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Abstract

Automatic generation of Chinese fonts is a valuable but chal-
lenging task in areas of AI and Computer Graphics, mainly
due to the huge amount of Chinese characters and their com-
plex glyph structures. In this paper, we propose FontRL, a
novel method for Chinese font synthesis by using deep re-
inforcement learning. Specifically, we first train a deep re-
inforcement learning model to obtain the Thin-Plate Spline
(TPS) transformation that is able to modify the reference
stroke skeleton in a mean font style into the skeleton of a
required style for each stroke of every unseen Chinese char-
acter. Afterwards, we utilize a CNN model to predict the loca-
tion and scale information of these strokes, and then assemble
them to get the skeleton of the corresponding character. Fi-
nally, we convert each synthesized character skeleton into the
glyph image via an image-to-image translation model. Both
quantitative and qualitative experimental results demonstrate
the superiority of the proposed FontRL compared to the state
of the art. Our code is available at https://github.com/lsflyt-
pku/FontRL.

Introduction
Computer fonts are widely used in our daily lives. Human
beings often express various meanings by writing different
words which can also contain different emotional feelings
by adopting different font styles. As now more and more
people are seeking their personalized fonts, existing com-
mercial font libraries cannot satisfy the rapidly-increasing
demands. The demand gap problem is hard to resolve for
writing systems that consist of large numbers of charac-
ters (e.g., Chinese). For example, there are 6,763 Chinese
characters in a GB2312 (an official standard) font library,
while the GB18030-2005 character set contains more than
70,000 Chinese characters whose glyph structures are typi-
cally complicated. Since the number of characters contained
in a Chinese font library is so large that it is quite time-
consuming and costly to design new Chinese fonts. More-
over, the quality of font design relies heavily on the de-
signer’s capability and experience. To alleviate the workload
and cost of designing a new font library, this paper aims to
automatically synthesize glyph images for all Chinese char-
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Figure 1: An overview of the proposed FontRL.

acters in a font library by training on a small number of input
character images.

Automatic generation of Chinese fonts is a challenging
task that has attracted many researchers in the last few years.
Those existing methods can be roughly divided into two
groups which process glyph images and sequential data, re-
spectively.

The methods in the first group treat a given Chinese char-
acter as an image. To be specific, they typically use convo-
lutional neural networks (CNNs) to extract the content and
style features of characters, and then reconstruct features to
convert glyph images in the source font to the target font.
For example, based on pix2pix (Isola et al. 2017), Tian 1

proposed zi2zi by designing an encode-decode network and
adding a non-trainable gaussian noise as category embed-
ding for one-to-many modeling. DCFont (Jiang et al. 2017)
replaces the above-mentioned random gaussian noise em-
bedding with style features extracted from the font feature
reconstruction network, and then establishes the mapping
from the reference font to the target font by using residual
blocks. Some researchers added extra prior knowledge of
Chinese characters to generative models to guide the gener-
ation, such as SA-VAE (Sun et al. 2017) and SCFont (Jiang
et al. 2019). In this type of methods, most of them directly
use CNNs to extract and transfer font styles to generate
glyph images in the target style. However, they ignore the
high-level information of Chinese characters, and thus often
obtain synthesis results with incorrect topological structures
and blurry contours.

1https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html
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The writing process naturally contains timing and posi-
tion information, based on which the second type of meth-
ods treat the Chinese character as sequences of points,
e.g., FontRNN (Tang et al. 2019). Through a specifically-
designed RNN model, FontRNN learns the transformation
from the input sequence to the target one, and thus ef-
fectively simulates the writing behaviors of human beings.
However, this type of methods fail to synthesize high-quality
glyph contours.

