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Abstract

Deep learning based human parsing methods usually require
a large amount of training data to reach high performance.
However, it is costly and time-consuming to obtain manually
annotated high quality labels for a large scale dataset. To al-
leviate annotation efforts, we propose a new semi-supervised
human parsing method for which we only need a small num-
ber of labels for training. First, we generate high quality pseu-
do labels on unlabeled images using a hierarchical informa-
tion passing network (HIPN), which reasons human part seg-
mentation in a coarse to fine manner. Furthermore, we de-
velop a noise-tolerant hybrid learning method, which takes
advantage of positive and negative learning to better han-
dle noisy pseudo labels. When evaluated on standard human
parsing benchmarks, our HIPN achieves a new state-of-the-
art performance. Moreover, our noise-tolerant hybrid learning
method further improves the performance and outperform-
s the state-of-the-art semi-supervised method (i.e. GRN) by
4.47 points w.r.t mIoU on the LIP dataset.

Introduction
Humans exist commonly and are the most interesting ob-
jects in daily visual data, e.g. public surveillance videos,
private photographs, etc. Therefore, it is of great interests
for the computer vision community to analyze humans in
visual data. Human parsing (i.e. partitioning human body
to multiple semantically consistent regions), is a crucial yet
challenging task for fine-grained human body understand-
ing, which is helpful for many other high-level computer vi-
sion tasks such as pedestrian attribute recognition (Li et al.
2019b), human pose estimation (Liu et al. 2021), and person
re-identification (Guo et al. 2019), etc.

With the development of convolutional neural network-
s (CNNs), human parsing has witnessed dramatic progress.
Typically, CNN-based approaches require a large number
of labeled training samples to boost performance. But it
is rather expensive to collect high-quality and fine-grained
annotations for human body. In order to reduce annotation
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Figure 1: Comparison of different semi-supervised methods
for human parsing. (a) Previous methods directly use gener-
ated pseudo labels to retrain the model. In contrast, (b) we
identify noisy and clean labels, and further develop a noisy-
tolerant hybrid learning strategy to make full use of correct
information from clean pseudo labels while eliminate incor-
rect information from noisy pseudo labels.

.

costs, a promising solution is to take advantage of semi-
supervised learning. Most existing methods first use a hu-
man parsing model trained on annotated data to generate
pseudo labels for unlabeled images and then retrain the mod-
el using the augmented training samples, following the s-
tandard pipeline shown in Fig 1(a). Some of them (Fang
et al. 2018; Lin et al. 2019) adopt the skeleton key points as
auxiliary information to generate pseudo labels. However,
these algorithms require extra computing resources of hu-
man pose, which are usually unavailable in real cases and
inevitably introduce new errors. Some other works (Li et al.
2019a, 2020) adopt rectification strategy to correct some
structure error and consistency error of pseudo labels. All
of these works aim to design a powerful and robust model to
generate high-quality pseudo labels. Nevertheless, the pri-
mary model trained on a small amount of data is somehow
weak, and thus the generated pseudo labels are inevitably
noisy. Therefore, it is necessary to take care of the noise dur-
ing the second round of training, which has not been consid-
ered by previous works in this filed so far.

In this paper, we make the first attempt to train a ro-
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Figure 2: An overview of our proposed semi-supervised human parsing method. We first use the trained HIPN model to generate
pseudo labels for unlabeled images. Then, we classify pseudo labels as noisy and clean ones. Finally, we develop a noise-tolerant
hybrid learning strategy to retrain the HIPN model.

