mask R-CNN requires ob-
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Figure 4: The results of multi-task terrace instance segmen-
tation.
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ject proposal. Each predicted proposal is regressed to output
a mask for its instance. For counting, we compare to count-
ing methods based on bounding box detection (CornerNet
(Law and Deng 2019), FCOS (Tian et al. 2019)), blob de-
tection (LC-FCN (Laradji et al. 2018)). Different from ter-
race, LC-FCN outputs one blob per instance, instead of esti-
mating the shape and size of instance. Furthermore, glance-
based (Chattopadhyay et al. 2017) and density map (Onoro
and Lopez 2016) that only predict the number of objects but
not localization are also compared.

Table 4 lists the performances of different approaches.
As noted, multi-task terrace consistently outperforms all the
methods across four different datasets. Fig. 5 gives a snap-
shot of how different methods address the various chal-



lenges in the food domain. LC-FCN works reasonably de-
cent when items do not touch but is not effective on ob-
scure boundary, stacking, close-up of food items and es-
pecially Mixed dishes. Bounding box based approaches are
relatively poor in locating items that are stacked or with ob-
scure food boundary. Nevertheless, they perform satisfacto-
rily in locating decorated items and mixed dishes, as also re-
ported in (Deng et al. 2019). Mask R-CNN, despite perform-
ing slightly better, indeed inherits the weakness of proposal-
based method. Erroneous instance maps, either because of
miss or false instances, are produced when bounding boxes
fail to locate the arbitrary shapes of instances. Deep water-
shed fails to separate instances from occlusion and stacking.
By enforcing pixels to point to instance centre, SECB han-
dles almost as well as terrace model for effects of stacking
and obscure boundary. Compared to terrace, nevertheless,
false instance segmentation happens more often for multi-
part, decorated food instances and mixed dishes. Particu-
larly, when food items are presented in relatively complex
setting, the nearby pixels will struggle pointing to different
centres, resulting in relative worse PQ quality than terrace.
PSENet also appears to be a strong competitor. However,
the result is heavily dependent on the prediction of instance
masks at the lowest scale. When food items are crowded in a
plate, excessive number of masks will be predicted, resulting
in over-segmentation when further expanding to masks of
larger scale. Without considering object localization, glance-
based and density map achieve competitive performances.
However, density map, which performs counting based on a
learnt Gaussian map, struggles on various shapes and poses
of food instances. Occlusion and perspective change make
the “divide and conquer” in the glance-based method fails.
Our method preserves the shapes of food items by grouping
instance pixels in the progressive way from the most con-
fident (terrace peak) to the probable and uncertain regions.
As shown in Fig. 5, terrace shows robustness in dealing with
various situations than other methods.

Speed Comparison

Fig. 6 visualizes the speed efficiency of instance segmen-
tation approaches. These deep learning networks are built
on ResNet-50 backbone (He et al. 2016) and run on a sin-
gle GPU of GeForce GTX 1080. Between the two proposal-
based methods, Yolact (Bolya et al. 2019) optimizes the non-
maximum suppression step, producing food instance masks
2.5 times faster than Mask R-CNN (He et al. 2017). For
clustering approaches, the difference in computation time
depends on not only the network complexity but also the
post-processing algorithm. The designs of SECB (Neven
et al. 2019), with two deconvolution branches for predict-
ing seed maps and offset vectors, and Deep watershed (Bai
and Urtasun 2017), with 2-phase direction net and water-
shed transform net, are considerably complex. Regarding to
post-processing step, PSENet is slow in instance labeling for
repeatedly performing pixel queueing and label propagation
at six different scales of masks. Terrace is optimised by hav-
ing a single deconvolution branch and a low-cost counting
branch. The instance labeling stage only performs one scan
of pixels by queuing the pixels at the borders of different
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Figure 5: Comparison of panoptic segmentation with state-
of-the-art techniques on various challenges. See the supple-
mentary document for more results.
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Figure 6: The accuracy versus speed efficiency of various
techniques. Measurement is averaged over four datasets.

layers for label propagation. The speed of terrace is compa-
rable to Yolact, the fastest instance segmentation to date, at
18.37 frames per second.

Conclusion

We have presented a terrace way of segmenting food in-
stances. Empirical studies on four datasets, which covering
a wide variety of shape, size and food presentation, justify
the merit of this approach in counting and segmentation.
The studies also pinpoint some limitations of the existing
general-object segmentation techniques and verify the effec-
tiveness of terrace model in dealing with various challenges
of food counting and segmentation. Currently, we do not
consider options such as adaptive number and width of lay-
ers in terrace for more effective representation. Such design
is possible by inferencing from scene complexity, which will
be our future work.
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