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Abstract

In this paper, a novel learning-based network, named
DeepDT, is proposed to reconstruct the surface from Delau-
nay triangulation of point cloud. DeepDT learns to predict
inside/outside labels of Delaunay tetrahedrons directly from
a point cloud and corresponding Delaunay triangulation. The
local geometry features are first extracted from the input point
cloud and aggregated into a graph deriving from the Delau-
nay triangulation. Then a graph filtering is applied on the ag-
gregated features in order to add structural regularization to
the label prediction of tetrahedrons. Due to the complicated
spatial relations between tetrahedrons and the triangles, it is
impossible to directly generate ground truth labels of tetra-
hedrons from ground truth surface. Therefore, we propose a
multi-label supervision strategy which votes for the label of
a tetrahedron with labels of sampling locations inside it. The
proposed DeepDT can maintain abundant geometry details
without generating overly complex surfaces , especially for
inner surfaces of open scenes. Meanwhile, the generalization
ability and time consumption of the proposed method is ac-
ceptable and competitive compared with the state-of-the-art
methods. Experiments demonstrate the superior performance
of the proposed DeepDT.

Introduction

Surface reconstruction from 3D point clouds is a long-
standing problem in computer vision and graphics (Kazh-
dan and Hoppe 2013). A lot of previous methods use an im-
plicit function framework (Curless and Levoy 1996; Kazh-
dan, Bolitho, and Hoppe 2006; Kazhdan and Hoppe 2013).
They typically discretize space in the bounding box of the
input point cloud with a voxel grid or an adaptive octree.
Then they compute an implicit function from input points.
The result surface is extracted from the grids as an iso-
surface of the implicit function by Marching Cubes (MC)
(Lorensen and Cline 1987). However, solving equations of
large scale in implicit methods can be time-consuming. The
maximum resolution of the octree depth also influences the
efficiency. There is a quadratic relation between resolution
and run time as well as memory usage. Post-processing steps
are also needed to clean up the excess part in result surfaces
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Figure 1: A 2D example of reconstructing surface by in/out
labeling of tetrahedrons. The visibility information is inte-
grated into each tetrahedron by intersections between view-
ing rays and tetrahedrons. A graph cuts optimization is ap-
plied to classify tetrahedrons as inside or outside the sur-
face. Result surface is reconstructed by extracting triangular
facets between tetrahedrons of different labels.

sometimes (trimming), which are sensitive to corresponding
parameters and make batch processing of point clouds im-
practical. This family of implicit approaches is sometimes
limited by their sensitivity to noise, outliers, non-uniform
sampling or even simply by the lack of reliable and con-
sistent normal estimates and orientation (Labatut, Pons, and
Keriven 2009). Another common method uses a Delaunay
triangulation of a point cloud to subdivide the space into un-
even tetrahedrons. As analyzed in (Amenta and Bern 1999),
under the assumption of sufficiently dense point clouds, a
good approximation of the surface is contained in the Delau-
nay triangulation. Therefore, opposed to the approaches that
try to fit a surface in a continuous space, surface reconstruc-
tion based on Delaunay triangulation can now be reduced
to selecting an adequate subset of the triangular facets in
the Delaunay triangulation. Researchers have spent a lot of
efforts in finding the object surface in a Delaunay triangu-
lation. A commonly used strategy is to classify the tetrahe-
drons as inside/outside the surface using graph cuts. Visibil-
ity information is required in such a process. A 2D example
is shown in Figure 1. Such method builds a directed graph
based on the neighborhood of adjacent tetrahedrons in the
Delaunay triangulation. Visibility terms make this kind of
approaches more accurate and robust to outliers.

However, such method still faces problems. Some tetra-
hedrons lying behind points risk being mislabeled because



no viewing rays from the camera center to the points will
ever intersect them. Therefore, such method could gener-
ate overly complex bumpy surfaces with many unexpected
handles inside the model, failing to get clean inner surfaces.
What’s more, such a method fails to cope with arbitrary
point clouds without visibility information. It suggests that
correct labeling of tetrahedrons without visibility informa-
tion is still a bottleneck to overcome.