To address the above-mentioned problems, we propose
FontRL, a novel Chinese font synthesis system based on
deep reinforcement learning (DRL). As shown in Figure 1,
we treat the writing trajectory of a given Chinese character
as the combination of stroke skeletons, which are composed
of point sequences. However, unlike FontRNN (Tang et al.
2019), our FontRL does not directly generate the sequential
data of writing trajectories. Instead, we search for an opti-
mal RL-action to obtain the Thin-Plate Spline (TPS) (Book-
stein 1989) transformation that is able to modify the refer-
ence stroke skeleton in a mean font style into the skeleton
of a required style for each stroke of every unseen Chinese
character. After assembling the generated stroke skeletons to
a complete character skeleton, we use a CNN-based image-
to-image translation model to convert the character skeleton
into a glyph image. Compared to other existing CNN-based
font synthesis methods, the proposed FontRL is simple and
easy to train, and it does not require to conduct pre-training
on large amounts of data. In other words, our FontRL can be
directly trained on a small number of input Chinese charac-
ters written/designed in a specific style to generate the cor-
responding high-quality font library. Compared to existing
RNN-based methods, our FontRL learns how to modify the
character skeleton in a reference style instead of generat-
ing the skeleton from scratch, ensuring the generation of a
smooth and natural writing trajectory. In this manner, high-
quality glyph images for all characters in a Chinese font li-
brary can be synthesized. In summary, major contributions
of this paper are as follows.
• We propose FontRL, a novel font synthesis system, based

on deep reinforcement learning (DRL). To the best of our
knowledge, we are the first to use reinforcement learning
to handle the challenging task of font synthesis.

• We design a two-stage architecture which implements
the modification of reference stroke skeletons and predic-
tion of stroke bounding boxes sequentially to ensure that
the generated character skeleton is satisfactory. Compared
with other methods based on character skeletons, such
as EasyFont (Lian et al. 2019) and SCFont (Jiang et al.
2019), higher-quality writing trajectories can be synthe-
sized by FontRL without pre-training on large-scale data.

• Extensive experiments have been conducted to demon-
strate the superiority of the proposed FontRL compared
to the state of the art both quantitatively and qualitatively.

Related Work
Neural Style Transfer
Until now, a large amount of methods have been proposed
on neural style transfer (Gatys, Ecker, and Bethge 2016)

that aims to migrate the style from a reference image to a
content image via neural networks. For instance, Isola et
al. (Isola et al. 2017) proposed a first image-to-image trans-
lation model, pix2pix, by utilizing the combination of U-
Net (Ronneberger, Fischer, and Brox 2015), condition GAN
and PatchGAN (Isola et al. 2017). Zhu et al. (Zhu et al.
2017) designed CycleGAN to handle the image-to-image
translation problem for unpaired data. One possible solution
to handle the Font synthesis task is to transfer the style of a
given reference font into the target font style based on neural
style transfer. However, existing common-purpose methods
for neural style transfer (e.g., pix2pix and CycleGAN) can
not be directly used to generate satisfactory glyph images.

Chinese Font Generation

In the last few years, many researchers attempted to generate
high-quality Chinese fonts by using deep generative mod-
els. Rewrite 2 employs a traditional top-down CNN struc-
ture to synthesize Chinese glyph images. Since the network
is quite simple, synthesis results of Rewrite are far from sat-
isfactory. Zi2zi, which mainly follows the network architec-
ture of pix2pix, establishes a conditional GAN-based model
for font style transfer by adding category embedding to the
generator and discriminator. EMD (Zhang, Zhang, and Cai
2018) can generate novel styles and contents which are un-
seen in the training set by training on just a few input glyph
images. However, the quality of its synthesis results is rel-
atively poor for handwriting fonts. To handle this problem,
Wen et al. (Wen et al. 2019) proposed CSR, an end-to-end
deep neural network, to synthesize glyph images for un-
seen Chinese characters with only 750 samples as input,
and Chang et al. (Chang et al. 2018) developed HCCG-
CycleGAN, a deep generative model based on CycleGAN
and DenseNet (Huang et al. 2017), for handwriting Chinese
font generation.

However, above-mentioned methods could inevitably
generated low-quality glyph images for some Chinese char-
acters due to their complex structures. Thereby, some re-
searchers tried to integrate some high-level prior knowledge
of Chinese characters with generative models. For example,
SA-VAE (Sun et al. 2017) encodes a character as a 133-bit
vector, containing information of glyph structure, radical,
and index codes, which has proved to work better than one-
hot embedding. By introducing decomposed character skele-
tons as reference data and utilizing a series of stacked deep
networks to synthesize writing trajectories and their corre-
sponding glyph images, SCFont (Jiang et al. 2019) possesses
a better capability of handling the problems of structural cor-
rectness and style consistency than other existing methods.
As we know, a writing trajectory can also be represented as
key point sequence. Following this idea, Tang et al. (Tang
et al. 2019) proposed FontRNN, a RNN-based generative
model, to directly synthesize writing trajectories in the tar-
get font style, showing impressive performance for cursive
handwriting characters.