.

bust human parsing model against noisy pseudo labels. The
pipeline is shown in Fig. 1(b). Compared to the tradition-
al pipeline (Fig. 1(a)), we replace the noise-blind learning
with a new noise-tolerant one. This noise-tolerant learning
consists of noisy label identification and a hybrid learning
strategy, which handles clean labels with traditional positive
learning and handles noisy labels via humble negative learn-
ing (Kim et al. 2019). First, noisy label identification is per-
formed based on the assumption that the higher the certain-
ty of the prediction, the sharper the probability distribution
is. Then we measure the certainty of each predicted pseu-
do label as the distance between the produced probability
distribution and its sharpest counterpart. For those uncertain
predictions, we apply a negative learning method to alleviate
the negative effects from label noise. The negative learning
method (Kim et al. 2019) sets a humble hypothesis that the
input image does not belong to some semantic categories
beside the predicted pseudo label. Once the pseudo label is
wrong, negative learning has a smaller chance to make errors
than positive learning. But the drawback is that the provid-
ed knowledge also becomes weaker when the pseudo label is
correct. Therefore, in this work, we first identify noisy labels
and apply negative learning on those labels only.

In summary, the main contributions of this paper include:
•We propose a hierarchical information passing network

(HIPN), which exploits physiological structure of human
body to explicitly model human part relations. Based on the
HIPN, we obtain high-quality pseudo labels for unlabeled
images and classify them as clean and noisy pseudo labels
accurately.
•We develop a noise-tolerant hybrid learning strategy to

take full advantage of positive and negative learning, which
better handles noisy pseudo labels. To the best of our knowl-
edge, this is the first work that handles noisy pseudo labels
for semi-supervised human parsing.
• The experimental results on the challenging human

parsing datasets demonstrate the effectiveness of the pro-
posed semi-supervised method. In particular, our method
achieves mIoU score of 60.81 on the large scale bench-
mark (i.e. LIP), which outperforms the state-of-the-art semi-

supervised method by 4.47 pp.

Related Works
Fully-supervised human parsing. Human parsing is a sub-
task of semantic segmentation, but with the particular struc-
ture constraint on the human body. Aiming for better perfor-
mance, some recent works propose to use additional cues to
assist human parsing. For example, Zhao et al. (Zhao et al.
2018, 2020) use saliency maps as a basic prior to facilitate
human parsing. Li et al. (Li et al. 2017a, 2018) tackles mul-
tiple human parsing by generating instance masks for mul-
tiple persons. The works of (Gong et al. 2017; Zhao et al.
2017; Xia et al. 2016; Fang et al. 2018) jointly train pose es-
timation and human parsing networks to improve the perfor-
mance of both tasks. Considering the correlations between
human parsing and edge detection, some methods (Gong
et al. 2018; Ruan et al. 2019; Zhao et al. 2019) leverage edge
details to sharpen human parsing predictions via an encoder-
decoder structure. In (Wang et al. 2019a, 2020b; Li et al.
2020; He et al. 2020), the hierarchical structure of human
body is adopted to facilitate human part reasoning. Most of
these methods ignore to explicitly model human part rela-
tions, easily suffering from weak expressive ability and risk
of sub-optimal results.

Semi-supervised human parsing. To reduce annotation
costs, some semi-supervised methods are proposed. A s-
traight forward way is to generate pseudo labels on unla-
beled images and then include them for training. Gong et
al. (Gong et al. 2019) propose to generate labels on a dif-
ferent human parsing dataset via transferring unmatched la-
bels based on a graph model, and then add this dataset to
the training pool. Fang et al. (Fang et al. 2018) aim to em-
ploy those images with labeled human body keypoints for
training; the parsing labels can be automatically generated
by finding the most similar skeleton in the labeled human
parsing dataset. Some other works (Li et al. 2019a, 2020)
attempt to refine pseudo labels via a better performed model
for a more robust re-training. Nevertheless, one can hard-
ly generate perfect pseudo labels, and the inevitable noises
may result in error amplification and accumulation during
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Figure 3: Illustration of our hierarchical information pass-
ing network (HIPN). Specifically, based on the hierarchy of
human body, we design a cascaded pipeline for progressive
refinement, which consists of K stages. (a) We adopt back-
bone network to extract features from an input image. And
then (b) we use the ASPP module as projection function to
obtain root node representations. (c) At the 1st stage, we ini-
tialize node features by passing information in a top-down
manner. (d) At each later stage, we update each node by fus-
ing the information from both its parent and child nodes.