Most recently, the rapid development of deep learning and
improvement of large-scale 3D datasets make it possible to
train neural networks for 3D shapes. A variety of learning-
based surface reconstruction methods have been proposed,
such as learning to refine Truncated Signed Distance Func-
tion (TSDF) on voxel by voxel networks or octree grids by
octree networks (Dai, Ruizhongtai Qi, and NieBner 2017;
Riegler et al. 2017; Cao et al. 2018), learning occupancy and
SDF functions from point clouds (Mescheder et al. 2019;
Park et al. 2019). Learning-based methods are inclined to in-
troduce more geometry priors into surface reconstruction for
better performance. However, existing learning-based meth-
ods still face problems: (1) Most of them still rely on voxel
or octree structures, which are not prone to maintain high
computational efficiency. (2) Their ability to generate fine-
grained structures and details is still limited due to the low-
resolution girds or the latent vector of a fixed size. (3) Most
of them still rely on global features of training data exces-
sively, which leads to generalization problems.

Another excellent work, SSRNet (Mi, Luo, and Tao
2020), the state-of-the-art learning-based method in Sur-
face Reconstruction from Point Clouds (SRPC) task to our
known, constructs local geometry-aware features, which
leads to accurate classification for octree vertices and out-
standing generalization capability among different datasets.
However, it is worth noting that not all inputs are dense
enough and there may be missing data in the input.

This inspires us to explore a better learning-based method,
which is able to finish reconstruction effectively and effi-
ciently without visibility information. In this paper, we pro-
pose DeepDT, a novel learning-based method for surface re-
construction from point clouds based on Delaunay triangu-
lation. We construct Delaunay triangulation from the point
cloud and replace graph cuts with a network for accurate
labeling of tetrahedrons. The network takes a point cloud
and its Delaunay triangulation as input, and learns to clas-
sify the tetrahedrons as inside/outside. In our method, the
key insight is that the inside/outside labeling of tetrahedrons
can be determined via local geometry information of points
and the structural information of Delaunay triangulation. We
first encode features of points with the geometry feature ex-
traction module. It exploits local K nearest neighbors to en-
code a local geometry feature for each point. Meanwhile,
it directly encodes features representing in/out information,
such as signed distances. Therefore, it is able to capture local
geometry details of the surface. We then augment the graph
of Delaunay triangulation with geometry features by a point-
to-graph feature aggregation operation. We use an atten-
tion mechanism to aggregate geometry features into graph
nodes. It can automatically select important geometry fea-
tures for in/out classification of tetrahedrons. Subsequently,
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we apply a graph filtering module to the feature augmented
graph. The module exchanges information among neighbor-
ing tetrahedrons with Graph Convolution Networks (GCN)
(Kipf and Welling 2016) and thus adds structural constraints
to the label prediction. Our network is trained in a super-
vised manner. However, it brings about a problem that we
cannot directly get the ground truth labels of tetrahedrons
from ground truth surfaces. Since tetrahedrons are likely to
have complicated intersections with triangular surfaces, we
cannot obtain the relative position relationship between the
tetrahedron and the triangular mesh. To tackle this problem,
we propose a multi-label supervision strategy. We obtain
the in/out labels of tetrahedrons through a multi-label su-
pervision strategy which utilizes the labels of multiple refer-
ence locations sampled inside them. As analyzed above, our
method enjoys a combination of novelty as follows.

¢ Our method integrates geometry and graph structural in-
formation for more robust tetrahedron labeling.

* Local geometry features together with global graph struc-
tural regularization benefits our method with good accu-
racy and generalization capability.

* The multi-label supervision mechanism makes it possible
to train a high quality model without ground truth labels
of tetrahedrons or visibility information.