2https://github.com/kaonashi-tyc/Rewrite
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Figure 2: The architecture of our FontRL, which consists of four key components: MPNet, TPS transformation module,
BBoxNet and Image Rendering Module (IRM). The dotted parts where the ground truth is available only appear during training.

Reinforcement Learning-based Generation
With the help of deep reinforcement learning (DRL), many
challenging problems have been resolved, such as the game
of GO (Silver et al. 2017), text generation (Guo 2015) and
robot control (Levine et al. 2016). The decisions of these
tasks naturally form a sequence, and the writing process is
similar. To write a character, we need to choose where to
start and end, and how to move the pen. However, until now
no work has been reported to apply DRL to synthesize glyph
images. Here, we briefly review some related work.

Some researchers proposed to repaint images based on
DRL, such as LPaintB (Jia et al. 2019a), PaintBot (Jia et al.
2019b), LearningtoPaint (Huang, Heng, and Zhou 2019) and
SPIRAL++ (Mellor et al. 2019). The main differences be-
tween them are the utilization of different actions, rewards,
and drawing windows in the corresponding reinforcement
learning algorithms. In particular, PaintBot achieves style
transfer by changing the training set and test set. Since char-
acter images are lack of color and texture information com-
pared with painting images and natural images, the result
of transferring font style using this method is unsatisfactory.
Wu et al. (Wu et al. 2018) proposed a system which is able
to draw the strokes of Chinese characters by controlling the
robotic arm through DRL. However, affected by the low ac-
curacy of the robot, the structures and contours of generated
strokes are fuzzy. In addition, this system can only write
characters in the training set, but is not able to handle un-
seen characters.

Method Description
As shown in Figure 1, the proposed FontRL first tries to
learn the TPS transformation that is able to modify the writ-
ing trajectory in a mean font style into a target style for
each stroke of a given Chinese character. Then, the strokes’
bounding boxes are predicted and used to assemble these
synthesized stroke skeletons to obtain the skeleton of the
corresponding character. Finally, the synthesized character

skeleton is converted into a glyph image via an image-to-
image translation model. To achieve the goal mentioned
above, we design a deep reinforcement learning (DRL)
based architecture as depicted in Figure 2, which consists
of the following four key modules: Modification Parameter
estimating Network (MPNet), TPS Transformation Module
(TPSTM), Bounding Box predicting Network (BBoxNet)
and Image Rendering Module (IRM).

More specifically, we first use MPNet, which is based on
DRL, to estimate parameters of the TPS transformation for
each stroke. Then, we employ the TPS interpolation func-
tion to modify the mean stroke skeleton into the target one.
Since the anchors of TPS transformation are fixed on a given
canvas but strokes may be located anywhere on the canvas,
in order to better modify strokes, we normalize the strokes
before implementing TPS transformation. After normaliza-
tion, the stroke skeleton is resized and located in the center
of the canvas without position and length information. In the
third step, we utilize BBoxNet to predict the centers and side
lengths of the bounding squares for all synthesized stroke
skeletons, and then assemble them into a complete character
skeleton. At last, for the IRM module, we directly apply the
skeleton-to-image translation model (StyleNet) proposed in
SCFont (Jiang et al. 2019) to render the character skeleton
to the corresponding glyph image. It should be pointed out
that the stroke skeletons of a given glyph image are extracted
in the same manner as SCFont (Jiang et al. 2019). More de-
tails of our proposed MPNet, TPSTM, and BBoxNet are pre-
sented in the following subsections.

Modification Parameter Estimating Network
(MPNet)
The transformation of a stroke skeleton from the reference
style to a target style can be described as multiple thin-
plate spline (TPS) interpolation functions. These functions
possess the same form but different parameters. We should
not randomly select some functions (the bad distribution of
training data leads to bad results) or use all functions (im-
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Figure 3: 25 anchor points are utilized to control the size and
shape details of a stroke skeleton.

possible to get all interpolation functions) as training data.
Therefore, in our system, we use deep reinforcement learn-
ing to train MPNet to get the parameters required for TPS
transformation to solve the problem of lacking suitable train-
ing data. Note that the training set used in this paper just
consists of 775 Chinese characters including 7004 strokes.
When implementing reinforcement learning, we update the
memory bank repeatedly, which expands the training data to
get better performance. The details of MPNet are described
as follows.

