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Abstract

Recently, the relationship among individual pedestrian im-
ages and the relationship among pairwise pedestrian images
have become attractive for person re-identification (re-ID) as
they effectively improve the ability of feature representation.
In this paper, we propose a novel method named Hybrid Rela-
tionship Network (HRNet) to learn the two types of relation-
ships in a unified framework that makes use of their own ad-
vantages. Specifically, for the relationship among individual
pedestrian images, we take the features of pedestrian images
as the nodes to construct a locally-connected graph, so as to
improve the discriminative ability of nodes. Meanwhile, we
propose the consistent node constraint to inject the identity in-
formation into the graph learning process and guide the infor-
mation to propagate accurately. As for the relationship among
pairwise pedestrian images, we treat the feature differences of
pedestrian images as the nodes to construct a fully-connected
graph so as to estimate robust similarity of nodes. Further-
more, we propose the inter-graph propagation to alleviate the
information loss for the fully-connected graph. Extensive ex-
periments on Market-1501, DukeMTMCreID, CUHK03 and
MSMT17 demonstrate that the proposed HRNet outperforms
the state-of-the-art methods.

1 Introduction
Person re-identification (re-ID) aims at matching the pedes-
trian across non-overlapping camera views, and it has a wide
range of applications, such as picture grouping, activity anal-
ysis and multi-person tracking (Zheng et al. 2015; Fu et al.
2019; Zhou, Su, and Wu 2020). The challenges of person
re-ID lie in complex variations in viewpoints, poses, resolu-
tions, illumination, etc.

So far, Convolutional Neural Network (CNN) domi-
nates the person re-ID field due to its promising perfor-
mance (Ahmed, Jones, and Marks 2015; Park and Ham
2020). Most person re-ID methods utilize CNN to extrac-
t discriminative features from pedestrian images and then
employ the classification set-up or metric learning to opti-
mize the deep model. However, they only rely on individual
pedestrian image in the feature learning process without pro-
viding the relationship among pedestrian images.
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Figure 1: Two types of methods for learning the relation-
ship among pedestrian images: (a) learning the relationship
among individual pedestrian images, and (b) learning the re-
lationship among pairwise pedestrian images.

The booming Graph Convolutional Network (GCN) has
attracted extensive attention because of the powerful abili-
ty to learn the relationship of nodes in the graph (Kipf and
Welling 2016; Zhou et al. 2018). Hence, several recent stud-
ies embed GCN into the person re-ID pipeline to establish
the relationship among pedestrian images. These studies are
roughly divided into two categories based on the type of re-
lationship learning. The first category methods (Bao et al.
2019; Li et al. 2020) take single feature as the node of graph
and utilize the classification loss to learn the relationship a-
mong individual pedestrian images, aiming to improve the
discriminative ability of nodes, as shown in Figure 1 (a). As
for the second category methods (Shen et al. 2018; Yan et al.
2019), they treat pairwise features as the node of graph and
employ the verification loss to learn the relationship among
pairwise pedestrian images, aiming to estimate robust simi-
larity of nodes, as shown in Figure 1 (b). Since the two types
of methods are different in node forms and loss function-
s, they could learn the relationship from different aspects.
Hence, this motivates us to learn more comprehensive rela-
tionships among pedestrian images.

In this paper, we propose a novel method named Hybrid
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Relationship Network (HRNet) to learn two types of rela-
tionships, i.e., relationship among individual pedestrian im-
ages and relationship among pairwise pedestrian images, for
person re-ID. Specifically, in order to learn the relationship
among individual pedestrian images, the features of pedes-
trian images are treated as the nodes to construct a locally-
connected graph where each node is only connected to its
nearest neighborhoods. In the process of information propa-
gation, we introduce the attention mechanism to assign dif-
ferent edge weights to different neighborhoods, which could
allow the nodes to decide where to focus by itself. Mean-
while, we propose the consistent node constraint between
the input and output of graph convolutional layer to ful-
ly exploit the identity information of nodes. It encourages
to bring the nodes from the same identity close and push
away the nodes from different identities after the informa-
tion propagation. This identity-guided manner ensures the
information to be propagated in the graph accurately.

