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Abstract

Counting dense crowds through computer vision technol-
ogy has attracted widespread attention. Most crowd count-
ing datasets use point annotations. In this paper, we formu-
late crowd counting as a measure regression problem to min-
imize the distance between two measures with different sup-
ports and unequal total mass. Specifically, we adopt the un-
balanced optimal transport distance, which remains stable
under spatial perturbations, to quantify the discrepancy be-
tween predicted density maps and point annotations. An ef-
ficient optimization algorithm based on the regularized semi-
dual formulation of UOT is introduced, which alternatively
learns the optimal transportation and optimizes the density re-
gressor. The quantitative and qualitative results illustrate that
our method achieves state-of-the-art counting and localiza-
tion performance.

1 Introduction
Crowd counting has particularly important practical applica-
tion value in public security. It can also be applied to count
vehicles (Onoro Rubio and López-Sastre 2016), cells (Lem-
pitsky and Zisserman 2010), and animals (Marsden et al.
2018). It is challenging to count targets in complex scenarios
with thousands of targets, severe occlusions, and huge scale
variations. As a result, in modern crowd counting datasets, it
is more feasible and labor-saving to provide coarse annota-
tions, e.g., points, than detailed annotations such as bound-
ing boxes or even contours.

Most previous methods adopt detection (Liu et al. 2019b,
2018a) or density regression (Zhang et al. 2016; Sindagi and
Patel 2017) to predict the total count. They encounter an ob-
stacle that the required ground truth is unavailable, such as
the bounding boxes for detection and the pixel-wise den-
sity map for density regression. To ease this problem, some
detection-based methods introduce additional bounding-box
annotations (Liu et al. 2018a) or generate pseudo bounding
boxes (Liu et al. 2019b; Sam et al. 2020), and most density-
regression based methods generate pseudo density maps by
smoothing the sparse annotated points with Gaussian ker-
nels. Nevertheless, previous literature has shown that the
‘quality’ of the generated supervisory signals greatly affects
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the counting performance (Zhang et al. 2016; Ma et al. 2019;
Liu et al. 2019b). For example, the performance of density-
regression-based methods is highly influenced by the Gaus-
sian kernel size (Wan and Chan 2019; Zhang et al. 2016).
Moreover, generating pseudo ground truth also has side ef-
fects. For example, an oversized Gaussian kernel will reduce
the location precision of points and result in poor quality
density maps (Idrees et al. 2018).

In this paper, for the first time, we consider the count-
ing problem from the perspective of measure theory. Specif-
ically, we formulate the collection of scattered annotated
points by a discrete measure v =

∑M
j=1 vjδyj , where

vj = 1, yj is the 2D position of the point, and Y =
{y1, y2, . . . , yM} is the support set of this discrete measure.
Similarly, a density map can also be formulated by a discrete
measure supported on the pixel space X . It is worth noticing
that since only a small portion of pixels are annotated with
points, the supports of these two measures, X and Y , only
sparsely overlap. Therefore, an essential question about the
measure-theory-based optimization method is how to quan-
tify differences between the measure for scattered points and
the measure for dense density maps.

The key to answering this question is to define the dis-
tance between two measures with different supports. As it
is ambiguous to annotate a person occupying an area with a
single point, the desired distance should be robust to the am-
biguity in annotations and remain stable under spatial pertur-
bations of point annotations. This requirement is described
mathematically as weak convergence (Genevay 2019; Sripe-
rumbudur et al. 2012). According to this understanding,
`2 distance, widely used in density-regression methods, is
proved not to metrize weak convergence and is sensitive to
spatial perturbations (further discussed in Sec. 3.2). As a re-
sult, it can only be applied to discrete measures with the
same supports. One alternative is to use optimal transport
(OT) distance, which has been proved to capture the un-
derlying geometry of measures with different supports and
metrize weak convergence (Santambrogio 2015). Nonethe-
less, The prerequisite of using OT is that the total mass of
two input measures should be equal. Thus OT can not han-
dle mass variations, which are common in practice.

To address these limitations, we propose to use unbal-
anced optimal transport (UOT) distance to quantify discrep-
ancy between two measures. Compared to OT, UOT ‘re-
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laxes’ the hard marginal constraint to the marginal diver-
gence penalty (Liero, Mielke, and Savaré 2018). More im-
portantly, UOT metrizes the weak convergence and allows
mass change during transportation. On this basis, we formu-
late crowd counting as a measure regression problem.