Experiments on challenging data show that our method
can complete the reconstruction accurately and efficiently,
and restore the geometric details of the input data with noise
and complex topology. It is also proved that our method can
generalize well across datasets of different styles.

Related Work

Geometric reconstruction methods Implicit reconstruc-
tion methods (Levin 2004; Guennebaud and Gross 2007;
Fuhrmann and Goesele 2014; Kazhdan and Hoppe 2013;
Curless and Levoy 1996; Carr et al. 2001; Turk and O’Brien
2002) attempt to approximate the surface as an implicit
function from which an isosurface is extracted by March-
ing Cubes (MC) (Lorensen and Cline 1987). (Hoppe et al.
1992) estimates a tangent plane for each point with k-nearest
neighbors. The implicit function is defined as the signed dis-
tance to the tangent plane of the closed point. Poisson sur-
face reconstruction method (PSR) (Kazhdan, Bolitho, and
Hoppe 2006) fits the vector field of point normals with gra-
dient of an in/out indicator function. Since the discretiza-
tion is regular, these methods are mostly suitable for com-
pact point clouds with tight bounding boxes. Further more,
a post-processing step is needed to obtain an explicit surface
from an implicit function, known as ray tracing and MC.
Another common strategy to complete reconstruction task
works with Delaunay tetrahedralization of the input points
instead of voxel-based volumetric representation (Vu et al.
2011; Jancosek and Pajdla 2011; Hoppe et al. 2013; Hiep
et al. 2009). (Labatut, Pons, and Keriven 2007) is the first
to propose a reconstruction method (L-Method) that classi-
fies tetrahedrons as inside/outside by visibility information
and graph cuts. Many later methods mostly focus on adding
different terms to the graph cuts in order to improve the sur-
face quality (Labatut, Pons, and Keriven 2009; Jancosek and



Pajdla 2014; Zhou, Shen, and Hu 2019). The strategy of vis-
ibility constraints and graph optimization has achieved re-
markable performance on challenging data with noise and
outliers. However, it fails to cope with arbitrary point clouds
without visibility information. Even with visibility informa-
tion, it is usually not enough to label tetrahedrons behind a
point correctly.

Learning-based methods Recently developing deep learn-
ing techniques have given rise to lots of learning-based
reconstruction methods (Liao, Donné, and Geiger 2018;
Groueix et al. 2018). The networks based on voxel or oc-
tree grids (Riegler et al. 2017; Dai, Ruizhongtai Qi, and
NieBiner 2017; Riegler, Osman Ulusoy, and Geiger 2017;
Cao et al. 2018) usually face efficiency issues so they can
only reconstruct surfaces of compact objects at a relatively
low resolution. Instead of optimizing TSDF on grids, some
learning-based methods directly learn a continuous function
from point clouds. The ONet encodes the point cloud into
a global latent vector. It predicts occupancy values for 3D
locations by decoding the latent vector concatenated with
3D coordinates. DeepSDF (Park et al. 2019) is similar to
ONet, but it predicts signed distance values. The result sur-
face is also extracted by MC from an octree. Learning-based
methods using voxel or octree grids to discretize the surface
are sharing similar problems with the traditional implicit
methods. Moreover, most existing learning-based methods
encode structural details into fixed-size latent vectors. Al-
though they can usually generate a final surface that roughly
retains the shape of the input, they may not be able to cap-
ture geometric details of complex topologies. In addition,
most existing methods learn too many global features, which
makes them perform well on categories similar to the train-
ing set. However, they usually have difficulty maintaining
the generalization ability well across different datasets.