As for the relationship among pairwise pedestrian images,
the feature differences of pedestrian images which reflect the
similarities between pairwise pedestrian images are regard-
ed as the nodes to construct a fully-connected graph. Sim-
ilarly, we introduce the attention mechanism in the fully-
connected graph to adaptively learn the edge weights be-
tween the nodes. As the information propagation in the
graph, we could obtain robust similarity estimations for pair-
wise pedestrian images. It is worth noting that some discrim-
inative information may be lost when the features are sub-
tracted to form the nodes of the fully-connected graph, and
therefore we propose the inter-graph propagation to relieve
this loss. To this end, we add the edges between the corre-
sponding nodes of the locally-connected graph and the fully-
connected graph, and aggregate the node information of the
full-connected graph from the locally-connected graph.

To summarize, we make the following contributions:

• We propose HRNet for person re-ID, which learns two
types of relationships among pedestrian images to im-
prove the ability of feature representation.

• As for the locally-connected graph, we propose the con-
sistent node constraint to ensure the information to be
propagated accurately, and as for the fully-connected
graph, we propose the inter-graph propagation to allevi-
ate the information loss.

• We evaluate the proposed HRNet on four large-scale
person re-ID databases including Market-1501 (Zheng
et al. 2015), DukeMTMC-reID (Ristani et al. 2016),
CUHK03 (Zhao, Ouyang, and Wang 2014) and
MSMT17 (Wei et al. 2018), and the results demon-
strate the performance of HRNet outperforms the
state-of-the-art methods.

2 Related Work
Person Re-ID. Person re-ID has made great progress in re-
cent years and the mainstream methods either attempt to
learn powerful feature representation or design appropriate
metric learning to improve the performance of person re-ID.
For feature representation, various CNN models (Li et al.

2014; Sun et al. 2018) have been proposed to perform ro-
bust and discriminative feature learning. Meanwhile, extra
cues such as pose estimation and human parsing are also
introduced to assist to mine discriminative visual informa-
tion (Kalayeh et al. 2018).

As for the metric learning, some methods (Fu et al. 2019;
Ro et al. 2019) treat person re-ID as a classification problem.
They usually apply the softmax function to normalize the
features, and then calculate the cross-entropy loss based on
the ground-truth identity. Others (Ding et al. 2015; Zhou, Su,
and Wu 2020) focus on learning an embedded space to push
pedestrian images from the same identity close and those
from different identities far away. The common used losses
include triplet loss (Liu et al. 2017), hard triplet loss (Her-
mans, Beyer, and Leibe 2017), and quadruplet loss (Chen
et al. 2017).

GCN and Its Applications in Person Re-ID. GCN (Kipf
and Welling 2016; Zhou et al. 2018) has been proposed
to process graph structure data. The principle of construct-
ing GCN mainly follows two streams: spectral perspective
and spatial perspective. The spectral-based GCN (Deffer-
rard, Bresson, and Vandergheynst 2016) realizes convolution
operation in the Fourier domain by calculating the eigenvec-
tors and eigenvalues of graph Laplacian matrix. The spatial-
based GCN (Chen et al. 2020) directly performs the convo-
lution filters on the graph nodes and their neighborhoods.

Recently, some studies introduce GCN in the person re-
ID field in order to learn the relationship among pedestrian
images. For example, Shen et al. (Shen et al. 2018) propose
the Similarity-Guided Graph Neural Network (SGGNN) for
person re-ID, where they regard feature differences of pedes-
trian images as the nodes and the similarity among features
as the edge weights. Yan et al. (Yan et al. 2019) design the
Contextual Graph Model (CGM) to jointly consider the in-
formation among the target pair and the context pairs, where
the target pair is linked to all the context pairs. Li et al. (Li
et al. 2020) present the Spatial Preserved Graph Convolution
(SPGC) network to model the relationship among individual
pedestrian images, which employs the mask matrix with the
identity information to determine the edges between the n-
odes and calculates the edge weights based on the similarity.