Anchor If the coordinates of key points of a stroke skele-
ton have the same x or y values, the stroke’s minimum
bounding rectangle will degenerate into a line segment.
Thereby, we calculate the minimum bounding square for
each stroke. Before applying TPS transformation, strokes
are normalized and placed into the blue square region as
shown in Figure 3, whose side length and center coordinate
are 1 and (0, 0), respectively. To effectively control the mod-
ification of the stroke skeleton, we use 25 anchors (see Fig-
ure 3), among which the red and yellow anchors control the
overall scale and shape details of the stroke, respectively.

Action The action at is a 25 × 2 vector, which is de-
fined as the offset of each anchor point. Since it is neces-
sary to ensure that the relative position of each anchor point
pair remains unchanged before and after modification, we
experimentally restrict the range of values in the vector to
[−0.49, 0.49].

State The state is given by the environment and defined as

state =
(
sskel; cskel; stepnum; coord

)
, (1)

where sskel denotes the normalized stroke skeleton im-
age, cskel denotes the reference character skeleton image,
stepnum is normalized to [0, 1], and coord is a coordinate
system with x and y values ranging from −0.5 to 0.5. All
these images are obtained by painting and connecting the
key points of stroke skeletons on the 128× 128 canvas.

Reward In MPNet, the reward of each action is defined by
the average distance of points between the generated skele-
ton and the target skeleton

r (st, at) = dist
(
sskelt

)
− dist

(
TPS

(
sskelt , at

))
, (2)

dist
(
sskelt

)
= ‖sskelt − sskelgt ‖2, (3)

where r(st, at) is the reward at the step t on the state st
with the action at, dist(sskelt ) denotes the distance between
the generated skeleton and the target skeleton at the step t,
and TPS(st, at) will be described in the next section. In
FontRL, we normalize the synthesized stroke skeleton and
the ground-truth target before calculating the distance and
reward (see the purple dotted line in Figure 2).

We have tried to use Q-learning by combining the value
Q and the reward R to update the policy net, but the per-
formance was poor. We find that the value Q cannot be pre-
cisely estimated in our task. So, we update the policy net by
just using the reward.

Policy net The policy net decides an action based on the
state and updates the policy based on the received reward.
For reinforcement learning, the policy net does not need to
understand the physical meaning of an action, but only needs
to establish the relationship between rewards and actions. In
FontRL, we adopt Resnet18 with a single FC layer as the
policy net.

Environment As shown in Figure 2, the environment first
sends the state to the policy net and modifies the stroke
skeleton through TPS transformation based on the action.
Then, the environment calculates the reward and returns it
to the policy net to update parameters. What’s more, the
environment provides the target ground-truth bounding box
to calculate the reward for MPNet and train BBoxNet. By
adding the environment, we decouple MPNet from other
modules in FontRL. This allows us to use different kinds
of transformation modules without re-training other parts.

TPS Transformation Module (TPSTM)
Thin-plate spline (TPS) (Bookstein 1989) transformation
is defined as follows: we smoothly bend a thin plate,
which can be considered as a two-dimensional plane, so
that the N source points Ps = (Ps1, Ps2, . . . , PsN )T

are shifted to the corresponding target points Pt =
(Pt1, P t2, . . . , P tN )T after bending. To minimize the bend-
ing energy, we compute the interpolation functions by

Φx(Psi) = cx +AT
xPsi +WT

x S(Psi), (4)

Φy(Psi) = cy +AT
y Psi +WT

y S(Psi), (5)

where cx and cy are scalars, Ax and Ay are 2 × 1 vectors,
and Wx and Wy are N × 1 vectors. The x and y values
of the coordinate of the target point Pti are determined by
Φx(Psi) and Φy(Psi), respectively. The function S(Psi) is
defined as

S(Psi) = (σ (Psi − Ps1) , · · · , σ (Psi − PsN ))
T
,

σ(∆Psij) = ‖∆Psij‖22 log ‖∆Psij‖2,
(6)

where ∆Psij = Psi − Psj . Then, we have

[
Wx Wy

cx cy
Ax Ay

]
= Γ−1

 Ptx Pty
0 0
0 0
0 0

 , (7)
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Method FZJHSXJW FZSSBJW FZTLJW FZYNJW FZZJ-LPYBJW
L1 loss IoU L1 loss IoU L1 loss IoU L1 loss IoU L1 loss IoU