Method

In this section, we describe the detailed network architec-
ture of DeepDT. Figure 2(a) is a 2D illustration of our main
pipeline. The input of our network includes a point cloud P
(black dots in the left of Figure 2(a)) and its Delaunay tri-
angulation D (black triangles in the left of Figure 2(a)). P
is a set of 3D points with their normals. D is a set of tetra-
hedrons. The four vertices of each tetrahedron are points in
the P. Each tetrahedron also has four neighbor tetrahedrons
sharing common triangular facets. The Delaunay triangula-
tion structure forms a graph G (red dots connected by red
lines in the left of Figure 2(a)), with tetrahedrons as nodes
and common triangular facets connecting two adjacent tetra-
hedrons as edges. Our network can be divided into two parts.
One is mainly about geometry feature extraction. The other
is for graph feature aggregation and filtering.

Geometry Feature Extraction

The point features in our method provide initial geometry
information for in/out classification of tetrahedrons. There-
fore, the layer of geometry feature extraction module should
have three properties to better complete local surface fea-
ture encoding. (1) It must directly provide in/out informa-
tion with respect to the implicit surface. (2) It should encode
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in/out information locally in order to capture the geometry
details. (3) It has to be computationally efficient in order
to process larger point clouds. The computational efficiency
and local encoding are related to the network architecture
while the in/out information is determined by the input fea-
tures.

Local Surface Feature Encoding We compute signed dis-
tances among each point and its neighbors as the raw in-
put feature of our network. For each reference point p;, we
search its K nearest neighbors pi& k =1,..., K. The neigh-
bor pf with normal nf can be seen as a tangent plane tf
approximating the local surface near p¥. Note that normals
of points are all normalized so their lengths are equal to 1.
As illustrated in Figure 2c, signed distance df between p;
and tangent plane can be calculated as:

di = (pi —pi) g, |Ingf =1 (1
The symbol - means dot product of vectors.

In addition to the signed distances, we also include rela-
tive normals in the input feature in order to provide richer
information about local surface geometry. For each refer-
ence point p; with normal n; and one of its neighbor tan-
gent plane ¢¥, we decompose n; into two vectors v¥ and h¥.
, relative to the tangent plane. v¥ is perpendicular to t¥ and
h” is parallel to t¥. They can be calculated as:

vi = (ni-nf)nf, hi =n; - v7, [ni] = [nf] =1 @
The symbol - means dot product of vectors. The calculation
is illustrated in Figure 2c. After computing the signed dis-
tances and relative normals, the surface feature sf between

p: and pf is encoded as:

sF = MLP(d} © v} @ hf) (3)
MLP means Multi-Layer Perceptron. € means concatena-
tion. By directly encoding the local surface features, the
point features can provide in/out information for the clas-
sification of tetrahedrons. As a reward for using only local
geometry features rather than global features, our network
generalizes well across different datasets.

After designing Local Surface Feature Encoding, we have
completed the most important part of geometric feature ex-
traction. In Figure 2a, the geometry feature extraction net-
work consists of multiple geometry feature extraction lay-
ers shown in Figure 2b. Besides, random downsampling ex-
pands the receptive fields. The [-th multiple geometry fea-
ture extraction layer takes the reference point p;, the previ-
ous feature Ffl and K nearest neighbors p,f7 k=1,...K
as input. It first encodes local surface features for p; with re-
spect to each neighbor point. Then Fil_1 is repeated K times
and concatenated with K local surface features. After that,
the K features are aggregated by an attention pooling layer,
which aims to use the attention mechanism to help automat-
ically learn important local features. A group of MLP layers
are applied to the aggregated feature and output result fea-
ture F! as [-th feature of p;.

Feature Augmented Graph

Point to Graph Feature Aggregation After extracting
the features for each point, we build a feature augmented
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Figure 2: (a) The pipeline of our method. The input includes a point cloud (black dots) and its Delaunay triangulation (black
triangles). The Delaunay triangulation structure forms a graph (red dots connected by red lines). (b) Detailed illustration of
geometry feature extraction layer, ® means concatenation. (c) Calculation of signed distances and relative normals.