Attention Mechanism in Graph Neural Network. The
attention mechanism allows the model to focus on the most
task-relevant parts, which makes it attractive for deep learn-
ing communities (Wang et al. 2018; Mnih et al. 2014). Re-
cent studies (Veličković et al. 2018) introduce the attention
mechanism into the graph neural network to adaptively learn
the edge weights between the nodes, thereby improving the
ability of information aggregation.

The proposed HRNet follows the spatial perspective of
GCN and applies the attention mechanism to learn two types
of relationships among pedestrian images in a unified frame-
work. Meanwhile, we propose the consistent node constrain-
t and the inter-graph propagation to guide the information
propagation and alleviate the information loss, respectively.

3 Approach
The structure of the proposed HRNet is shown in Fig-
ure 2. We first introduce the feature extraction of pedestrian
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Figure 2: The structure of the proposed HRNet.

images. Then, we explain the relationship learning in de-
tail including relationship among individual pedestrian im-
ages, consistent node constraint, relationship among pair-
wise pedestrian images and inter-graph propagation. Finally,
we present the optimization strategy of HRNet.

3.1 Feature Extraction
We utilize the ResNet-50 (He et al. 2016) pre-trained on
ImageNet as the CNN model of HRNet to extract the fea-
tures of pedestrian images. Specifically, following (Luo et al.
2019), the fully connected layer FC-1000 of ResNet-50 is
removed and the stride of Conv5 1 is set to 1. Each pedes-
trian image is resized to 256 × 128 and then fed into the
ResNet-50 to extract the convolutional activation maps with
the size of 2048× 16× 8, where 2048 is the number of con-
volutional activation maps, and 16 and 8 are the height and
width of convolutional activation map, respectively. Finally,
we apply the global average pooling to the convolutional ac-
tivation maps and obtain the features of pedestrian images
F = {f1, f2, · · · , fN}, where fn∈Rd, and N is the number
of pedestrian images. Here, d is the feature dimension and it
is equal to 2048.

3.2 Relationship Learning
Motivation. There are rich relationships among pedestrian
images, which is beneficial to improving the ability of fea-
ture representation. Hence, some recent studies are working
in this direction, and learn the relationship among individ-
ual pedestrian images or the relationship among pairwise
pedestrian images. The methods for learning the relation-
ship among individual pedestrian images could improve the
discriminative ability of features by allowing them to ag-
gregate the information from other features. The methods
for learning the relationship among pairwise pedestrian im-
ages could make full use of sample pairs to generate robust
similarity estimation. Since the two types of methods have

different advantages, this motivates us to learn more com-
prehensive relationships among pedestrian images to further
improve the performance of person re-ID.

Learning the Relationship among Individual Pedestri-
an Images. We treat each feature of pedestrian image as one
node to learn the relationship among individual pedestrian
images. Furthermore, the relationship between the node and
its neighborhoods has a great impact on this kind of rela-
tionship, and therefore we only construct the links with the
neighborhood nodes. Specifically, we take the feature fn as
the node vn to construct a locally-connected graph, where
each node is only connected to the k nearest neighborhoods.
For the node set V = {v1, v2, · · · , vN}, where vn∈Rd, we
utilize the adjacency matrix C= [ci,j ]∈RN×N to describe
the connection relationship among the nodes, and ci,j repre-
sents the edge between vi and vj . It is defined as:

ci,j =

{
1, if r(m(vi, vj)) ≤ k
0, otherwise

(1)

wherem(vi, vj) indicates the Euclidean distance between vi
and vj , r(m(vi, vj)) represents the ranking of m(vi, vj) in
the distances between vi and all nodes in the ascending sort,
and k is the hyperparameter. Eq. 1 indicates that we build the
edges between the node and its k nearest neighborhoods.

From Eq. 1 we can see that C only defines the connec-
tion relationship between the nodes using 0 or 1, however it
can not capture the importance among different nodes. In or-
der to model the accurate relationship among the nodes, we
introduce the attention matrix A= [ai,j ]∈RN×N to assign
different edge weights to different nodes. Here, ai,j is the
attention coefficient and represents the edge weight between
vi and vj :

ai,j =
eµ([vi||vj ]

>Hs)∑N
n=1 e

µ([vi||vn]>Hs)
(2)

where || represents the vector concatenation,> indicates the
transposition operation, Hs∈R2d is the learnable parame-
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ter vector, and µ(·) is a non-linear function implemented by
the LeakyReLU function (the negative input slope is set to
0.2).