.

the second round of training. A new training strategy toler-
ant to noisy labels is necessary, but has not been investigated
before for human parsing.

Learning with noisy labels. The solutions of learning
with noisy labels can be roughly classified into two types.
The first one aims to rectify potential noisy labels allow-
ing for easier optimization. Some of them achieve this by
modeling the noises through graphical models (Xiao et al.
2015) or knowledge graphs (Li et al. 2017b). However, these
methods either require a large number of clean annotation-
s to estimate the noise model or become ineffective at high
noise regimes. To solve this problem, Tanaka et al. (Tanaka
et al. 2018) propose a joint optimization framework to al-
ternatively update network parameters and labels. Zhang et
al. (Zhang et al. 2020) propose a meta re-labeling method,
which leverages a small trusted set to estimate pseudo la-
bels for noisy data in order to reuse them in the following
supervised training. In contrast, the second group of meth-
ods design some noise-robust models, which can be fed with
noisy labels. In some works (Jiang et al. 2018; Huang et al.
2019), each training sample is re-weighted based on the re-
liability of the given label. However, it is challenging to es-
timate effective weights. An alternative way is to modify the
loss functions to compensate for the incorrect guidance pro-
vided by noisy labels. To this end, some noise-robust loss
functions are designed, such as generalized cross entropy
loss (Zhang and Sabuncu 2018), symmetric cross entropy
loss (Wang et al. 2019b), and negative loss (Kim et al. 2019),
etc. These methods only require minimal intervention to ex-
isting algorithms and architectures. In this work, we propose
a noise-tolerant hybrid learning strategy, where noisy labels
are identified based on our hierarchical information passing
network and the negative loss (Kim et al. 2019) is used to
alleviate the negative effects from noisy labels.

Method
In this section, we first give an overview of our proposed
method. After that, we provide detailed descriptions to
our Hierarchical Information Passing Network (HIPN), and
noise-tolerant hybrid learning strategy.

Overview
The pipeline of our semi-supervised human parsing is shown
in Fig. 2. We first propose a hierarchical information passing
network (HIPN) and train a primary model using a small set
of images with clean labels. By utilizing the primary HIPN
model, we then generate pseudo labels for a large number
of unlabeled images, and we classify these pseudo labels as
noisy and clean ones. Finally, we develop a noise-tolerant
hybrid learning strategy to retrain the HIPN. In order to bet-
ter handle noisy pseudo labels, we apply positive learning
on clean pseudo labels that “the pixel belongs to this pseudo
label”. In contrast, for each noisy pseudo label, we first re-
place it with a complementary label, and then apply negative
learning for training the model that “the pixel does not be-
long to this complementary label”. In this manner, we make
sure the correct information from clean labels are fully ex-
ploited yet the risk of using incorrect information from noisy
labels is decreased.

Hierarchical Information Passing Network
As shown in Fig. 3, our Hierarchical Information Passing
Network (HIPN) consists of K stages. Specifically, we be-
gin with the backbone network for feature extraction. Next,
we adopt the atrous spatial pyramid pooling (ASPP) mod-
ule (Chen et al. 2017) as projection function to obtain en-
riched features with various receptive fields.

Let us denote the features from the HRNet (Wang et al.
2020a) backbone as X , and the projection function as
F , then the root representation hr can be represented as
hW×H×C
r = F (X), where W , H , and C are the width,

height and number of channels of hr, respectively. We also
define a hierarchical human body structure, which consists
of three levels, as shown in Fig. 3. The principle is that each
parent node covers its child nodes.

