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Abstract

Recent video captioning work improves greatly due to the
invention of various elaborate model architectures. If multi-
ple captioning models are combined into a unified framework
not only by simple more ensemble, and each model can ben-
efit from each other, the final captioning might be boosted
further. Jointly training of multiple model have not been ex-
plored in previous works. In this paper, we propose a novel
Augmented Partial Mutual Learning (APML) training method
where multiple decoders are trained jointly with mimicry loss-
es between different decoders and different input variations.
Another problem of training captioning model is the ”one-to-
many” mapping problem which means that one identical video
input is mapped to multiple caption annotations. To address
this problem, we propose an annotation-wise frame masking
approach to convert the ”one-to-many” mapping to ”one-to-
one” mapping. The experiments performed on MSR-VTT and
MSVD datasets demonstrate our proposed algorithm achieves
the state-of-the-art performance.

Introduction
Video captioning refers to the task that generating a descrip-
tion of a given video automatically and it combines computer
vision and natural language processing (NLP) in a unified
framework (Venugopalan et al. 2015). It can be widely used
in video retrieval, video recommendation, disabled support-
ing and scene understanding. Following Venugopalan et al.
(Venugopalan et al. 2015), recent video captioning works
are almost based on encoder-decoder framework in which
a 2D or 3D CNN with other transformation modules are re-
garded as the encoder and a sequential module (e.g. GRU)
serves as the decoder. The improvement of their caption
generation performance mainly comes from more elaborate
visual features(Aafaq et al. 2019; Zhang and Peng 2019).
Despite the great evolution on their encoders, the decoder-
s of them are still either RNN (LSTM/GRU) based or the
Transformer based(Vaswani et al. 2017). However, design-
ing a new general sequence-modeling network is not trivial.
Therefore, the motivation of taking advantage of these existed
sequence-modeling networks simultaneously to enhance the
decoding robustness is natural. One way to address this is-
sue is ensemble, which independently trains multiple models

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with different architectures or identity models with differen-
t initializations and integrates them into a powerful model
at inference stage. Nevertheless, this method is incapable
of improving the performance of each single model in the
ensemble group because of its overlooking of mutual interac-
tion during training and its resource exhausting property at
inferencing phase also limits its practical application.

In this paper, we propose to use mutual learning (Zhang
et al. 2018) to jointly train multiple decoders and make them
guide each other during training, thus their independent cap-
tion generation performance get improved significantly. Mu-
tual learning is a technique to transfer knowledge among
a group of peer models, deriving from Knowledge Distilla-
tion (Hinton, Vinyals, and Dean 2015) which trains a teacher
model and a student model simultaneously to improve the
student model by the guidance of the bigger teacher model.
But unlike Knowledge Distillation, mutual learning does not
restrict the size or the type of models and makes all the train-
ing models as the mutual teachers to guide each other via
minimizing a mimicry loss which measures the prediction
discrepancy among peer-models with respect to the same
inputs. This mimicry loss can be regarded as a kind of reg-
ularization which improves the generalization ability of the
model.

Since video captioning is a complicated multimodal task, o-
riginal mimicry loss is not adequate to regularize this complex
multimodal interaction. To further improve the capability of
this mimicry regularization, we propose a novel Augmented
Partial Mutual Learning (APML) in which instead of feeding
the same video data to the peer-models as the input, multiple
peer-decoders calculates the mimicry loss with different aug-
mented video data via Auto-Augment (Cubuk et al. 2018).
Besides, we add an extra intrinsic loss which calculates the
KL divergence between the outputs respect to normal input
and augmented input for each decoder. In our method, each
peer-model is just a part of the whole captioning model and
shares the left part (e.g. Embedding module), which forms
another regularization over the shared modules, analogous
to sharing backbone in multi-task learning. Note that our
method using multiple decoders is different from the ensem-
ble method. Because, instead of seeking to derive an more
powerful integrated ensemble from a group of single models,
we explore the improving of each single model with the help
of other peer models in the group. Therefore, with our train-
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Figure 1: The proposed video captioning framework. The encoder contains a global encoder, a local encoder and a semantic
encoder. Multiple decoders are trained by augmented partial mutual learning. Besides, frame masking is applied to address the
”one-to-many” mapping problem.

ing scheme, every single model in the group gets improved
contrast to ensemble in which the performance of each sin-
gle model remains weak. Moreover, the model trained with
APML can be further boosted via ensemble.