After obtaining C and A, we perform the graph convolu-
tional operation to learn the relationship among the nodes.
Specifically, the graph convolutional layer is formulated as:

X ′ = σ((A ◦ C + I)XWs) (3)

where X∈RN×d is the node feature matrix, X ′∈RN×d′

is the updated node feature matrix, Ws∈Rd×d
′

is the pa-
rameter matrix of graph convolutional layer, ◦ represents
the element-wise product, and σ(·) is an activation func-
tion implemented by theReLU function in our experiments.
Here, I∈RN×N is an identity matrix which is utilized to in-
crease the edge weight of the node itself in order to prevent
the over-smoothing. For the first graph convolutional layer,
X = [v1, v2, · · · , vN ].

Consistent Node Constraint. The traditional graph con-
volutional operations (Shen et al. 2018; Chen et al. 2020)
usually ignore the identity information of nodes as expressed
in Eq. 3. In order to fully exploit the identity information of
nodes and supervise the graph learning process, some meth-
ods (Bao et al. 2019; Li et al. 2020) utilize the identity in-
formation to construct the graph via connecting the nodes
with the same identity so as to ensure the rationality of infor-
mation aggregation. A main problem for this manner is that
the graph construction requires the identity information, and
therefore the graph cannot be built when the identity infor-
mation is unavailable, such as in the test stage. As a result,
these methods can not directly extract the features from GC-
N in the test stage, which weakens the ability of relationship
representation.

To overcome the above-mentioned drawback, we propose
the consistent node constraint which injects the identity in-
formation in the graph learning process and does not re-
quire the identity information when constructing the graph.
Specifically, we utilize the identity information to constrain
the distance between the input node and the output node of
graph convolutional layer. Assuming that the graph convo-
lutional layer updates the nodes vi and vj to v′i and v′j , the
consistent node constraint for the node pairs with the same
identity is defined as:

Lc+ = (m(v′i, v
′
j)− z(m(vi, vj)) + ω)+ (4)

where (·)+ = max(·, 0), ω is the pre-defined margin, and z(·)
represents the zero gradient function which treats the vari-
able as the constant when calculating gradients, and stops
the back propagation during training. The consistent node
constraint for the node pairs with different identities is de-
fined as:

Lc− = (z(m(vi, vj))−m(v′i, v
′
j) + ω)+ (5)

It is worth noting that for each node, we only select the
hardest positive node and the hardest negative node to cal-
culate the loss. As shown in Figure 2 (a), the consistent node
constraint brings the node pairs with the same identity (blue
ellipse) close and push away the node pairs with differen-
t identities (red ellipse) after graph convolution, so that the

identity information can be injected into the graph learning
process to guide the information to be propagated accurate-
ly.

Learning the Relationship among Pairwise Pedestrian
Images. The relationship among pairwise pedestrian images
is very important for estimating the similarity of image pair.
Hence, we take the feature differences of pedestrian images
as the nodes to construct a fully-connected graph. Specifi-
cally, for each feature of pedestrian image fn, we first ob-
tain the node set Un = {un,1, un,2, · · · , un,N} of the fully-
connected graph by performing the subtraction operation be-
tween fn and each feature in F , i.e., un,i = fn − fi. Note
that one feature of pedestrian image corresponds to a fully-
connected graph, and there areN fully-connected graphs for
F . Then, we treat the attention coefficient gni,j as the edge
weight between un,i and un,j :

gni,j =
eµ([un,i||un,j ]