Specifically, we regard the scattered point ground truth
and the predicted density map as two measures with differ-
ent supports, and introduce the UOT distance to quantify
their differences. A two-step algorithm based on the semi-
dual regularized formulation of UOT is proposed for effi-
cient optimization, which alternatively learns optimal trans-
portation and minimizes UOT distance. Moreover, we in-
vestigate the effects of different cost functions and marginal
divergence penalties for crowd counting. Extensive experi-
ments show that our methods achieve state-of-the-art count-
ing performance. Furthermore, our method outputs a much
sharper density map, closer to the ground truth, and thus
achieves superior localization performance than previous
methods.

The contributions of this paper are summarized as fol-
lows:

• We formulate crowd counting as a measure regression
problem for the first time and propose a novel method to
minimize the distance between two measures with differ-
ent supports.

• We propose an objective function to minimize the un-
balanced optimal transport distance between scattered
ground-truth points and predicted density maps.

• We design an efficient optimization algorithm of counting
models based on the UOT’s semi-dual regularized formu-
lation.

• Our method achieves state-of-the-art counting perfor-
mance and superior localization performance with sharp
density predictions.

2 Related Work
2.1 Crowd Counting
Due to the great progress of the convolutional neural net-
works (CNN), most state-of-the-art counting methods are
CNN based. The majority of them adopt the fully convolu-
tional network (FCN) (Long, Shelhamer, and Darrell 2015),
which predicts density maps and maintain spatial correspon-
dences with input images. Diverse network structures are
developed to cope with large scale variations of crowds.
Mechanisms such as multi-scale feature fusions (Idrees et al.
2013; Zhang et al. 2016; Sindagi and Patel 2017; Liu et al.
2018c; Liu, S., and F. 2019; Ma et al. 2020), attention (Jiang
et al. 2020; Miao et al. 2020; Zhang et al. 2019), negative
correlation learning (Shi et al. 2018; Zhang et al. 2019), and
knowledge distilling (He et al. 2021; Liu et al. 2020a) are
widely used. There are several works aiming to improve the
quality of the generated pseudo ground truth. For example,
(Zhang et al. 2016) adopts scale-adaptive Gaussian kernels.
(Wan and Chan 2019) adopts CNN to learn combination of
Gaussian kernels. (Liu et al. 2019a) estimates the kernel
sizes with the aid of super-pixel segmentation.

The distance to measure the discrepancy between the pre-
dicted density maps and the ground truth is rarely studied,
most methods use `2 distance. Some of them are simulta-
neously supervised by surrogate tasks, such as segmenta-
tion (Zhao et al. 2019; Gao, Wang, and Li 2019; Shi, Mettes,
and Snoek 2019; Liu et al. 2020b), depth estimation (Zhao
et al. 2019; Lian et al. 2019) and perspective estimation (Liu,
S., and F. 2019; Shi et al. 2019; Yan et al. 2019; Yang et al.
2020). Bayesian loss (Ma et al. 2019) builds a probabilis-
tic model and takes the expected count of each person as
supervision, (Laradji et al. 2018) counts objects by segmen-
tation, and (Liu et al. 2019) counts objects by detection. The
concurrent work (Wang et al. 2020a) trains density regressor
by matching normalized distributions through optimal trans-
port.

2.2 (Un)balanced Optimal Transport
Optimal transport (OT) distances have recently been widely
used in machine learning and deep learning, such as genera-
tive models (Arjovsky, Chintala, and Bottou 2017; Genevay,
Peyré, and Cuturi 2018), image retrieval (Rubner, Tomasi,
and Guibas 2000; Pele and Werman 2009), and domain
adaption (Courty et al. 2017; Shen et al. 2018), to name
a few. Calculating the exact OT is costly and suffers from
the curse of dimensionality (Lee and Sidford 2014; Mérigot
2011). To deal with the scalability issue, (Cuturi 2013) in-
troduces an entropic regularized OT and solves it by the
Sinkhorn algorithm (Sinkhorn 1967). Reviews of OT can
be found in (Kolouri et al. 2016; Peyré, Cuturi et al. 2019;
Genevay 2019).