The commonly used datasets for video captioning usually
contain several caption annotations for one video. The most
frequently used method regards each video-caption pair as
a distinct training sample. This method might confuse the
video captioning model when trained with cross-entropy loss,
because one identical input is mapped to several different
targets. This is the so-called ”one-to-many” mapping problem
(Duan et al. 2018). To the best of our knowledge, this problem
has not been discussed in previous video captioning papers.
To address this problem, we propose a novel annotation-wise
frame masking approach which embeds the video features
and caption annotations into a mutual hidden space and mask
the frames which have lower similarities with the language
embedding, thus converting the one-to-many mapping to
one-to-one mapping. Our frame masking is only used on
the training stage, on the inference stage, we feed all the
frame features to the model since there is no annotation
guiding. Experiment shows that even though the gap between
training and inference exists, our frame masking method
indeed improves the captioning model on both MSVD and
MSR-VTT datasets.

In summary, the main contributions of the proposed ap-
proach are three-folds:

• We propose a novel Augmented Partial Mutual Learn-
ing(APML) strategy to train multiple decoders with shared
encoder simultaneously for video captioning task. Exper-

iments show that this training strategy makes obviously
improvement for every intact model with one of these
peer decoders and these models can be further boosted by
ensemble method.

• A novel annotation-wise frame masking approach is pro-
posed to alleviate the influence of the one-to-many map-
ping problem.

• The proposed approach achieves the state-of-the-art per-
formances on MSR-VTT and MSVD datasets.

Methods
Given the training video X = [x1,x2, . . . ,xN ] and it-
s caption annotations Y = {y1,y2, . . . ,yH},yi =
[y1, . . . , yT ], yt ∈ Y , video captioning model learns the map-
ping from X to Y, where N denotes the number of selected
frames of a video, H denotes the number of caption anno-
tations for one video, T is the maximal length of a caption,
Y is the vocabulary set. Next, we describe our framework in
detail. We illustrate our algorithm in Figure 1 which is best
viewed in color.

Multiple Encoders
Global Encoder. We use an Efficient Convolutional Net-
work (ECO) (Zolfaghari, Singh, and Brox 2018) pre-trained
on Kinetics-400 dataset (Kay et al. 2017) as the global en-
coder to extract global appearance and motion feature. E-
CO is a convolutional network framework for video action
recognition, which is comprised of a 3D network to extract
the temporal visual feature and a 2D network focusing on
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Figure 2: The detailed illustration of frame masking.

short-term or static action feature in parallel. We directly
use the output of parallel 2D network in ECO as the 2D
feature F = {f1, . . . , fN} where fi ∈ RD2D . Besides, we
use the max-pooled outputs of 3D network as the 3D fea-
ture g ∈ RD3D . Then, we concatenate the 3D feature to each
frame 2D feature to get final visual feature which can be repre-
sented by V(g) = {[f1;g], . . . , [fN ;g]},v(g)

i ∈ RD2D+D3D

where [; ] is the concatenation operator.
Local Encoder. In order to detect visual semantic informa-
tion of the video frame, inspired by (Yao et al. 2018), we
utilize Faster R-CNN and two simple classifier to get the
features and locations of objects, the attributes of objects and
relationships between objects. Following (Xu et al. 2017), we
set up 150 object labels, 300 attribute labels and 50 relation
labels. With the object label, attribute label and relationship
label, we can construct the spatial scene graph for every video
frame. Inspired by (Kipf and Welling 2017), in our frame-
work, we use GCN to encode each spatial scene graph. To
avoid redundancy propagation, we embed the attributes n-
ode and object node jointly into a feature vector. Therefore,
for each object, we concatenate its mean pooled convolution
feature of Faster R-CNN v

(lm)
i and its embedded class label

v
(lc)
i and its attribute class v(la)

i to form its final input node
feature v

(l)
i = [v

(lm)
i ;v

(lc)
i ;v

(la)
i ] ∈ RDl .