>Hp)∑N
b=1 e

µ([un,i||un,b]>Hp)
(6)

where Hp∈R2d is the learnable parameter vector.
Inter-Graph Propagation. Since the nodes of the fully-

connected graph are the feature differences of pedestrian im-
ages, some discriminative information may be lost. Corre-
spondingly, we propose the inter-graph propagation to al-
leviate the information loss. Specifically, we add the edges
between the corresponding nodes of the locally-connected
graph and the fully-connected graph to allow the fully-
connected graph to aggregate the information from the
locally-connected graph. The dotted lines in Figure 2 (b)
indicate this kind of edges. As a result, for the graph con-
volutional layer with the inter-graph propagation, the update
of un,i is expressed as:

u′n,i =αun,i + (1− α)σ(β
N∑
j=1

gni,ju
>
n,jWp+

(1− β)(qni,nv>nWl + qni,iv
>
i Wr))

(7)

where Wp, Wl and Wr∈Rd×d
′

are the parameter matrices
of graph convolutional layer, α is the hyperparameter to bal-
ance the proportion of original information and aggregated
information, and β is the hyperparameter to balance the pro-
portion of aggregated information of fully-connected graph
and locally-connected graph. Here, qni,n is the attention co-
efficient between un,i and vn, and qni,i is the attention coef-
ficient between un,i and vi. They are defined as:

qni,n =
eµ([un,i||vn]>Hl)

eµ([un,i||vn]>Hl) + eµ([un,i||vi]>Hr)
(8)

qni,i =
eµ([un,i||vi]>Hr)

eµ([un,i||vn]>Hl) + eµ([un,i||vi]>Hr)
(9)

where Hl and Hr∈R2d are the learnable parameter vectors.

3.3 Optimization
We apply the classification loss Lcl with the label smoothing
and the hard triplet loss Ltr to jointly supervise the training
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of CNN model of HRNet (Luo et al. 2019). Specifically, Lcl
is defined as:

Lcl =
S∑
s=1

−pslog(ŷs) (10)

where S is the number of pedestrian identities, and ŷs indi-
cates the predicted probability of the s-th identity. ps is the
smoothed identity label and it is defined as:

ps =


1− S − 1

S
ε, s = y

ε

S
, s 6= y

(11)

where y is the ground-truth identity label, and ε is the s-
moothed coefficient and it is set to 0.1 in our experiments.
Meanwhile, Ltr is defined as:

Ltr =
∑

fa,fp,fn∈F

(m(fa, fp)−m(fa, fn) + θ)+ (12)

where θ is the pre-defined margin, and fa, fp and fn de-
note the anchor, the hardest positive and the hardest negative
sample features, respectively.

As for the module of learning individual relationship, our
task is to classify the nodes to improve the discriminative
ability of features, so we apply the classification loss with
the label smoothing in Eq. 10 as the loss function, denoted as
Lin. As for the module of learning pairwise relationship, we
employ the verification loss to determine whether the feature
pairs of nodes belong to the same identity:

Lpa = −tlogt̂− (1− t)log(1− t̂) (13)

where t is the ground-truth of feature pairs of nodes, t = 1
if the feature pair from the same identity, otherwise t = 0,
and t̂ indicates the predicted probability that the feature pair
belongs to the same identity.

In summary, the total loss of HRNet is formulated as:

Ltotal = Lcl + Ltr + Lin + Lpa + λ(Lc+ + Lc−) (14)

where λ is the hyperparameter and it is experimentally set to
0.1.

4 Experiments
4.1 Databases
Market-1501 (Zheng et al. 2015) is shot by six disjoint cam-
eras at the Tsinghua University campus, and it consists of
32,668 images of 1,501 identities. According to the database
setting, the training set contains 12,936 images of 751 iden-
tities while the test set comprises of 3,368 query images and
16,364 gallery images from the other 750 identities.

DukeMTMC-reID (Ristani et al. 2016) consists of
36,411 images of 1,404 identities, among which 16,522 im-
ages of 702 identities are utilized as the training set. And
19,889 images of 702 non-overlapping identities are treat-
ed as the test set with 2,228 query images as well as 17,661
gallery images. Furthermore, DukeMTMC-reID is collected
by eight high-resolution cameras.