graph from the point features and the graph G. The graph
directly derives from the Delaunay triangulation D of the
point cloud. The graph nodes and graph edges correspond to
Delaunay tetrahedron and the triangular facets between ad-
jacent tetrahedrons. Each tetrahedron in D consists of four
vertices from the point cloud. Therefore, we construct the
tetrahedron features in the graph by aggregating the geom-
etry features of the four vertices. Let T; be the feature of
ith node in G with its four point features F (j = 1,2, 3, 4).
We construct T; from the four vertex features by an attention
mechanism, which is able to channel-wisely select geometry
features important for the classification of tetrahedrons. We
first learn weights for each channel of the four features. Let
F, = {F/,j = 1,2,3,4} be the set of four features with
shape (4, C). W; is the set of four weight vectors with the
same shape (4,C). C' means the number of channels. The
Softmax operation is applied to W; in its first dimension.
Then corresponding channels are weighted averaged.

W; = Softmax(MLP(F;)) 4)

T,=) W,0F ®)

© is the element-wise product of W; and F;. > is applied
to the first dimension. T} has the shape of (1, ).

A special case is that the Delaunay triangulation has some
infinite tetrahedrons which have three vertices in the 3D
point cloud and share an infinite vertex. To solve this prob-
lem, we directly set the feature of the infinite vertex as zeros.
Graph Filtering The raw tetrahedron features in the
graph G constructed by aggregating geometry features en-
code the inside/outside information of tetrahedrons. They
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are constructed from point features independently so they
do not contain enough neighborhood graph information.
They could contain noise and inconsistency due to the ex-
istence of noise in the point clouds. The classical graph cuts
based methods have demonstrated that local neighborhood
smoothing constraint in a graph is important for robust label
prediction for graph nodes. Therefore, after the construction
of graph features, we apply the multi-layer Graph Convolu-
tional Network to the graph in order to integrate more local
graph structural constraints. The GCN layers refine the tetra-
hedron features by exchanging information among neigh-
boring tetrahedrons. It is able to encode more graph struc-
tural information for label prediction. The last layer of the
GCNs outputs a 2-channel prediction vector for each tetra-
hedron. The softmax operation is finally applied to the vec-
tors in order to get the probability for a tetrahedron to be
inside/outside.

Loss Functions

Multi-label Supervision A straightforward supervision for
our network is the ground truth labels of the tetrahedrons.
However, due to the very complicated spatial relations the
tetrahedrons have with the triangles, it is not trivial to la-
bel the tetrahedrons via the ground truth triangular surface.
The tetrahedrons may have intersections with multiple tri-
angles so the classification is ambiguous. One compromise
approach is to use classical graph cuts based methods for
label generation. However, this will limit the accuracy po-
tential of the network. In our method, we propose a multi-
label supervision method. Since it is easy to check whether
a 3D location is inside/outside a surface, we randomly sam-
ple N reference locations (N _ref) in a tetrahedron and get



their inside/outside labels. Then we use these labels to su-
pervise the labeling process of the tetrahedron. Each label
gives a “vote” for each tetrahedron to determine in/out label.
With the aforementioned architecture and multiple “votes”,
our method is able to encode more accurate relations among
the tetrahedron labels, the point geometry and Delaunay tri-
angulation structure. It is worth noting that these reference
locations only provide labels for each tetrahedron. The loca-
tions themselves are not used in our network.

To train our network with multi-label supervision, we
compute a multi-label loss L,,,. Itis a classification loss min-
imizing the error between predicted probabilities and multi-
labels. With a Delaunay triangulation of N tetrahedrons, we
sample N _ref reference locations for each tetrahedron 7T;
and get N_ref labels. The f;; is the binary cross-entropy
loss between the prediction probabilities of 7; and its jth la-
bel . L,, gives more help to label predication with N _re f
rising. This will be very beneficial to the prediction of very
large tetrahedrons. It can be denoted by:

N N_ref

1
Lo = N><N,ref,Z Z Jii

i=1 j=1

6)