In comparison to OT, there are relatively fewer studies on
the application of unbalanced optimal transportation (UOT).
(Frogner et al. 2015) adopts UOT to train multi-label classi-
fication models. (Wang et al. 2020c) uses UOT to measure
distances between documents of different lengths. (Chizat
et al. 2018b) proposes a UOT-based fast approximate color
transfer algorithm. (Yang and Uhler 2019) proposes a train-
ing algorithm of GAN. Several different formulations are
proposed to extend the theory of OT to measures of unbal-
anced mass (Pham et al. 2020; Chizat et al. 2018c,a; Kon-
dratyev et al. 2016; Liero, Mielke, and Savaré 2018; Bourne,
Schmitzer, and Wirth 2018; Séjourné et al. 2019). A review
of UOT can be found in (Chizat 2017).

3 The Proposed Method
In this section, we first elaborate on the distinction between
the previous density-to-density training algorithm based on
`2 distance and the density-to-point measure regression
based on unbalanced optimal transport (UOT). Then, we re-
view the basics of (un)balanced optimal transport. Finally,
we introduce the optimization algorithm based on the semi-
dual regularized formulation of UOT.

3.1 Problem Setup and Notation
Let u =

∑N
i=1 uiδxi , ui = Uθ(xi; I) represent the pre-

dicted density map (density measure), where Uθ is the den-
sity regressor with the trainable parameter θ. The density
regressor can be any fully convolutional networks (FCNs),
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which maintain the spatial correspondence between inputs
and outputs. xi is the 2D spatial position of the ith pixel.
X = {x1, x2, . . . , xN} is the support of the density mea-
sure, where N is the total pixel number.

Let v =
∑M
j=1 vjδyj be the annotated points (point mea-

sure), where vj is the mass carried with the jth point, which
equals to one in crowd counting (vj = 1). yj is the cor-
responding 2D spatial position. Y = {y1, y2, . . . , yM} is
the support of the point measure, where M is the total
point number. Since only a small portion of pixels is labeled
with points, X and Y only sparsely overlap, and we have
M < N .

3.2 Motivation
`2 distance is used in most of previous density-regression-
based methods, which is easy to calculate but has two major
drawbacks. First, `2 distance is unstable to spatial perturba-
tion of annotated points, because it can not metrize weak
convergence (Genevay 2019; Sriperumbudur et al. 2012).
For example, `2(δ0, δ1/n) is the distance between two Dirac
masses supported on 0 and 1/n, respectively. When n ap-
proaches infinity, a distance metrizing weak convergence
should equal to zero. However, `2(δ0, δ1/n) is still equal to a
non-zero constant (i.e.,

√
2). Thus, even a small disturbance

of annotated points could cause considerable changes in `2
distance. Specifically, weak convergence (Genevay 2019) is
defined as follows: a measure αn weakly converges to α
(αn ⇀ α) if and only if

∫
f(x)dαn =

∫
f(x)dα for any

continuous bounded function f ; a distance D metrizes weak
convergence if and only if D(αn, α) → 0 ⇔ αn ⇀ α.
Second, `2 distance can only be applied to discrete mea-
sures with the same supports. To alleviate these two short-
comings, previous methods transform the point measure v to
the pseudo-ground-truth density measure ū which shares the
same support X with u:

ū =
N∑
i=1

ūiδxi , ūi =
M∑
j=1

N (xi; yj , σ
212×2), (1)

whereN (xi; yj , σ
212×2) is the Gaussian distribution whose

mean is yj and variance is σ. The density-to-density regres-
sion method is defined as follows:

`22(u, ū) =
N∑
i=1

(ui − ūi)2. (2)

Although the use of pseudo-ground-truth density maps
can stabilize `2 distance to some extent, it is just palliative
and even brings new problems. First, there is no theoreti-
cal guide to determine the size of the Gaussian kernel. Sec-
ond, Gaussian smoothing will reduce the location precision
of points. In this paper, we try to solve this problem from
the root cause, i.e., directly minimize the distance between
predicted density maps and ground-truth point annotations.
The appropriate distance should allow input measures with
different supports and unequal total mass as well as metrize
weak convergence. Unbalanced optimal transport (UOT)
distance is proved to meet all the requirements (Chizat

2017). In the following sections, we first review the basics
of UOT, then introduce an efficient optimization algorithm
based on its semi-dual regularized formulation.