CUHK03 (Zhao, Ouyang, and Wang 2014) is composed
of 14,097 images of 1,467 identities, and each identity is
captured by two of ten cameras at the CUHK campus. Ac-
cording to the database setting, the training set consists of
7,365 images of 767 identities and the test set includes 1,400
query images and 5,332 gallery images of 700 identities.
CUHK03 provides two types of annotations for all images,
i.e., manually labeled bounding-boxes and DPM-detected
bounding-boxes. In this work, we evaluate the proposed HR-
Net on DPM-detected bounding-boxes which are more chal-
lenging.

MSMT17 (Wei et al. 2018) comprehends 126,441 im-
ages of 4,101 identities from 15 cameras and it is divided
into the training set including 32,621 images of 1,041 iden-
tities and the test set including 93,820 images of 3,060 i-
dentities. MSMT17 is more challenging than other person
re-ID databases because of more complex changes in poses,
viewpoints, illumination and scenes.

4.2 Implementation Details
Training. The batch size is set to 66 where we randomly
select 11 identities and 6 images for each identity, and the
epoch number is set to 200. We adopt the random cropping
and the horizontal flipping for data augmentation. We utilize
Adam as the optimizer and set the weight decay to 5×10−4.
The learning rate is initialized to 3.5 × 10−4 and it is de-
creased by the factor of 0.1 at the 40-th and 120-th epochs.
The pre-defined margins ω in Eq. 4 and θ in Eq. 12 are both
set to 0.3, and the hyperparameters α and β in Eq. 7 are set
to 0.9 and 0.8, respectively.

Testing. We first use the CNN model of HRNet to ex-
tract the CNN-based features of all pedestrian images. Then,
for each query image, we obtain the top-120 gallery images
based on the cosine similarity between the CNN-based fea-
tures of query image and gallery images. Afterwards, each
query image and its top-120 gallery images are fed into the
two relationship learning modules, respectively. Finally, the
similarity scores calculated from the two relationship learn-
ing modules are added to obtain the final similarity scores
between the query image and the gallery images.

4.3 Ablation Study
In this subsection, we perform comprehensive ablation s-
tudies to demonstrate the effectiveness of different compo-
nents in HRNet. The experimental results are shown in Ta-
ble 1, where CNN is the baseline implemented by ResNet-
50, IR represents the relationship among individual pedes-
trian images, IR∗ indicates that we use the fully-connected
graph to replace the locally-connected graph for the individ-
ual relationship learning, CNC denotes the consistent node
constraint, PR represents the relationship among pairwise
pedestrian images, and IGP denotes the inter-graph propa-
gation.

Effectiveness of Different Components in HRNet.
From Table 1 we draw the following conclusions. Firstly,
both CNN+IR and CNN+PR significantly improve CNN
due to considering the relationship among pedestrian im-
ages. Specifically, on the four databases, the improvements
of CNN+IR in mAP are +4.8%, +5.4%, +16.0% and +8.8%,
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Methods Market-1501
mAP rank-1

DukeMTMC-reID
mAP rank-1

CUHK03
mAP rank-1

MSMT17
mAP rank-1

CNN 84.2 92.8 74.7 85.1 57.7 59.4 48.3 72.2
CNN+IR 89.0 95.1 80.1 89.3 73.7 77.1 57.1 79.6
CNN+IR∗ 86.9 93.7 76.9 87.5 70.3 72.8 52.1 77.0
CNN+IR+CNC 90.6 96.0 82.8 90.7 77.1 79.6 58.9 81.3
CNN+PR 87.4 94.7 78.1 88.9 71.9 76.1 52.3 76.6
CNN+PR+IGP 89.7 95.2 80.8 90.2 75.9 77.5 57.4 79.7
HRNet 91.3 96.7 83.7 91.9 78.4 81.1 60.6 82.0

Table 1: Ablation study on Market-1501, DukeMTMC-reID, CUHK03 and MSMT17.
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Figure 3: The effect of k for HRNet on Market-1501.

respectively; the improvements of CNN+PR in mAP are
+3.2%, +3.4%, +14.2% and +4.0%, respectively. Second-
ly, compared with CNN+IR, CNN+IR+CNC gains high-
er mAP and rank-1 on the four databases. It is because the
consistent node constraint injects the identity information in
the graph learning process, and effectively guides the infor-
mation to propagate accurately. Thirdly, CNN+PR+IGP
significantly exceeds CNN+PR in mAP by +2.3%, +2.7%,
+4.0% and +5.1% on the four databases, respectively. It
shows that the inter-graph propagation could effectively al-
leviate the information loss for robust similarity estimation
learning. Note that when without IR, vn = fn, and vi = fi
in Eq. 7. Finally, HRNet achieves better performance than
CNN+IR+CNC and CNN+PR+IGP . It demonstrates that
fusion of the two types of graphs could learn the relationship
among pedestrian images from different aspects so as to im-
prove the representation ability.