FontSL 0.1943 0.4087 0.2395 0.1928 0.1560 0.1839 0.2272 0.3609 0.1492 0.2379
FontRNN 0.1818 0.4556 0.2393 0.2768 0.1603 0.3460 0.1884 0.4845 0.1732 0.2699
pix2pix 0.1851 0.4007 0.2290 0.1846 0.1687 0.2048 0.1782 0.4135 0.1491 0.2331
DCFont 0.1630 0.4125 0.1906 0.1672 0.1459 0.1223 0.1640 0.3908 0.1327 0.1808

zi2zi 0.1483 0.4682 0.1936 0.2598 0.1558 0.2431 0.1527 0.4328 0.1400 0.2688
SCFont 0.1173 0.5459 0.1627 0.3163 0.1188 0.3574 0.1245 0.5442 0.1191 0.3197
FontRL 0.0855 0.6963 0.1261 0.5399 0.1074 0.4836 0.0966 0.6890 0.1035 0.4843

Table 1: Quantitative results of our FontRL and other existing methods.

(a) FZJHSXJW (b) FZSSBJW (c) FZTLJW (d) FZYNJW (e) FZZJ-LPYBJW

Zi2zi

SCFont

Ours

Ground 
Truth

FontSL

Figure 4: Comparison of text rendering results for our FontRL and other three models.

Γ =


S 1 Psx Psy
1 0 0 0

PsTx 0 0 0
PsTy 0 0 0

 , (8)

S =


σ (∆Ps11) σ (∆Ps12) · · · σ (∆Ps1N )
σ (∆Ps21) σ (∆Ps22) · · · σ (∆Ps2N )

...
...

. . .
...

σ (∆PsN1) σ (∆PsN2) · · · σ (∆PsNN )

 ,
(9)

where Ptx and Pty consist of the x and y values of the
coordinates of N target points Pt, respectively, and so are
Psx and Psy for source points.

In FontRL, the source points Ps are the anchors, and the
target points Pt can be computed by Pt = action + Ps.
By solving Eq. 7, we get the TPS transformation parame-
ters: C = [cx, cy]T , W = [Wx,Wy]T , and A = [Ax, Ay]T .
Then, each key point Pks on the source stroke skeleton can
be transformed to the corresponding key point Pkt on the
target stroke skeleton by computing

Pkt = Φ(Pks) = C +ATPks+WTS(Pks). (10)

Bounding Box Predicting Network (BBoxNet)
After stroke modification via TPS transformation, we need
to assemble those synthesized stroke skeletons into a com-
plete character skeleton. Here, we propose BBoxNet to pre-
dict the center and size of the bounding square for a stroke.

The bounding box prediction module and the stroke mod-
ification module are independent of each other. So BBoxNet
can be replaced by any other object detection networks.
To verify its effectiveness, we adopt a simple network

(Resnet34 with a single FC layer) to predict the stroke cen-
ter and the side length. Using a small network reduces the
possibility of over-fitting. As shown in Figure 2, the input of
BBoxNet is the generated stroke skeleton and the reference
character skeleton in a mean font style. We use different col-
ors to label different strokes so that the model can learn the
relationship of each stroke and its corresponding stroke posi-
tion in the mean character skeleton to improve the accuracy
of prediction.

Loss function We have conducted experiments to respec-
tively apply the GIoU loss and the MAE Loss in the loss
function of BBoxNet, and obtained similar performance. For
simplicity, we choose the MAE Loss in our loss function to
reduce the computation complexity.

Experiments
In this section, we first introduce the dataset used here and
the implementation details of FontRL. Then, we compare
FontRL with other models in both quantitative and qualita-
tive performance. Afterwards, we further verify the effec-
tiveness of FontRL by showing the results of text render-
ing and a user study. Finally, we conduct ablation studies to
show the effects of TPS transformation and BBoxNet.

Dataset
In our experiments, we directly use the dataset introduced
in (Jiang et al. 2019), which consists of glyph images of all
6763 Chinese characters and their manually-specified stroke
skeletons in 5 different font styles as target and a mean font
style as reference. In order to fairly compare performance,
as SCFont (Jiang et al. 2019), we use an input character set
proposed in (Lian, Zhao, and Xiao 2016) for training. The
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Figure 5: Comparison of synthesized character skeletons obtained by our method, FontRNN and SCFont, respectively.

input character set consists of 775 Chinese characters that
are able to cover all kinds of strokes and components in the
GB2312 character set.