3.3 Learning to Count via UOT
Preliminary. Optimal transport (OT) represents the mini-
mum cost when pushing the mass in measure u to match that
in measure v, u ∈ M+(X ) and v ∈ M+(Y).M+(X ) rep-
resents the space of non-negative finite random measures on
support X , and π ∈M+(X × Y) is a random non-negative
measure on the product space. The Kantorovich formulation
of OT is defined by:

W (u, v) = sup
π∈M+(X×Y)

∫
X×Y

c(x, y)dπ(x, y),

s.t. PX# π = u, PY#π = v

(3)

where c : X × Y → R+ is the lower semi-continuous
cost function. π is the joint measure having u and v as its
marginals. PX (x, y) = x is the projection map. # repre-
sents the push forward operator.

One major limitation of OT is the total mass of the input
measures should be equal, otherwise, there is no feasible so-
lution. It means that OT can not handle total mass variations.
Therefore, we adopt unbalanced optimal transport (UOT) al-
lows mass change during transportation:

Wub(u, v) = sup
π∈M+(X×Y)

∫
X×Y

c(x, y)dπ(x, y)

+ Fϕ(PX# π|u) + Fϕ(PY#π|v).

(4)

As can be seen, the hard marginal constraints of OT are
replaced by the “soft” marginal divergence penalty Fϕ:

Fϕ(ρ|u) =


∫
X
ϕ(
dρ

du
(x))du(x) if ρ� u

∞ otherwise
, (5)

where ϕ : [0,∞) → [0,∞) is a convex and lower semi-
continuous function with lim

x→∞
ϕ(x)
x = ∞ and ϕ(1) = 0.

ρ� u indicates the measure ρ is absolutely continuous w.r.t.
the measure u. Obviously, classical OT is a special case of
UOT when we set ϕ(ρ|u) = 0 if ρ = u and∞ for otherwise.
Semi-dual Regularized Optimization Algorithm. To cal-
culate the UOT distance efficiently, we introduce an entropic
regularizer (Cuturi 2013), which results in a smoothed trans-
port map and a convex problem.

The primer formulation of regularized UOT on discrete
measures is defined as follows:
Wub
ε (u, v) = min

π∈RN×M
+

E(π, u, v),

E(π, u, v) =
N∑
i=1

M∑
j=1

c(xi, yj)πi,j+

Fϕ(π1M |u) + Fϕ(πᵀ1N |v)− εH(π),

H(π) =−
N∑
i=1

M∑
j=1

(πi,j lnπi,j − πi,j + 1),

(6)
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(a) (b)

(c) (d)

Figure 1: Visualization of density maps and transport maps.
(a) and (c) are the predicted density maps in the Epoch 1 and
the Epoch 100, respectively, and (b) and (d) are their corre-
sponding transport maps. For visualization of density maps,
the warmer color represents the higher density value. For vi-
sualization of transport maps, annotated points are in black,
and each person is assigned with a unique color. The color
of each pixel is determined by its maximum transport target,
and the brightness is determined by the corresponding value.
As can be seen, the transport map is jointly determined by
the predicted density map and the annotated points.

where 1N = (1, 1, . . . , 1)ᵀ ∈ RN . Most methods solve
Eq. 6 by transforming it into a dual formulation and optimiz-
ing two variables (α ∈ RN and β ∈ RM ) through Sinkhorn
iterations (Sinkhorn 1967). With noticing that the annotated
point number M is much smaller than the pixel number N ,
we further eliminate α ∈ RN through c-transform by Eq. 8,
which results in the semi-dual formulation which only needs
to optimize β ∈ RM :

Wub
ε (u, v) = max

β∈RM
G(β, u, v),

G(β, u, v) = −
N∑
i=1

ϕ∗(−αεi )ui −
M∑
j=1

ϕ∗(−βj)vj ,
(7)

αεi =


min
j
c(xi, yj)− βj ε = 0

− ε ln

 M∑
j=1

e
βj−c(xi,yj)

ε

 ε > 0
, (8)

where ϕ∗ is the Frenchel-Legendre conjugate of the penalty
function ϕ, which can be derived as follows:

ϕ∗(z) = sup
x>=0

(z · x− ϕ(x)). (9)

In our experiments, we adopt the Kullback-Leibler (KL) di-

vergence as the penalty function:

ϕ(x) =

{
x ln(x)− x+ 1 x > 0

1 x = 0
ϕ∗(z) = ez − 1.