Discussion about Locally-Connected Graph and
Fully-Connected Graph. For the relationship among in-
dividual pedestrian images, CNN+IR (locally-connected
graph) improves CNN+IR∗ (fully-connected graph) in mAP
from 86.9%, 76.9%, 70.3% and 52.1% to 89.0% (+2.1%),
80.1% (+3.2%), 73.7% (+3.4%) and 57.1% (+5.0%) on the
four databases, respectively. Hence, we adopt the locally-
connected graph to learn the relationship among individu-
al pedestrian images. Furthermore, we analyze the hyper-
parameter k in Eq. 1 which controls the number of nearest
neighborhoods for each node in the graph. From Figure 3,
we can see that the proposed HRNet achieves the best per-
formance on Market-1501 when k is equal to 10. Note that
the experiments have shown that the conclusions can be gen-
eralized to the other three databases as well.

For the relationship among pairwise pedestrian images,
mAP and rank-1 improves when the edge number for
each node increases as shown in Figure 4. It demonstrates
that global similarity information (fully-connected graph) is

94

95

96

97

1 14 27 40 53 66

rank-1
89

90

91

92

1 14 27 40 53 66

mAP

Figure 4: Performance of different edge number for each n-
ode when learning the relationship among pairwise pedestri-
an images on Market-1501.

more robust than the local similarity information (locally-
connected graph) for estimating the similarity of feature
pairs of nodes. Therefore, we adopt the fully-connected
graph to learn the relationship among pairwise pedestrian
images in all the experiments.

4.4 Comparison with State-of-the-Art
Table 2 presents the comparison results of HRNet with
the state-of-the-art methods on Market-1501, DukeMTMC-
reID, CUHK03 and MSMT17. The first part of Table 2 in-
dicates the methods extract features from individual pedes-
trian images, and the second part of Table 2 represents the
methods learn the relationship among pedestrian images.

From Table 2, we have the following observations. First-
ly, on the four databases, the proposed HRNet gains 91.3%,
83.7%, 78.4% and 60.6% on mAP, and 96.7%, 91.9%,
81.1% and 82.0% on rank-1, respectively, which outper-
forms all the compared methods. It fully demonstrates the
effectiveness of HRNet. Secondly, Our method substantial-
ly outperforms SGGNN (Shen et al. 2018) by +8.5% and
+15.5% on mAP on Market-1501 and DukeMTMC-reID, re-
spectively. It is because SGCNN only considers the relation-
ship among pairwise pedestrian images, while our method
learns two types of relationships among pedestrian images in
a unified framework. Thirdly, the proposed HRNet improves
SPGC+PPE (Li et al. 2020) in terms of mAP by +4.8%,
+4.7% and 3.0% on Market-1501, DukeMTMC-reID and
CUHK03, respectively. SPGC+PPE provides one kind of re-
lationship during training, and it relies on the features ex-
tracted from CNN to conduct the pedestrian matching in the
test stage. Our method not only provides two kinds of re-
lationship, but also incorporates the relationship into both
during training and testing. Finally, HRNet also achieves
the better performance compared with other hybrid method-
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Methods Market-1501
mAP rank-1