Neighbor Consistency Constraint In classical graph cuts
based methods, the label smoothness of neighbor tetrahe-
dron helps to reconstruct more smooth surfaces. In our
method, we explicitly introduce a regularization loss for
more consistent labeling among adjacent tetrahedrons. This
loss encourages more smooth surfaces and also helps to clas-
sify the very large tetrahedrons connecting points far from
each other. With a Delaunay triangulation of N tetrahe-
drons, the ¢th tetrahedron 7} has four neighbor tetrahedrons
T7,(j = 1,2,3,4). The g;; is the cross-entropy between the
prediction probabilities between T; and its jth neighbor T7.
Then the multi-label loss in computed as:

LA
Ln:ﬁzzgij

i=1 j=1

N

With \;, A2 balancing the two losses, our loss function can
be summarized as:

L= XLp+ ALy ®)

Surface Extraction And Data Preparation

After getting the label of each tetrahedron, the output tri-
angular surface is generated by taking the triangular facets
between adjacent tetrahedrons with different labels. We then
post-process the result surface by Laplacian-based smooth-
ing method for a more smooth surface and better visual
effects. We prepare training data from a point cloud and
its ground truth surface. First, Delaunay triangulation is
constructed from the point cloud using the Computational
Geometry Algorithms Library (CGAL) (Boissonnat et al.
2000). The point indices for each tetrahedron and the ad-
jacent matrix used for graph convolution are derived triv-
ially from the Delaunay structure. Then N _ref locations
are randomly sampled in each tetrahedrons. We compute the
inside/outside labels of these locations with respect to the
ground truth surface and record these location labels.
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Figure 3: Qualitative results of ShapeNet test data.

Experiments

In this part, we perform a series of experiments on datasets
of different scales to qualitatively and quantitatively evaluate
our DeepDT from different perspectives.

Datasets & Evaluation Metrics We select three datasets
with quite different types to comprehensively compare our
DeepDT with traditional methods and other state-of-the-art
learning-based methods. They are ShapeNet (Chang et al.
2015), DTU (Jensen et al. 2014) and Stanford 3D. ! We
choose the Chamfer-L; distance and the normal consistency
(NC) score for experiments on ShapeNet. For DTU dataset,
we follow the DTU Completeness metric given by DTU and
also take Chamfer Distances (CD) into consideration. We
compute the CD between the ground truth point cloud and
the vertices of the result surface that is expressed by the
triangular meshes. For each point in a cloud, CD finds the
nearest point in the other point set, and averages the square
of distances up. When it comes to Stanford 3D, we evaluate
Chamfer Distances in generalization capability tests. In the
following experiments, unless otherwise specified, the num-
ber of reference locations (N _ref) is set to 5, and the A1, Ao
are set to 0.9 and 0.1, respectively.

Results on ShapeNet

In this section, we compare our method with several state-of-
the-art learning-based methods on ShapeNet : DMC (Liao,
Donné, and Geiger 2018), ONet, LDIF (Genova et al. 2020),
CEISR (Poursaeed et al. 2020), SSRNet. For fair compar-
ison, we adopt the same train/validation/test split (about
30K/4.5K/9K shapes) as the mentioned methods. Since
data in ShapeNet is synthetic, we apply noise using a Gaus-
sian distribution with zero mean and standard deviation 0.05
to the point clouds as ONet and SSRNet did. In order to
get the labels of sampled reference locations, we reconstruct
surfaces through PSR (octrees depth=9) to generate training
data. Quantitative evaluation results for meshes generated
by DeepDT are reported in Table 1. We can find that the NC
score of our method is comparable to that of the state-of-
the-art learning-based method in SRPC task, SSRNet, and

"http://graphics.stanford.edu/data/3Dscanrep/



Metric\Method DMC ONet LDIF CEISR SSRNet Ours
Chamfer-L, .17 079 040 0.41 0.24 0.20
NC 0.848 0.895 - 0.902 0.967  0.967

Table 1: Quantitative results on ShapeNet. We evaluate methods with the Chamfer-L1 distance (lower is better) and Normal

Consistency (higher is better).