(10)
And we adopt the p-norm distance between the positions of
annotated points and the positions of pixels of the density
map as the cost function:

c(xi, yj) = `p(xi, yj). (11)

The semi-dual formulation is an unconstrained, dif-
ferentiable optimization problem. Therefore, it can be
solved by gradient-descent based algorithms. Specifically,
we adopt L-BFGS quasi-Newton method (Liu and Nocedal
1989) in our experiments. The relationship between the
primer and the semi-dual formulation is given by: π̂i,j =

exp
α̂εi+β̂j−c(xi,yj)

ε , where β̂ and α̂ε are the optimal solu-
tions of the semi-dual formulation. We visualize the pre-
dicted density map and the transport map in Fig. 1. As can
be seen, the transport map is jointly determined by the pre-
dicted density map and the annotated points.

Finally, we propose a measure regression algorithm based
on semi-dual regularized UOT (Eq. (7)), which alternatively
optimizes the random variable β to find the optimal trans-
port and the density regressor’s parameter θ to minimize
Wub
ε (u, v). Intuitively, mass of predicted density measures

is adjusted and pushed to annotated points. Details of the al-
gorithm are shown in Algorithm 1. When there are no point
annotations in the image, we directly regress the total mass
of the predicted density map to zero.

Algorithm 1: Unbalanced Optimal Transport From
Density Predictions to Point Annotations

Input: current training step t, density estimator U
with parameter θ, input image I with the
ground-truth point measure v

Output: optimized density estimator U with
parameter θ̂

1 Initialize θ(1);
2 for t = 1, . . . , T do
3 u(t) = Uθ(t)(I

(t));
4 Initialize k = 1, β(t,k) = OMt ;

// OMt ∈ RMt

is a zero vector
5 repeat
6 G(t,k) = G(β(t,k), u(t), v(t));

// Maximize G by optimizing β

7 Update β(t,k+1) using L-BFGS;
8 Update k := k + 1;
9 until G(t,k) has converged;

10 β̂(t) = β(t,k), Wub
ε = G(β̂(t), u(t), v(t));

// Minimize Wub
ε by optimizing θ

11 Update θ(t+1) using Adam;
12 end
13 return θ̂ = θ(t+1)
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4 Experimental Results
We conduct extensive experiments on the four largest crowd
counting benchmarks to verify the effectiveness of the pro-
posed method on both counting and localization tasks.
We also study the impacts of different cost functions and
marginal divergence penalties.

4.1 Implement Detail
We adopt the same network structure (VGG-19 truncated at
the last pooling layer) used in Bayesian loss (BL) (Ma et al.
2019). For optimization, we set the learning rate of L-BFGS
and Adam to 1.0 and 10−5, respectively, and ε to 0.01. The
principle to set ε is simple. A smaller ε leads to a closer ap-
proximation to the original UOT, but the convergence speed
is slower. Therefore, ε should be as small as possible when
the convergence rate is acceptable. We find that the conver-
gence rate is too slow when ε <= 0.001, then we choose
a moderate value, 0.01. Random crop and random horizon-
tal flip are applied to augment input images. All the experi-
ments are conducted on a single GPU card (Pascal Titan X),
and our code is implemented with Pytorch.

4.2 Datasets
ShanghaiTech (Zhang et al. 2016), UCF-QNRF (Idrees et al.
2018), JHU-CROWD++ (Sindagi, Yasarla, and Patel 2020),
NWPU-CROWD (Wang et al. 2020b), which are currently
the largest and most diverse datasets, are used through out
our experiments.

ShanghaiTech (Zhang et al. 2016) consists of Part A and
Part B. Part A is composed of 482 images scraped from
the Web, with 244,167 point annotations. The training set
includes 300 images and the remaining 182 images are
used for testing. Part B contains 716 fixed-resolution im-
ages taken from busy streets, with 88,498 point annotations.
There are 400 images for training and the remaining 316 for
testing.

UCF-QNRF (Idrees et al. 2018) contains 1,535 high-
resolution images scraped from the Web, with 1.25 million
point annotations. The training set includes 1,201 images
and the remaining 334 images are used for testing.

JHU-CROWD++ (Sindagi, Yasarla, and Patel 2020) con-
sists of 4,372 images with 1.51 million annotations. There
are 2,272 images for training, 500 images for validation, and
1,600 images for testing. This dataset collects images under
diverse scenarios and environmental conditions, such as dif-
ferent weathers and illumination.