At the first stage, we only allow information pass from
higher level nodes to lower level ones and we use a node
information passing (NIP) module to model the relation be-
tween the parent node and its child nodes. For a parent node
p with representation hp, let us denote its child node as v.
By utilizing the NIP module, the representation hv of v can
be initialized as:

hv = hp ⊗ FNIP (hp) + hp, (1)

where ⊗ indicates the element-wise multiplication oper-
ation, and FNIP represents the function of NIP module,
which applies on hp to extract attention map for hv . Here,
we serve the global root representation extracted from ASP-
P as the parent node of high-level node. In each NIP mod-
ule, we first use one self-calibrated block (Liu et al. 2020a)
to generate more discriminative representations by explicit-
ly incorporating richer information. After that, we use one
convolutional layer with kernel size 1×1 and one softmax
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Figure 4: Measuring certainty of pseudo labels. Two exam-
ples have the same highest probability, and thus cannot be
distinguished by applying a threshold on it (Kim et al. 2019).
In contrast, we use the KL-divergence to measure the dis-
tance between predicted and expected probability distribu-
tions, which exploits the probability distribution across dif-
ferent categories, and thus is more robust.

.

layer to output the attention map Ru,v = FNIP (hp) for n-
ode v. Notably, the channels of Ru,v consists of foreground
and background channels, where Ru,v ∈ (0, 1). To this end,
we superviseRu,v based on the labels of pre-set virtual cate-
gories. Finally, we combine all the feature of each low-level
node and use ASPP to extract global root representation for
the later stage.

At the second and subsequent stages, we consider addi-
tional bottom-up relations, which transfers the information
of human body structure from lower level to higher level n-
odes. For each node uk at k-th stage, its representation hku
can be represented as:

hku = hkp ⊗ FNIP (F1×1([Hk−1
u,v , h

k
p]) + hkp, (2)

where [·] indicates the concatenation operation; F1×1 repre-
sents the mapping function implemented by a 1 × 1 convo-
lutional layer; and Hk−1

u,v = [hk−1
u,1 , ..., h

k−1
u,V ] indicates the

features of u’s child nodes from the preceding stage, where
V indicates the number of its child nodes. In this way, we
allow information pass throughout the entire tree structure
in both top-down and bottom-up directions, so as to obtain
more discriminative features.

At the end of the last stage, we use a prediction module
to predict the final parsing results. Specifically, we first use
a 1×1 convolutional layer to reduce the dimension of fea-
ture maps according to the number of semantic category,
and then we use a softmax layer to estimate a probability
distribution for each pixel as final human parsing prediction.

Noise-Tolerant Hybrid Learning with Pseudo
Labels

Human parsing is a pixel-wise classification task. A typical
way of training CNNs for human parsing with given pix-
els and the corresponding labels is called positive learning
(PL), i.e. for each pixel, the information provided to CNNs
is that “it belongs to this given label”. However, when the
the labels are noisy, wrong information will be provided to
the model. Recently, Kim et al. (Kim et al. 2019) use the
negative learning strategy (NL) to decrease the risk of pro-
viding incorrect information from noisy labels. With nega-
tive learning, the CNNs are trained that “the pixel does not
belong to this complementary label”; the complementary la-
bel is selected among those categories except the most likely
one with the highest probability. Compared to PL, NL pro-
vides humble information for training, while reducing the
chance of making errors. When the pseudo labels are clean,
it is preferable to use PL to provide more information to the
optimization procedure; once the pseudo labels are noisy, N-
L is more suitable to reduce errors. Therefore, we propose a
hybrid learning strategy, where we first distinguish noisy la-
bels from clean ones and then apply PL for clean labels and
NL for noisy ones, respectively.

In order to identify noisy pseudo labels, a simple way is
to make the decision based on the predicted confidences for
the most likely category, i.e. when the confidence is below
a predefined threshold, this label is identified as noisy (Kim
et al. 2019). However, it is challenging to choose a suitable
threshold; and it is not sufficient only looking at the high-
est probability. To solve this problem, we propose a robust
method to distinguish noisy labels from clean ones, which
takes advantage of multi-level predictions of HIPN. Noisy
labels are identified via the following two criterion:

(1) Uncertainty of the final prediction. It is assumed that
the more concentrate the probability distribution is, the more
certain the prediction is. The ideal probability distribution
should be like a Dirac delta distribution with a probabil-
ity of 1 at the most likely category and 0 for others. The
probabilities usually become more distributed when the pre-
diction is less certain. Based on the above assumption, we
measure the distance between the obtained probability dis-
tribution and the Dirac delta distribution as the prediction’s
uncertainty. We use the KL-divergence as the distance mea-
sure. In principle, a larger distance value indicate to high-
er uncertainty. Compared to the previous work (Kim et al.
2019) that only considers the highest probability to judge
the reliability of each prediction, we exploit the probability
distribution across different categories, and thus is more ro-
bust. We show two examples in Fig. 4. We can see that the
two samples have the same highest probability, but belong
to clean and noisy, respectively; the difference lies in their
probability distributions. Thus it is more robust to consid-
er the whole probability distribution rather than the highest
value only. Those labels with a higher distance than a given
threshold is considered as noisy ones. The threshold is de-
termined by the average KL-divergence values inside each
image.

(2) Inconsistency of predictions at different levels. In prin-
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Variant
mIoU ∆Stage K Information passing dirction

Top-down Bottom-up

Baseline 69.45 -/-

1 X 71.81 2.36

2 X 72.67 3.22
X X 72.94 3.49

3 X 73.15 3.70
X X 73.51 4.06

4 X 73.58 4.13
X X 73.66 4.21

Table 1: Comparison of different variants on the Extended
PASCAL-Person-Part dataset. “∆” indicates the improve-
ment w.r.t mIoU compared to baseline method (i.e. HRNet).

Method Accuracy mIoU

Baseline -/- 74.13

NLNL (Kim et al. 2019) 60.59 74.27

Our method (certainty) 63.81 74.57

Our method (certainty & consistency) 64.91 74.91

Table 2: Comparison of different noise identification meth-
ods on the Extended PASCAL-Person-Part dataset. The per-
formance is evaluated in terms of clean/noisy classification
accuracy and mIoU, respectively. “Baseline” indicates the
noise-blind model without noisy label identification.

ciple, the predictions at different levels should be consistent.
For example, if one pixel is predicted at the middle level
as upper body, it is unreasonable to be predicted as leg at
the low level. Once inconsistency is found across levels, the
pseudo label should be considered as unreliable, i.e. noisy.

After distinguishing between clean and noisy pseudo la-
bels, we develop a noise-tolerant hybrid learning strategy to
retrain the HIPN, in which the positive and negative learning
are applied on clean and noisy pseudo labels, respectively.
We consider the problem of c-class classification for each
pixel. Let x represent a pixel of input image, y and ŷ indi-
cate its pseudo label and complementary label, respectively.
Suppose the proposed HIPN f(x : θ) maps the input pixel to
a c-dimensional probability distribution p, where θ indicates
network parameter set. When applying PL on clean pseudo
labels, the cross entropy loss function is defined as follows:

LPL(f, y) = −
c∑

k=1

yk log pk, (3)

where pk is the k-th element of p. Eq. 3 aims at optimizing
the probability value corresponding to the given pseudo la-
bel as 1. In contrast, NL optimizes the predicted probability
corresponding to the complementary label to be far from 1.
Therefore, the cross entropy loss function of NL becomes:

LNL(f, ŷ) = −
c∑

k=1

ŷk(1− log pk), (4)

DS PL HL Pixel Acc. Mean Acc. mIoU ∆mIoU

1/8
80.48 53.67 39.93 -/-

X 82.66 55.94 42.91 2.98
X 83.25 56.35 43.54 3.61

1/2
84.37 62.00 49.32 -/-

X 86.92 65.36 53.97 4.65
X 87.67 66.10 54.69 5.37

1 88.21 67.43 55.90 -/-

Table 3: Semi-supervised experiments on the LIP dataset.
“DS” denotes the labeled data size; “PL” and “HL” represent
the standard positive learning and our noise-tolerant hybrid
learning, respectively.

