F2Net: Learning to Focus on the Foreground for Unsupervised Video Object Segmentation


  • Daizong Liu Huazhong University of Science and Technology, China
  • Dongdong Yu ByteDance AI Lab, China
  • Changhu Wang ByteDance AI Lab, China
  • Pan Zhou Huazhong University of Science and Technology, China






Although deep learning based methods have achieved great progress in unsupervised video object segmentation, difficult scenarios (e.g., visual similarity, occlusions, and appearance changing) are still no well-handled. To alleviate these issues, we propose a novel Focus on Foreground Network (F2Net), which delves into the intra-inter frame details for the foreground objects and thus effectively improve the segmentation performance. Specifically, our proposed network consists of three main parts: Siamese Encoder Module, Center Guiding Appearance Diffusion Module, and Dynamic Information Fusion Module. Firstly, we take a siamese encoder to extract the feature representations of paired frames (reference frame and current frame). Then, a Center Guiding Appearance Diffusion Module is designed to capture the inter-frame feature (dense correspondences between reference frame and current frame), intra-frame feature (dense correspondences in current frame), and original semantic feature of current frame. Different from the Anchor Diffusion Network, we establish a Center Prediction Branch to predict the center location of the foreground object in current frame and leverage the center point information as spatial guidance prior to enhance the inter-frame and intra-frame feature extraction, and thus the feature representation considerably focus on the foreground objects. Finally, we propose a Dynamic Information Fusion Module to automatically select relatively important features through three aforementioned different level features. Extensive experiments on DAVIS, Youtube-object, and FBMS datasets show that our proposed F2Net achieves the state-of-the-art performance with significant improvement.




How to Cite

Liu, D., Yu, D., Wang, C., & Zhou, P. (2021). F2Net: Learning to Focus on the Foreground for Unsupervised Video Object Segmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(3), 2109-2117. https://doi.org/10.1609/aaai.v35i3.16308



AAAI Technical Track on Computer Vision II