SSRNet

DeepDT

Figure 4: Qualitative results on DTU test scans

our method performs the best among all mentioned methods
with the evaluation metric of Chamfer-71.

Figure 3 shows that our method outperforms ONet in re-
covering shape details, especially highlighting the ability to
retain as many details as possible on extremely complex ob-
jects. We can find that ONet can still barely cope with simple
topologies well, but its performance on complex topologies
is hard to satisfy us who expect it to perform better. This is
mainly because the use of the global latent vector encoder
makes ONet lose a lot of geometric details, but geometric
details are essential for reconstructing complex topologies.
This also reminds us that most learning-based methods that
encode the entire shape using a global latent vector are fac-
ing a non-negligible problem, that is, the geometry details
can be captured by the feature space which is limited by the
fixed size of the latent feature vector. We cannot solve this
problem simply from the perspective of downsampling the
input.

Results on 3D Scans of Larger Scales

In this section, we train and test DeepDT on DTU to verify
the performance of our method on large 3D scan dataset. For
each scan, we still use PSR (octree depth=10) with trimming
value 8 to get labels of reference locations. We focus on
whether the network can still maintain good reconstruction
performance without using a sufficiently dense input. We do
not use the entire point cloud, just a sample of two hundred
thousand. Here we also cite traditional surface reconstruc-
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Metric\Method L-Method PSR SSRNet Ours
DC-Mean 0.38 0.35 0.30 0.37
DC-Var. 0.60 0.44 0.09 0.15
CD-Mean 1.21 1.17 1.46 0.68

Table 2: Quantitative results on DTU. The lower the DTU
Completeness (DC), the better. The Chamfer Distances (CD,
lower is better) are in units of 1073,

tion method ( L-Method) and evaluate its performance on the
same data. Although noise is inevitable in large 3D scanning
datasets, we still apply Gaussian noise with zero mean and
standard deviation 0.001 to the point clouds in DTU. Since
L-Method needs to obtain visible sight information from the
process of generating a point cloud from the depth map fu-
sion, we apply the same noise to the depth map that it uses.
Figure 4 demonstrates that the two traditional methods
(PSR and L-Method) and the learning-based method (SSR-
Net) all generally preserve the geometry structure and com-
plete the task well. Compared with L-Method, our method
can avoid generating too many large triangular patches
(St1_051), which should not be presented in the final surface
and should be removed. Furthermore, one notable detail is
that DeepDT can adaptively fill holes that need to be filled
to a certain extent, rather than overfilling or remaining holes
(Stl_127, St1_110). Especially for open scene reconstruction
tasks, our method can well avoid the phenomenon that some
strange handles that should have been removed are not re-
moved due to the wrong labeling of the tetrahedrons inside
the surface. It can be seen in the first column of Figure 4
that L-method cannot handle the inner surface of an open
scene well, leaving many triangular patches that close the
open scene to be removed. However, DeepDT reconstructs
a smooth inner surface and reproduces the original shape of
the open scene well. This greatly optimizes the visual effects
of the final surface and validates our design of DeepDT.
Table 2 shows that DeepDT gets the competitive results.
It is worth mentioning that the results of PSR and SSRNet
are performed on the original point cloud without sampling
or adding noise (We obtain PSR and SSRNet results from
SSRNet paper). This means that DeepDT maintains good
performance without using dense input, which benefits the
method with the opportunity to explore better efficiency.