For every iteration during training, the complementary la-
bel ŷ is randomly selected from the labels of all semantic
categories except for the given noisy pseudo label y. Eq. 4
enables the probability value of the complementary label to
be optimized as zero, resulting in an increase in the proba-
bility values of other classes. Considering Eqs. 3 and 4, the
total loss is defined as:

L = αLPL + (1− α)LNL, (5)
where the α is a weighting parameter to balance two loss-

es.

Experiment
In this section, we first introduce the datasets used in our
experiments and implementation details. Then, we conduct
ablation studies to validate the effectiveness of each main
component of our method. Furthermore, we compare our
proposed method with state-of-the-art methods.

Datasets
We conduct experiments on two standard benchmarks for
human parsing: LIP dataset (Zhao et al. 2017), and ex-
tended PASCAL-Person-Part dataset (Xia et al. 2017). The
LIP dataset includes 50,462 images for single human pars-
ing. Each image contains one full or partial human body
with pixel-wise annotations of 19 part categories. The whole
dataset is split into training, validation and test sets, which
consist of 30,462 images, 10,000 images and 10,000 im-
ages, respectively. All methods are trained on the training set
and evaluated on the validation set, as the test set is held by
the authors for the LIP challenge. The extended PASCAL-
Person-Part contains multiple humans per image with di-
verse poses and occlusion patterns. Each person is annotat-
ed with 6 semantic parts. In total, there are 3,533 images,
among which 1,716 are used for training and another 1,817
are used for testing. For LIP, following its standard proto-
col (Ruan et al. 2019), we report pixel accuracy, mean accu-
racy and mean IoU (mIoU). For Extended PASCAL-Person-
Part, following conventions (Nie, Feng, and Yan 2018), the
performance is evaluated in terms of mIoU.

Implementation Details
We implemented the proposed framework in PyTorch. All
models are trained on two NVIDIA 2080Ti GPUs (8 im-
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Methods Head Torso Upper Arm Lower Arm Upper Leg Lower Leg Background mIoU

PCNet (Zhu et al. 2018) 86.81 69.06 55.35 55.27 50.21 48.54 96.07 65.90

WSHP (Fang et al. 2018) 87.15 72.28 57.07 56.21 52.43 50.36 97.72 67.60

HRNet (Wang et al. 2020a) 87.58 72.03 61.91 61.82 53.81 52.86 96.13 69.45

CNIF (Wang et al. 2019a) 88.02 72.91 64.31 63.52 55.61 54.96 96.02 70.76

DTCF (Liu et al. 2020b) 88.32 73.54 64.19 63.91 55.01 54.34 96.25 70.80

DPC (Chen et al. 2018) 88.81 75.54 63.85 63.73 57.24 54.55 96.66 71.34

CDCL (Lin et al. 2019) 86.39 74.70 68.32 65.98 59.86 58.70 95.79 72.82

LSNT (Ji et al. 2020) 89.01 74.63 62.90 64.70 57.53 54.62 97.74 71.59

HHP (Wang et al. 2020b) 89.73 75.22 66.87 66.21 58.69 58.17 96.94 73.12

Our HIPN 89.18 76.07 66.66 66.86 60.15 59.03 96.64 73.51

Our HIPN(+HL) 89.64 76.23 68.38 68.64 61.42 63.26 96.76 74.91

Table 4: Comparison with state-of-the-art methods on the extended Pascal-Person-part test set.

Method Pixel acc. Mean acc. mIoU

DeepLab (Chen et al. 2017) 82.66 51.64 41.64

MuLA (Nie et al. 2018) 88.50 60.50 49.30

JPPNet (Liang et al. 2019) 86.39 62.32 51.37

CE2P (Ruan et al. 2019) 87.37 63.20 53.10

BraidNet (Liu et al. 2019) 87.60 66.09 54.42

HRNet (Wang et al. 2020a) 88.21 67.43 55.90

LSNT (Ji et al. 2020) 88.10 70.41 54.86

CNIF (Wang et al. 2019a) 88.03 68.80 57.74

DTCF (Liu et al. 2020b) 88.61 68.89 57.82

GRN (Li et al. 2020) 88.33 66.53 56.34

HHP (Wang et al. 2020b) 89.05 70.58 59.25

Our HIPN 89.14 71.09 59.61

Our HIPN(+HL) 89.54 71.85 60.81

Table 5: Comparison on the LIP val set.