DukeMTMC-reID
mAP rank-1

CUHK03
mAP rank-1

MSMT17
mAP rank-1

V-F (Zheng, Zheng, and Yang 2017) 59.9 79.6 49.3 68.9 - - - -
PCB (Sun et al. 2018) 77.3 92.4 65.3 81.9 54.2 61.3 40.4 68.2
Mancs (Wang et al. 2018) 82.3 93.1 71.8 84.9 60.5 65.5 - -
HPM (Fu et al. 2019) 82.7 94.2 74.3 86.6 57.5 63.9 - -
Auto-ReID (Quan et al. 2019) 85.1 94.5 - - 69.3 73.3 52.5 78.2
DG-Net (Zheng et al. 2019) 86.0 94.8 74.8 86.6 - - 52.3 77.2
PISNet (Zhao et al. 2020) 87.1 95.6 78.7 88.8 - - - -
SAN (Jin et al. 2020) 88.0 96.1 75.5 87.9 74.6 79.6 55.7 79.2
RGA-SC (Zhang et al. 2020) 88.4 96.1 - - 74.5 79.6 57.5 80.3
SGGNN (Shen et al. 2018) 82.8 92.3 68.2 81.1 - - - -
RNet-S (Park and Ham 2020) 88.0 94.8 77.1 89.3 69.5 72.5 - -
SPGC+PPE (Li et al. 2020) 86.5 95.4 79.0 89.3 75.4 79.0 - -
HRNet 91.3 96.7 83.7 91.9 78.4 81.1 60.6 82.0

Table 2: Performance (%) comparisons with the state-of-the-art methods on Market-1501, DukeMTMC-reID, CUHK03 and
MSMT17.

s. For example, V-F (Zheng, Zheng, and Yang 2017) com-
bines the verification and identification models to learns a
discriminative embedding. HRNet significantly surpasses V-
F. Mancs (Wang et al. 2018) performs ranking and classifi-
cation tasks in a unified framework. Compared with Mancs,
we improve 9%, 11.9% and 17.9% on mAP on Market-1501,
DukeMTMC-reID and CUHK03. It proofs that learning the
hybrid relationship among images is more powerful.

4.5 Visualization
In order to understand the learning process of relationship
among individual pedestrian images intuitively, we visual-
ize the matrix A ◦ C in Eq. 3 as shown in Figure 5 (a)
where the deeper color indicates the larger value. We sam-
ple 11 identities and 6 pedestrian images for each identity
to form a batch, and distribute the identity labels in a batch
as {y1, y1, y1, y1, y1, y1}, · · · , {y11, y11, y11, y11, y11, y11},
where yi represents the i-th identity label. Hence, the ele-
ments around the matrix diagonal indicate the edge weights
between pedestrian images from the same identity. As can be
seen from Figure 5 (a), the large values are mainly concen-
trated around the diagonal of the matrix. It shows that there
is more information propagation between the nodes from the
same identity than the nodes from different identities.

For learning the relationship among pairwise pedestrian
images, we visualize the matrix Gn= [gni,j ] in Eq. 6. Since
we build a fully-connected graph for each feature of pedes-
trian image fn, we add the fully-connected graphs from d-
ifferent identities in a batch to visualize the relationship a-
mong pairwise pedestrian images as shown in Figure 5 (b).
Obviously, like A ◦ C, high values mainly distribute in the
area near the diagonal of the matrix. Therefore, we have the
similar conclusion to A ◦ C. In addition, an intuitive advan-
tage of having large edge weights between feature pairs (n-
odes) from the same identity is that the relative easy positive
feature pairs can be used to guide the similarity update of

(a) Matrix (b) Matrix GnA C

Figure 5: Visualization of the matrices A ◦ C and Gn.

the hard positive feature pairs, so as to improve the similari-
ty scores of the hard positive feature pairs.

5 Conclusion
In this paper, we have proposed HRNet to learn two type-
s of relationships among pedestrian images simultaneous-
ly. Specifically, we construct the locally-connected graph
and the fully-connected graph to learn the relationship a-
mong individual pedestrian images and the relationship a-
mong pairwise pedestrian images, respectively. Meanwhile,
for the locally-connected graph, we propose the consistent
node constraint to ensure the information to be propagat-
ed accurately. As for the fully-connected graph, we propose
the inter-graph propagation to alleviate the information loss.
We have verified HRNet on four large-scale person re-ID
databases, and the experimental results show the proposed
method surpasses the state-of-the-art methods.
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