In our framework, for each object node, instead of using the
same transformation weights to transform all its neighboring
nodes’ feature, we set up different transformation weight
matrixes for the object node itself and its object-neighbor
nodes and subject-neighbor nodes respectively. And for the
relationship edge, we use different weight matrix based on
the role the object node plays. Consequently, our spatial GCN
module can be formulated by:

v′
(l)
i = σ(Wsv

(l)
i +

∑
v
(l)
j
∈N
(
v
(l)
i

)[A(v
(l)
i ,v

(l)
j )×

(W(sub,obj)v
(l)
j + W(in,out)e

r

(v
(l)
i

,v
(l)
j

)
)])

(1)

A(v
(l)
i ,v

(l)
j ) = softmax

(
v

(l)T
i Wav

(l)
j

)
(2)

where v′
(l)
i is the output of the GCN layer, N

(
v

(l)
i

)
is the

set of features of the neighbors of node i, σ is a non-linear
operation, W(sub,obj) represents the transformation matrix
for the neighbors node based on their role, if the neighbor
node j plays the subject role in the relationship between i
and j, the transformation matrix for j is Wsub, otherwise
Wobj . W(in,out) is the edge transformation matrix, based
on the edge’s role, the model chooses different matrix. er is
the embedded relationship label. In order to weigh different
neighbors and relationships of node i, we add a product atten-
tion layer into GCN. A(v

(l)
i ,v

(l)
j ) is the formulated attention

layer, Wa is the learning attention layer weights.
Semantic Encoder. Inspired by several prior works (Chen
et al. 2019; Yao et al. 2017; Wang et al. 2019b), we also
extract semantic information using a semantic encoder. Fol-
lowing Chen’s work (Chen et al. 2019), we manually select
the Q most frequent words from training and validation set
as attributes. The semantic encoder consists of a multi-layer-
perceptron on top of the ECO framework. Attribute detection
is treated as a multi-label classification task. Following (Chen
et al. 2019), we concatenate the predicted probability distri-
bution of attributes and the probability distribution of ECO
as the semantic feature. We denote the semantic feature as
v

(s)
i ∈ RDs

Feature Concatenation. The final feature vector of frame i
is the concatenation of global feature, local feature and se-
mantic feature vi = [v

(g)
i ;v

(l)
i ;v(s)] ∈ RD2D+D3D+Dl+Ds

Multiple Decoders

We apply three types of decoders in this study, which are
GRU based, LSTM based and Transformer (Vaswani et al.
2017) based.
Mutual Learning. Suppose we have m decoders, each one
can be GRU based, LSTM based or Transformer based. We
denote these decoders as Θ1, . . . ,Θm. For each decoder Θi,
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we apply a cross-entropy loss,

Lc(Θi) = −
H∑

h=1

T∑
t=1

log(pΘi(yh,t|yh,1:t−1,V)) (3)

where yh,t is the t th word of the h th caption annotation
of the video, pΘi is the posterior probability of decoder Θi

given previous words yh,1:t−1.
Inspired by (Zhang et al. 2018), we use posterior probabili-

ty of other decoders to improve the generalization of decoder
Θi, and we use the Kullback Leibler (KL) divergence to quan-
tify the match of network’s predictions, thus we get another
loss Le:

Le(Θi) =
m∑

j=1,j 6=i

H∑
h=1

T∑
t=1

[DKL(

pΘj
(yh,t|yh,1:t−1,V)||pΘi

(yh,t|yh,1:t−1,V))]

(4)

Augmented Partial Mutual Learning. To facilitate each de-
coder, mutual learning leverages the extrinsic guidance from
other decoders. In this study, we propose to use intrinsic
guidance from other input variations. Specifically, we per-
form data augmentation on the video and compute the K-L
divergence of the probability distributions between original
data and augmented data as the intrinsic loss. The posterior
entropy of the decoder could be further reduced due to the
introduction of this intrinsic guidance. We use AutoAugment
(Cubuk et al. 2018) to augment the video data for K times,
the augmented video feature is denoted as {Ṽ1, . . . , ṼK}.
The intrinsic loss is obtained by the following equation:

La(Θi) =
∑K

j=1

∑H
h=1

∑T
t=1[DKL(

pΘi(yh,t|yh,1:t−1,V)||pΘi(yh,t|yh,1:t−1, Ṽj))]
(5)

The extrinsic loss is updated to:

Le(Θi) =
m∑

j=1,j 6=i

H∑
h=1

T∑
t=1

[

DKL(pΘj (yh,t|yh,1:t−1,V)||pΘi(yh,t|yh,1:t−1,V))+
K∑

c=1

DKL(pΘj (yh,t|yh,1:t−1, Ṽc)||pΘi(yh,t|yh,1:t−1, Ṽc))]

(6)
Traning with this strategy, multi-decoders benefit from the

mutual guidence intrinsicly and extrinsicly, and the shared
encoder is guided by more than one decoder, which also
makes the encoder more robust.