ages per GPU). We adopt the HRNet (Wang et al. 2020a)
that is pre-trained on the ImageNet dataset as the back-
bone network. After an ASPP module (Chen et al. 2017),
the dimension of each image representation is reduced to
W ×H × C, where W = 119, H = 119, and C = 64. For
our joint loss function, we empirically find that comparable
results can be achieved by setting α ∈ [0.5, 0.7]. And in our
method, we set the weight as α = 0.5. Following the stan-
dard protocol (Nie, Feng, and Yan 2018; Wang et al. 2019a),
we adopt data argumentation at both the first training and
retraining, such as randomly augmenting samples with a s-
caling factor in [0.5, 2.0], crop size of 473×473, and hori-
zontal flip. We use the SGD optimizer with a base learning
rate of 0.007, the momentum of 0.9 and the weight decay of
0.0005. The poly learning rate policy with power of 0.9 is
used for decreasing the learning rate. The training process is
terminated within 150 epochs.

Ablation Study
Evaluation on key settings of HIPN. We study the in-
fluence of two important settings in our HIPN on the LIP
dataset. (1) Number of stages K. As presented in Table 1, we
find that the performance improves as we increase the num-
ber of stages from 1 to 4, but the gain starts to saturate at 4
stages. Considering efficiency, we use 3 stages in our exper-
iments unless otherwise specified. (2) Information passing
directions. As presented in Table 1, compared to only allow-
ing for top-down information passing, we obtain consistent
improvements by using additional bottom-up passing across
the second and subsequent stages. This gain is mainly due to
that richer information of human body structure is exploited
and more powerful features are obtained.
Effectiveness of our noisy label identification method. We
compare our method with a recently proposed method (Kim
et al. 2019) for noisy label identification, and explore the
impact of noise identification on the human parsing per-
formance. Experiments are implemented on the Extended
PASCAL-Person-Part dataset, and we use the training set
as labeled samples, and test set as unlabeled samples. With-
in our noise-tolerant hybrid learning framework, we adop-
t different methods to distinguish noisy labels from clean
ones. An evaluation of different noise identification meth-
ods in terms of classification accuracy and human parsing
mIoU is shown in Table 2. We have the following findings:
(1) Our proposed hybrid learning strategy is effective and
robust. Compared to the baseline, all methods using our hy-
brid learning obtain better results w.r.t. mIoU. (2) Our noisy
label identification method using two criterion gives the best
results. Compared to previous method (Kim et al. 2019), our
method that take into account the whole probability distri-
bution better identify noisy labels, with a gain of 3.22%.
By further checking the inconsistency, the classification fur-
ther improves by ∼ 1%. (3) Better noisy label identifica-
tion leads to higher human parsing performance. As the
clean/noisy classification accuracy increases from 60.59%
to 64.91%, the performance of human parsing consistently
improves from 74.27% to 74.91% w.r.t. mIoU.
Impact of our noise-tolerant hybrid learning. We con-
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Figure 5: Visualization of human parsing results produced
by state-of-the-art methods and ours on the LIP validation
set. Our HIPN and HIPN(+HL) output more accurate pre-
dictions compared to previous state-of-the-art competitors,
i.e. HRNet (Wang et al. 2020a) and MuLA (Nie, Feng, and
Yan 2018). We highlight the most notable differences for
each sample by a white circle.