Implementation Details
The input image resolution of MPNet is 128× 128, and the
coordinates of key points on the stroke skeleton are normal-
ized to [−0.5, 0.5]. Similarly, the input image resolution of
BBoxNet is selected as 128×128. In our experiments, we di-
rectly use StyleNet proposed for SCFont (Jiang et al. 2019)
as the image rendering module of our FontRL and the reso-
lution of the input image for StyleNet is 320× 320.

The learning rate of MPNet is initialized as 0.0003, and
decayed to 0.0001 after 6000 iterations; the learning rate of
BBoxNet is initialized as 0.001, decayed to 0.0005 after 40
epochs, and then decayed to 0.0001 after 100 epochs; the
hyper-parameters of StyleNet are set to the default values.

Quantitative and Qualitative Results
We compare FontRL with six existing methods:
FontSL (Lian et al. 2019), FontRNN (Tang et al. 2019),
SCFont (Jiang et al. 2019), zi2zi, DCFont (Jiang et al. 2017)
and pix2pix (Isola et al. 2017). Among them, zi2zi, DC-
Font, and pix2pix are deep learning-based image-to-image
translation approaches, which directly apply style transfer
on glyph images, while FontSL, FontRNN and SCFont both
generate character skeletons in the target style and render
them into glyph images. Default settings of those methods
as the original papers are adopted in our experiments.

As we can see from Table 1, FontRL performs much bet-
ter than other models in quantitative measurements, which
are estimated by computing the L1 loss and the IoU value
between synthesized images and the corresponding ground
truth. The lowest L1 loss and the highest IoU value have
been obtained by our method, clearly demonstrating the su-
periority of FontRL compared to other approaches.

Figure 4 shows some qualitative results of FontRL and
other methods. We can see that many local details in syn-
thesis results obtained by zi2zi are missing. For FontSL, be-
cause of adopting many prior knowledge of Chinese char-
acters, it guarantees the content correctness of its synthe-
sis results, while the overall visual effects and stroke details
of many characters are unsatisfactory. Generally speaking,
SCFont performs well in most situations. However, it per-
forms poorly when the target style (e.g., the FZTLJW font)
is quite different against the reference one. On the contrary,
as shown in Figure 4, glyph images synthesized by FontRL

(e) FZZJ-LPYBJW

(a) FZJHSXJW

(b) FZSSBJW (c) FZTLJW

(d) FZYNJW

mean skeleton

Figure 6: A Chinese poem rendered using 5 different fonts
synthesized by our FontRL. The reference mean skeletons
of these characters are shown on the top, where machine-
generated characters are marked in red and others are writ-
ten/designed by human beings.

are very similar to the ground truth. Compared with zi2zi
and SCFont, FontRL generates high-quality glyph images
with correct structures and more smooth and natural strokes,
especially for glyphs with complex shapes and cursive hand-
writing styles.

Both FontRNN, SCFont and FontRL are deep learning
based models that generate character skeletons which are
then rendered into glyph images. Thereby, we compare the
writing trajectories generated by these three methods. As
shown in Figure 5, since the proposed FontRL uses TPS
transformation to modify the key points of reference char-
acter skeletons instead of directly synthesizing the skeleton
images, smoother writing trajectories can be generated com-
pared to FontRNN and SCFont. Moreover, the style of our
synthesized character skeletons is also more similar as the
ground truth.

Text Rendering
Our FontRL can not only generate high-quality glyph im-
ages but also ensure the style consistency between machine-
generated characters and input samples. As shown in Fig-
ure 6, we render a Chinese poem by using 5 Chinese fonts
generated by FontRL, in which machine-synthesized char-
acters are marked in red while human-created characters are
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Font Accuracy
FZJHSXJW 0.5029
FZSSBJW 0.5099
FZTLJW 0.5077
FZYNJW 0.5040

FZZJ-LPYBJW 0.5001
Average 0.5049

Table 2: User study results

(a) Answer paper (b) Test paper (FZJHSXJW)

Figure 7: An example of a region of the test paper and an-
swer paper used in our user study. Glyph images in col-
ored blocks are synthesized by FontRL and others are writ-
ten/designed by human beings.

rendered in black. As we can see, images synthesized by our
model are consistent in style with the corresponding input
samples, making it hard to distinguish machine-generated
characters from those written/designed by human beings.