Frame Masking
To overcome the ”one-to-many” mapping problem, we pro-
pose a frame masking strategy to convert the ”one-to-many”
mapping to ”one-to-one” mapping. First, we embed each
caption ground truth {y1, . . . ,yH} of a video to a high di-
mensional space through a language embedding module. The
language embedding module consists of a BERT (Delvin et al.
2018) model1 pretrained on BooksCorpus (Yukun Zhu and
Fidler 2015) and English Wikipedia, a mean pooling layer

1https://github.com/huggingface/transformers

and a fully connected layer. The language embeddings are
denoted as {z(l)

1 , . . . , z
(l)
H } ∈ RDe . Video feature is also em-

bedded into a mutual high dimensional space through a visual
embedding module composed of two fully connected layers.
The visual embedding is denoted as [z

(v)
1 , . . . , z

(v)
N ] ∈ RDe .

For each language embedding z
(l)
i , we compute the Mean

Square Error (MSE) between z
(l)
i and [z

(v)
1 , . . . , z

(v)
N ] ∈ RDe

to get a distance vector d ∈ RN and a loss Lf :

di = [di,1, . . . , di,j , . . . , di,N ], di,j =
∑
De

||z(l)
i − z

(v)
j ||

2

(7)

Lf =
H∑

h=1

N∑
j=1

di,j (8)

Lower dj represents the j th frame has higher correlation
with the i th caption ground truth. If we keep the frames
with lower d and mask the frames with higher d, we can
get a distinct ”frame mask” for each caption ground truth.
Different caption annotation of one video is mapped to a
unique frame mask, in other words, we get an ”one-to-one”
mapping. The frame mask obtained by the original video data
is also applied for the augmented video.

We propose two ways of frame masking: soft masking and
hard masking.
Soft Masking. Soft masking means that multiplying the vi-
sual feature of each frame with a weight, while the weight
is the negative correlated with the MSE loss between visual
embedding of that frame and language embedding. We define
the weights as follows:

ws =
1

d
(9)

And the masked video feature V̂s is:
V̂s = diag(ws)×V (10)

where diag(ws) is a diagonal matrix.
Hard Masking. Hard masking means we select the top F
frames of lower r with caption annotation and mask the rest
frames. That is to say, w in equation (9) is:

wh = [wj ], wj =

{
0, if rj is not top F
1, if rj is top F

(11)

Masked video feature V̂h is obtained by Equation (10) with
wh.

During inference, because caption annotation is not avail-
able and no frame should be masked, the frame mask is an
all one vector.

We illustrate the hard frame masking approach as Fig 2.
Each caption ground truth is feed to the language embedding
module, the predicted language representations are compared
with visual representations to get the frame masks. For ex-
ample, the caption annotation ”a delicious food is on the
table” only contains the objects of ”food” and ”table”, while
major objects in frame #1, frame #4 and frame #6 are the
”woman” and the ”dog”, so these frames are masked by our
frame masking approach. Only the feature of frames with
higher correlation with the caption annotations are feed to
the following decoders.
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Dataset Decoder Type GE SE LE FM BLEU-4 ROUGE-L METEOR CIDEr

MSVD

GRU

√
× × × 52.4 72.3 35.8 88.6√ √

× × 53.4 73.2 36.3 96.0√ √ √
× 54.9 74.1 37.3 97.1√ √ √ √

54.9 75.0 38.7 101.2

LSTM

√
× × × 51.3 71.8 35.7 88.0√ √

× × 53.0 73.1 35.9 95.3√ √ √
× 54.3 73.5 37.0 96.3√ √ √ √

54.7 74.8 38.4 100.6

Transformer

√
× × × 50.4 71.2 35.4 88.1√ √

× × 52.7 72.8 35.6 95.5√ √ √
× 53.3 74.2 38.1 97.7√ √ √ √

54.7 74.4 38.2 101.0

MSR-VTT

GRU

√
× × × 37.4 58.9 26.6 40.3√ √

× × 40.8 61.3 28.4 48.3√ √ √
× 41.3 61.5 28.8 49.2√ √ √ √

42.6 61.9 29.1 49.5

LSTM

√
× × × 34.0 56.6 25.3 37.1√ √

× × 40.2 60.8 28.7 48.0√ √ √
× 40.8 61.1 29.0 48.6√ √ √ √

41.4 62.2 29.5 49.6

Transformer

√
× × × 34.3 57.0 25.7 37.5√ √

× × 40.8 61.2 28.9 48.7√ √ √
× 41.3 61.5 29.0 48.9√ √ √ √

41.9 62.6 29.9 49.8

Table 1: Results of an ablation study on multiple encoders on MSVD and MSR-VTT dataset. ”GE”, ”SE”, ”LE” and ”FM” are
the abbreviations for global encoder, semantic encoder, local encoder and frame masking.