Efficiency

We test the efficiency of DeepDT on 1 GeForce RTX 2080
Ti GPU in an Intel Xeon(R) CPU system with 40x2.20 GHz
cores. Here we choose DTU that better reflects the general



Data CD Mean CD RMS
ONet SSRNet-S DeepDT-S  ONet  SSRNet-S  DeepDT-S
Armadillo  93.46 0.028 0.021 168.59 0.131 0.028
Bunny 94.88 0.064 0.038 165.44 0.134 0.095
Dragon 40.69 0.053 0.029 74.99 0.208 0.081

Table 3: Generalization performance test on Stanford 3D. The Chamfer Distances (CD, lower is better) are in units of 1076,
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Figure 5: Qualitative performance of ONet, SSRNet-S and
DeepDT-S on Stanford 3D.

efficiency. We also make a comparison with the learning-
based method, SSRNet. We monitor the time consumption
from inputting the point cloud to generating the final sur-
face of each scan. It takes an average of 8.985 seconds for
DeepDT to complete a scan, and 200,000 points yield an
average of 1,248,801 tetrahedrons. SSRNet deals with the
whole input with an average of 2.53 M points(1.20M ver-
tices to be processed, which takes an average of 139.652 sec-
onds). It can be accelerated by using more GPUs or reducing
the input. However, the acceleration degree will not change
linearly with the decrease of input points. This is mainly
because SSRNet predicts the labels of vertices in an octree
generated from the given point cloud. Even though the input
data gets sparse, the spatial distribution of the point cloud
does not change significantly, and the number of vertices
will not decrease synchronously and linearly. Therefore, a
sparse sample of the input will not significantly influence
the efficiency of SSRNet.

Generalization Capability

For a learning-based method, it is important to have an out-
standing generalization ability, which reflects whether the
network can resist the threat from overfitting on a dataset.
Therefore, we perform experiments on the Stanford 3D
dataset to verify whether DeepDT can complete the task well
on a new dataset without retraining or changing network pa-
rameters. We test DeepDT and SSRNet on Stanford 3D with
the model trained on ShapeNet (DeepDT-S and SSRNet-
S) to better assess the generalization ability. We still apply
Gaussian noise with zero mean and standard deviation 0.001
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to the point clouds in Stanford 3D. Here we also set the re-
sults of ONet as an evaluation reference. Quantitative and
qualitative results are reported in Table 3 and Figure 5. The
results of SSRNet are performed on the original dense point
cloud without sampling or adding noise (We obtain SSRNet
results from the paper of SSRNet).

We can see that ONet fails to reconstruct the details and
it cannot even restore the general shape. However, model
SSRNet-S and DeepDT-S are able to better restore the geo-
metric details of the surface without retraining. It is worth
mentioning that the difference between the Stanford 3D
dataset and the ShapeNet dataset is very large. This reflects
the powerful generalization ability of SSRNet and DeepDT,
making it possible to complete the reconstruction without
changing the parameters or retraining on a new dataset.

Discussion and Conclusion

In this paper, we propose DeepDT, a novel learning-based
method for surface reconstruction from Delaunay triangu-
lation. The network integrates geometry features together
with graph structural information for accurate labeling of
tetrahedrons. In contrast to state-of-the-art traditional recon-
struction method, L-Method, DeepDT needs no visibility in-
formation and outputs accurate meshes. SSRNet adopts the
strategy of dividing the input so that it can be adapted to
sufficiently dense input to obtain better results. However,
DeepDT is temporarily unable to use the same strategy to
handle excessively large input. With its excellent perfor-
mance, DeepDT just uses a sample of 200,000 points in-
stead of the entire input to obtain competitive results in a
more efficient way than SSRNet. Both DeepDT and SSR-
Net can complete the reconstruction of dense input well, but
DeepDT is also good at dealing with the situation where
there is not enough dense input. We have also noticed that
when the input data is not dense enough, DeepDT witnessed
a drop on texture finesse and clarity. An interesting direction
could be to improve the visual effect of the DeepDT when
maintaining good quantitative evaluation results. We hope
that our method will inspire more learning-based methods
that no longer simply adapt the network to all the input data
or reduce the input at the expense of accuracy to cope with
reconstruction tasks, but focus on the quality, efficiency and
generalization ability, making great contributions to daily
applications.
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