NWPU-CROWD (Wang et al. 2020b) contains 5,109 im-
ages with 2.13 million annotations. There are 3,109 images
for training, 500 images for validation, and 1,500 images for
testing. This dataset introduces 351 distractors (scenes with-
out people), which are similar to congested crowd scenes in
terms of texture features.

4.3 Evaluation Metrics
Counting and localization are two critical tasks for crowd
analysis. We evaluate both to compare different methods
comprehensively.

Dataset NWPU-CROWD JHU-CROWD++ UCF-QNRF ShanghaiTech A ShanghaiTech B
Method MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
`2 120.7 463.5 81.7 304.5 106.8 183.7 68.6 110.1 8.5 13.9
BL 105.4 454.2 75.0 299.1 88.7 154.8 62.8 101.8 7.7 12.7

UOT 87.8 387.5 60.5 252.7 83.3 142.3 58.1 95.9 6.5 10.2

Table 1: Comparisons with baseline methods sharing the
same backbone (VGG-19).

Counting performance is measured by three
metrics (Zhang et al. 2016; Idrees et al. 2018;
Wang et al. 2020b): Mean Absolute Error,
MAE = 1

K

∑K
k=1 |Nk − Ck|; Mean Squared Error,

MSE = ( 1
K

∑K
k=1 |Nk − Ck|

2
)

1
2 ; and Normalized Abso-

lute Error, NAE = 1
K

∑K
k=1

∣∣∣Nk−CkNk

∣∣∣. K is the number of
test images, Nk and Ck are the ground-truth count and the
predicted count for the k-th image, respectively. The total
count is obtained by summing the predicted density map
Ck =

∑N
i=1 Uθ̂(xi, Ik).

Localization performance is measured by precision and
recall at various distance thresholds (1,2,3,...,100 pixels),
which is adopted by previous crowd localization meth-
ods (Idrees et al. 2018; Liu, Weng, and Mu 2019; Wang
et al. 2020b). For density-based methods, post-processing
is required to convert density maps into point predictions.
In our experiments, we adopt the non-maximal suppression
(NMS) to find local peaks of density maps as the predicted
points. Then, each ground-truth point is associated with its
nearest prediction through greedy one-to-one matching. If
the distance between the matching pair is within the distance
threshold, we predicate the matching is successful. The suc-
cessfully matched predicted points are true positive (TP), the
remaining predicted points are false positive (FP), and the
unmatched annotated points are false negative (FN). Finally,
The overall localization performance is measured by aver-
age precision (AP), average recall (AR), and F-measure.

4.4 Counting Evaluation
Comparison with baseline methods. We fairly compare
three training algorithms with the same network struc-
ture (VGG-19), i.e., `2 (density-to-density), BL (density-
to-count), and UOT (density-to-point). The generation of
pseudo-ground-truth density maps follows previous meth-
ods (Zhang et al. 2016; Wang et al. 2020b). Results of `2 and
BL are reported from (Ma et al. 2019; Sindagi, Yasarla, and
Patel 2020; Wang et al. 2020b). As shown in Tab. 1, UOT
consistently outperforms the other two training methods on
all benchmark datasets, which strongly proves the effective-
ness of our method. Compared to the previous state-of-the-
art training method BL, UOT reduces MAE and MSE by
17.6 and 66.7, respectively, on NWPU-CROWD.

Comparison with state-of-the-art methods. We exten-
sively compare UOT with other state-of-the-art methods on
four largest benchmark datasets. Their code has been offi-
cially released or reproduced by third parties. Experimental
results are illustrated in Tab. 2-4, and the highlights can be
summarized as follows: 1) UOT achieves the most advanced
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(a) GT: 1557 Pre: 1503.2 (b) GT: 1798 Pre: 1885.8 (c) GT: 2414 Pre: 2437.5 (d) GT: 1408 Pre: 1785.7 (e) GT: 1454 Pre: 1395.1

Figure 2: Visualization of density maps and localization results. The first row: input images; The second row: predicted density
maps; The third row: predicted locations of people (denoted by green points).