Metric Network Types Net 1 Net 2 Ensemble

Net 1 Net 2 Ind ML APML Ind ML APML Ind ML APML

BLEU-4

GRU GRU 54.9 55.7 58.0 54.9 56.5 57.9 55.3 57.5 58.8
Transformer Transformer 54.7 54.2 55.4 54.6 54.5 55.8 54.8 55.2 56.9
LSTM LSTM 54.3 55.1 56.0 54.0 54.5 55.7 55.1 55.3 56.8
GRU LSTM 55.0 55.5 56.7 54.6 55.5 57.0 55.9 56.5 58.1
LSTM Transformer 54.4 55.1 56.2 54.2 54.5 55.5 55.2 56.0 57.2
GRU Transformer 54.9 56.3 56.7 54.7 55.0 56.0 55.5 55.9 57.9

ROUGE-L

GRU GRU 75.0 75.4 76.2 75.2 75.4 76.1 75.5 76.0 76.9
Transformer Transformer 74.4 74.9 75.9 74.4 75.0 75.2 74.6 75.4 76.0
LSTM LSTM 75.2 75.4 76.3 74.8 75.1 76.0 76.2 76.5 76.8
GRU LSTM 75.3 75.3 76.1 75.2 75.4 76.2 75.8 76.0 77.0
LSTM Transformer 74.7 75.2 75.8 75.2 75.6 75.9 75.4 75.7 76.4
GRU Transformer 75.0 75.6 76.1 74.4 75.4 75.5 75.2 75.5 76.5

METEOR

GRU GRU 38.7 38.9 39.2 38.6 38.8 39.3 38.9 39.2 39.7
Transformer Transformer 38.2 38.4 38.7 38.1 38.2 38.7 38.5 38.8 39.6
LSTM LSTM 38.0 38.6 39.4 38.1 38.6 39.3 38.6 39.3 39.9
GRU LSTM 38.4 38.8 39.6 38.7 38.9 39.5 39.2 39.5 39.8
LSTM Transformer 38.0 38.3 38.9 37.8 38.1 38.7 38.4 38.9 39.5
GRU Transformer 38.7 38.8 39.3 38.2 38.6 39.1 38.8 39.0 39.8

CIDEr

GRU GRU 101.2 103.8 108.3 101.0 102.4 107.5 102.0 105.8 109.5
Transformer Transformer 101.0 102.8 107.6 101.1 102.8 105.0 102.3 104.6 108.0
LSTM LSTM 100.8 101.6 107.1 101.3 102.8 104.5 103.4 105.4 108.2
GRU LSTM 102.2 104.8 108.2 103.0 103.4 107.9 104.0 106.2 109.1
LSTM Transformer 101.7 102.7 106.4 102.4 103.6 107.1 102.5 104.2 108.1
GRU Transformer 101.2 103.0 108.1 101.1 102.3 104.0 103.2 105.0 108.7

Table 2: Comparison of the CIDEr of independent training, Mutual Learning and Augmented Partial Mutual Learning on MSVD
dataset. ML denotes mutual learning, APML denotes augmented partial mutual learning, Ind denotes independent training.
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Objective
The overall loss of decoder Θi is the combination of Lc, Le,
La and Lf :
L(Θi) = Lc(Θi) + λ1Le(Θi) + λ2La(Θi) + λ3Lf (Θi) (12)

Evaluation and Results
Datasets and Implementation Details
We conduct experiments on two benchmark datasets which
are Microsoft Research Video Description Corpus (MSVD)
and Microsoft Research video to text (MSR-VTT).

MSVD. It contains 1970 YouTube short video clips in 10
seconds to 25 seconds and each video clip depicts a single
activity. Each video clip has about 40 English descriptions.
We use the public splits which take 1200 video clips for
training, 100 clips for validation and 670 clips for testing.