.

duct the semi-supervised learning experiments on the LIP
dataset under different settings: {1/8, 1/2} labeled samples
and other unlabeled ones on LIP training set are used for
training. The experimental results evaluated on the LIP val-
idation set are shown in Table 3, where we study the im-
pact of our proposed noise-tolerant hybrid learning. We have
the following observations: (1) When the provided labeled
data is limited, it is helpful to employ extra unlabeled da-
ta via semi-supervised learning. Either PL or HL brings
extra gains via using some amount of unlabeled data for
training; the improvements range from 3% to 5%. (2) Our
proposed noise-tolerant hybrid strategy consistently outper-
forms the standard positive learning under various settings.
When we use 1/8 or 1/2 labeled data, our hybrid learn-
ing brings an improvement of 3.61%/ 5.37% w.r.t. mIoU
to the baseline, larger than that from positive learning. (3)
Our semi-supervised method using only half annotation-
s achieves comparable performance to the fully supervised
method. When we only use half labeled data for training, our
method is able to achieve comparable results to the fully su-
pervised method using the whole set of labeled training data,
54.69% vs. 55.90%. These results indicate that our proposed
semi-supervised method helps to reduce annotation burdens.

Comparisons with the State-of-the-Arts
We compare our proposed method with other state-of-the-art
methods on two challenging datasets, i.e. LIP and extended
PASCAL-Person-Part. We conduct the experiments with t-
wo training settings. Specifically, we denote our method as

“HIPN” and “HIPN(+HL)”, respectively. (1) “HIPN”: we
use all the training images with labels in a fully-supervised
manner for a fair comparison with other methods. (2) “HIP-
N(+HL)”: we use all the training images with labels and the
test images without labels in a semi-supervised manner.

In Table. 4, we compare our method with 9 state-of-the-
art methods on the extended PASCAL-Person-Part test set.
We have the following observations. (1) Our HIPN outper-
forms previous methods by a large margin w.r.t mIoU, es-
tablishing a new state-of-the-art performance. (2) Our HIP-
N(+HL) further improves mIoU to 74.95%, and ranks 1st on
five semantic categories, demonstrating the effectiveness of
our proposed hybrid learning method. In Table. 5, we com-
pare our method with 11 state-of-the-art methods on the LIP
validation set. We have the following observations. (1) Our
HIPN outperforms well established baseline approach (i.e.
HRNet (Wang et al. 2020a)) by 0.93% w.r.t. pixel accuracy,
3.66% w.r.t mean accuracy, and 3.71% w.r.t. mIoU. (2) Our
HIPN(+HL) further improves the performance when using
additional unlabeled images, and outperforms state-of-the-
art semi-supervised approach (i.e. GRN (Li et al. 2020)) by
1.21% w.r.t. pixel accuracy, 5.32% w.r.t mean accuracy, and
4.47% w.r.t. mIoU. These results demonstrate the effective-
ness of our semi-supervised human parsing method.

In Fig. 5, we show some qualitative results on the LIP val-
idation set. Our HIPN and HIPN(+HL) yield more precise
predictions, while other methods (Wang et al. 2020a; Nie,
Feng, and Yan 2018) sometimes mix up confusing compo-
nents, resulting in wrong boundaries, e.g. the dress in the
1st row, and the skirt in the 2nd row. Our model also pre-
dict more accurate categories, for example, in the 3rd row,
our method correctly labels the skirt, while other method-
s (Wang et al. 2020a; Nie, Feng, and Yan 2018) mix it up
with dress. For the last two rows, our model can successful-
ly predict the complete structure for each component, while
other methods may lose some components in detail, such as
the glove and scarf.

Conclusion
To reduce annotation costs for human parsing, we propose
a semi-supervised learning framework, which consists of
high-quality pseudo label generation and noise-tolerant hy-
brid learning. Specifically, we first propose a HIPN to gen-
erate high-quality pseudo label for unlabeled images. Then,
considering both the certainty and consistency of multi-level
predictions of HIPN, we distinguish noisy pseudo labels
from clean ones and develop a noise-tolerant hybrid learn-
ing strategy to retrain the HIPN, which better handles noisy
pseudo labels. The experimental results demonstrate the ef-
fectiveness of our method. In the future, we would like to
extend our method to multiple-person human parsing and
video human parsing tasks.
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