User Study
We also verify the effectiveness of our method by conduct-
ing a user study, in which 153 educated Chinese people par-
ticipated. The ages of those participants range from 13 to 56
years old. In this test, participants were asked to find out all
glyph images that are generated by FontRL from the random
mixture of 100 human-created and 100 machine-generated
character images in one of the above-mentioned five font
styles (see Figure 7 for an example). In our web-based user
interface, 50 ground-truth glyph images in a target font style
are also displayed as guidance. As we can see from Ta-
ble 2, the average selecting accuracy for each font style is
very close to 50%, which means that it is quite difficult for
participants to distinguish glyph images synthesized by our
FontRL and those written/designed by human beings.

Ablation Studies
TPS or Affine Transformation In Figure 8, we demon-
strate why the proposed FontRL uses TPS transformation in-
stead of affine transformation. As mentioned before, MPNet
outputs multiple parameters to control various linear trans-
formations such as rotation, translation, shear-warp, etc.
Compared with TPS transformation, the stretching and de-
formation ranges of affine transformation are much smaller
(examples are marked in blue), and complex skeleton mod-

Affine

TPS

Ground 
Truth

Figure 8: Comparison of methods adopting TPS transforma-
tion and affine transformation, respectively.

w/o 
BBoxnet

Ours

Ground 
Truth

Figure 9: The effect of BBoxNet.

maxstep 1 2 3 4 5
distance 0.310 0.303 0.281 0.266 0.266

Table 3: The average distance of points between the gener-
ated skeleton and the target skeleton in the FZJHSXJW font
with different maximum numbers of steps.

ifications cannot be accomplished via linear transformation
(examples are marked in red). Also, modifications based on
affine transformation may occasionally result in unrecogniz-
able characters (see the third column in Figure 8).

Effect of BBoxNet BBoxNet is proposed to predict the
position and size of each stroke’s bounding square. Thus,
the stroke skeletons can be normalized before implement-
ing TPS transformation. In this manner, the performance of
skeleton modification is markedly improved. We compare
the synthesis results with and without BBoxNet in Figure 9,
where red boxes are used to mark the regions in which the
two synthesis results differ significantly. We observe that
with BBoxNet the proposed FontRL can synthesize glyph
images with better stroke details. Moreover, due to the small
size of the network, BBoxNet is computationally efficient.

Maximum Number of Steps
In order to prove the effectiveness of reinforcement learn-
ing (RL) in FontRL, we calculate the average distance of
points between the generated skeleton and the target skele-
ton under different maximum numbers of steps (maxstep)
as shown in Table 3. Whenmaxstep is set to 1, the RL algo-
rithm used in FontRL degenerates to supervised learning. As
maxstep increases, the average distance of stroke skeletons
gradually decreases and converges. Comparing the results
obtained by setting maxstep to 1 and 5, it can be observed
that the RL algorithm in FontRL improves the quality of syn-
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Figure 10: Some failure cases of the proposed FontRL.

thesized stroke skeletons.

Limitations
For the generation of cursive handwriting fonts, there is still
room for improvement in the details of glyph images syn-
thesized by our method. When the structure of a glyph is
too complex, FontRL cannot generate high-quality ligatures
between some stroke pairs as human-written glyphs (Fig-
ure 10(a)(b)(c)). Moreover, when the target skeleton and the
reference mean skeleton are significantly different, it is diffi-
cult to achieve all deformation effects through TPS transfor-
mation (Figure 10(d)(e)). Finally, the predicting accuracies
of stroke bounding boxes for some characters are still unsat-
isfactory, leading to poor synthesis results (Figure 10(f)).

Conclusion
In the paper, we proposed a novel Chinese font synthesis
system named FontRL. The key idea is to adopt deep re-
inforcement learning to learn how to draw the writing tra-
jectory of a given Chinese character and then convert the
character skeleton into a glyph image by using an image-to-
image translation model. Specifically, we utilized the modi-
fication parameter estimation network (MPNet) and the TPS
transformation module to achieve the mapping of a stroke
skeleton from the reference style to the target style. And we
adopted the bounding box predicting network (BBoxNet) to
estimate the center and size of each stroke and assembled
synthesized strokes into character skeletons. Finally, we em-
ployed an existing model to render character skeletons into
images. Extensive experiments demonstrated that FontRL
obtains the best performance in both quantitative results and
visual effects compared to other font synthesis methods.
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