Category Overall Low Median High Weather

Method MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN (Zhang et al. 2016) 188.9 483.4 97.1 192.3 121.4 191.3 618.6 1166.7 330.6 852.1

CSRNET (Li, Zhang, and Chen 2018) 85.9 309.2 27.1 64.9 43.9 71.2 356.2 784.4 141.4 640.1

SANET (Cao et al. 2018) 91.1 320.4 17.3 37.9 46.8 69.1 397.9 817.7 154.2 685.7

CAN (Liu, S., and F. 2019) 100.1 314.0 37.6 78.8 56.4 86.2 384.2 789.0 155.4 617.0

SFCN (Wang et al. 2019) 77.5 297.6 16.5 55.7 38.1 59.8 341.8 758.8 122.8 606.3

DSSINET (Liu et al. 2019a) 133.5 416.5 53.6 112.8 70.3 108.6 525.5 1047.4 229.1 760.3

MBTTBF (Sindagi and Patel 2019) 81.8 299.1 19.2 58.8 41.6 66.0 352.2 760.4 138.7 631.6

LSC-CNN (Sam et al. 2020) 112.7 454.4 10.6 31.8 34.9 55.6 601.9 1,172.2 178.0 744.3

BL (Ma et al. 2019) 75.0 299.9 9.5 28.1 30.0 49.8 289.5 659.0 124.9 614.7

CG-DRCN-CC (Sindagi, Yasarla, and Patel 2020) 71.0 278.6 14.0 42.8 35.0 53.7 314.7 712.3 120.0 580.8

UOT 60.5 252.7 11.2 26.2 28.7 45.3 274.1 648.2 114.9 610.7

Table 2: Counting results on JHU-CROWD++. JHU-CROWD++ divides test set into following fine-grained subsets: (1) Low:
images with 0 to 50 people, (2) Medium: images with 51 to 500 people, (3) High: images containing more than 500 people, and
(4) Weather: degraded images.

performance on NWPU-CROWD, JHU-CROWD++, UCF-
QNRF, and ShanghaiTech B, and also achieves competitive
performance on ShanghaiTech A. 2) UOT performs well on
all crowding levels. It improves NAE from 0.203 to 0.185
on NWPU-CROWD.

4.5 Localization Evaluation
Highly congested crowd images contain severe occlusions
among individuals, and the separation between adjacent an-
notated points may even be only a few pixels. Therefore, the
“sharpness” of the predicted density maps is crucial for the
localization task. As visualized in Fig. 2, UOT predicts sharp
density maps (the second row) which benefits distinguishing
individuals from congested crowds. The predicted locations

(the third row) are denoted with green dots. As shown, UOT
is able to locate people with severe overlaps and is robust
to changes in size, luminance, and appearance. The quan-
titative results of localization are reported in Tab. 5, show-
ing that UOT outperforms other methods on UCF-QNRF.
In particular, UOT improves the F-measure from 70.85% to
74.75%, compared to BL.

4.6 Discussion

In this section, we study the effects of different cost func-
tions and penalty functions on crowd counting. In addition
to p-norm distance that allows transport within the whole
image, we also study the Wasserstein–Fisher–Rao distance,
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Category Overall Sense Level (MAE) Luminance (MAE)

Method MAE MSE NAE Avg. S0 v S4 Avg. L0 v L2

MCNN (Zhang et al. 2016) 232.5 714.6 1.063 1171.9 356.0 / 72.1 / 103.5 / 509.5 / 4818.2 220.9 472.9 / 230.1 / 181.6

SANET (Cao et al. 2018) 190.6 491.4 0.991 716.3 432.0 / 65.0 / 104.2 / 385.1 / 2595.4 153.8 254.2 / 192.3 / 169.7

DECIDENET (Liu et al. 2018b) 264.9 759.0 1.770 1242.5 443.0 / 125.5 / 140.5 / 461.5 / 5036.6 313.6 464.2 / 267.4 / 209.1

CSRNET (Li, Zhang, and Chen 2018) 121.3 387.8 0.604 522.7 176.0 / 35.8 / 59.8 / 285.8 / 2055.8 112.0 232.4 / 121.0 / 95.5

CAN (Liu, S., and F. 2019) 106.3 386.5 0.295 612.2 82.6 / 14.7 / 46.6 / 269.7 / 2647.0 102.1 222.1 / 104.9 / 82.3

SCAR (Gao, Wang, and Yuan 2019) 110.0 495.3 0.288 718.3 122.9 / 16.7 / 46.0 / 241.7 / 3164.3 102.3 223.7 / 112.7 / 73.9

BL (Ma et al. 2019) 105.4 454.2 0.203 750.5 66.5 / 8.7 / 41.2 / 249.9 / 3386.4 115.8 293.4 / 102.7 / 68.0

SFCN+ (Wang et al. 2020b) 105.7 424.1 0.254 712.7 54.2 / 14.8 / 44.4 / 249.6 / 3200.5 106.8 245.9 / 103.4 / 78.8

UOT 87.8 387.5 0.185 566.5 80.7 / 7.9 / 36.3 / 212.0 / 2495.4 95.2 240.3 / 86.4 / 54.9

Table 3: Counting results on NWPU-CROWD. NWPU-CROWD divides test set into following fine-grained subsets: (1) S0:
images without people, but containing textures similar to the crowd. (2) S1: images with 1 to 100 people, (3) S2: images with
101 to 500 people, (4) S3: images with 501 to 5000 people, and (5) S4: images containing more than 5000 people. There are
three more subsets based on images’ average luminance values in the YUV color space, which are, (6) L0: luminance value
between [0, 0.25], (7) L1: luminance value between (0.25, 0.5], and (8) L2: luminance value between (0.5, 0.75].

Dataset PartA PartB UCF-QNRF

Method MAE MSE MAE MSE MAE MSE

MCNN (Zhang et al. 2016) 110.2 173.2 26.4 41.3 277 426

SWITCH-CNN (Babu Sam 2017) 90.4 135.0 21.6 33.4 228 445

CAN (Liu, S., and F. 2019) 62.3 100.0 7.8 12.2 107 183

SFCN (Wang et al. 2019) 64.8 107.5 7.6 13.0 102.0 171.4

DSSINET (Liu et al. 2019a) 60.6 96.1 6.9 10.4 99.1 159.2

BL (Ma et al. 2019) 62.8 101.8 7.7 12.7 88.7 154.8

S-DCNET (Xiong et al. 2019) 58.3 95.0 6.7 10.7 104.4 176.1

ASNET (Jiang et al. 2020) 57.8 90.1 - - 91.6 159.7

UOT 58.1 95.9 6.5 10.2 83.3 142.3

Table 4: Counting results on ShanghaiTech and UCF-QNRF.

Method AP AR F-measure

MCNN (Zhang et al. 2016) 59.95% 63.50% 61.66%

RESNET74 (He et al. 2016) 61.60% 66.90% 64.14%

DENSENET63 (Huang et al. 2017) 70.91% 58.10% 63.87%

CL-CNN (Idrees et al. 2018) 75.80% 59.75% 66.82%

BL (Ma et al. 2019) 66.85% 75.36% 70.85%

`2 74.75% 64.64% 69.33%

UOT 71.41% 78.41% 74.75%

Table 5: Localization results on UCF-QNRF.

which prohibits long-distance transport:

WFR(xi, yj) =

− 2 ln cos(
`p(xi, yj)

δ
) `p(xi, yj) <

π

2
δ

∞ otherwise
,

(12)
where transportation between masses with a distance greater
than π

2 δ is prohibited. For penalty function, we also study the

c(xi, yj) `1(xi, yj) `2(xi, yj) WFR(xi, yj)

Penalty MAE MSE MAE MSE MAE MSE
KL 92.7 158.9 83.3 142.3 85.8 153.7
QR 91.6 158.3 87.1 150.4 89.5 152.1

Table 6: Effects of different cost functions and penalties on
crowd counting (UCF-QNRF).

Quadratic (QR) divergence besides KL divergence:

ϕ(x) = (x− 1)2, ϕ∗(z) =


z2

4
+ z z ≥ −2

− 1 z < −2

.

(13)
Results in Tab. 6 show that `2 distance with KL diver-

gence achieves the best performance, and we use this combi-
nation in other experiments. It also proves that global trans-
port is better than local transport on crowd counting.

5 Conclusions and Future Work
In this paper, we formulate crowd counting as a measure
regression problem, which directly minimizes unbalanced
optimal transport distance between predicted density maps
and ground-truth point annotations. We also propose an effi-
cient optimization algorithm based on UOT’s semi-dual reg-
ularized formulation. This solution is straightforward and
does not need to introduce any assumptions or other ob-
jective functions. Extensive experiments prove the effective-
ness of this method on both crowd counting and localiza-
tion. A promising direction for future work is to adapt this
method to other applications with point supervision, such as
landmark detection and pose estimation.
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