MSR-VTT. We use the initial version of MSR-VTT, re-
ferred as MSR-VTT-10K which has 10k video clips and each
video clip has 20 descriptions annotated by 1327 workers
from Amazon Mechanical Turk. MSR-VTT has 200k video-
caption pairs and 29316 unique words. Similar as (Wang
et al. 2018a), we split 6513 video clips for training, 497 clips
for validation and 2990 clips for testing.

We follow the standard caption pre-processing procedure
including converting all words to lower case, tokenizing on
white space, clipping sentences over 30 words and filterring
words which occur at least five times. The final vocabulary
sizes are 5663 for MSVD dataset and 8781 for MSR-VTT
dataset. We use standard automatic evaluation metrics includ-
ing BLEU (Papineni et al. 2002), METEOR (Denkowski and
Lavie 2014), ROUGE-L (Lin 2004) and CIDEr (Vedantam,
Zitnick, and Parikh 2014).

We uniformly sample N = 16 frames for each video. We
select top 10 proposals with higher output probabilities for
each frame. We pre-train our scene graph construction model
with an Adam optimizer and the learning rate is 5 × 10−4.
The batch size is 64 and the dropout rate is 0.3, the word
embedding dimension e = 512. For GRU and LSTM decoder,
the model size and all hidden size are 512. For transformer
decoder, the layer number is 6, the number of head is 8
and the model dimension is 512. We train the captioning
model using an Adam optimizer. We set hyper-parameters by
Q = 300, K = 10, λ1 = λ2 = 1× 103, λ3 = 1.

Quantitative Results of Multiple Encoders and
Frame Masking
Table 1. shows the ablation results for multiple encoders and
frame masking. The models are trained independently with-
out mutual learning. Fusing the features extracted by global
encoder, local encoder and semantic encoder has better perfor-
mance than removing any one or two encoders for different
datasets and different decoder types. This result demonstrates
that the proposed multiple encoders can obtain more concrete
video representations. For GRU, LSTM and Transformer de-
coders and both two datasets, frame masking can enhance
all metrics consistently. This result verifies that converting
”one-to-many” mapping to ”one-to-one” mapping by frame
masking can alleviate the noise and confusion brought by
”one-to-many” mapping.

Quantitative Results of APML
Table 2. shows the result of CIDEr of training multiple de-
coders by mutual learning, augmented partial mutual learning
or independently on MSVD dataset. Regardless of the type of
each decoder, the performances of decoders are boosted by
mutual learning compared with independently training, and
this result is consistent with prior work (Zhang et al. 2018).
Augmented partial mutual learning can further increase the
single model performance by the introduction of consistency
loss between different input variations. It is natural to en-
semble the outputs of multiple decoders. Augmented partial
mutual learning also achieves best performance among en-
semble results. We have also performed the experiment of
training a model with AutoAugment without mutual learning
loss on MSVD dataset. The results are [GRU: CIDEr (101.7),
METEOR (39.0); Transformer: CIDEr (101.5), METEOR
(38.6)]. Comparing these results with the results in Table
2, these results are only slightly better than training a mod-
el independently without mutual learning or AutoAugment
[GRU: CIDEr (101.2), METEOR (38.7); Transformer: CIDEr
(101.0), METEOR (38.2)]. The results of APML are much
better than others which demonstrate that the improvement
is because of the augmented mutual learning loss instead of
AutoAugment itself.

Benchmarking Results
Table 3. and Table 4. show the benchmarking results on
MSVD and MSR-VTT datasets. We compare our single mod-
el and ensemble model results trained by augmented partial
mutual learning with several latest state-of-the-art methods.
For MSR-VTT dataset, transformer and ”GRU&transformer”
are the best single model and ensemble models respectively.
All metrics obtained by our method outperform other state-of-
the-art methods. For MSVD dataset, GRU and ”GRU&GRU”
are the best single model and ensemble models. Most metrics
of our approach achieve the best performances.

Ablation Study for Frame Masking
Table 5. shows the result of the ablation study on frame
masking using GRU decoder on MSVD dataset. The perfor-
mance is slightly enhanced by soft masking and attention
mechanism compared with no masking. Hard masking has
better performance than soft masking and masking 4 frames
achieves the best performance. Note the different distribution
during training and testing might cause performance degra-
dation. Table 5. shows that if too many frames are masked
(8 frames and 16 frames), the difference of the distribution
during training and testing are higher and the performances
drop significantly. So we only masking 4 frames. We have
also tried generating a caption first and using this caption to
generate frame masking, then generate the final caption using
the frame masking during testing, thus forcing the data distri-
bution during testing to be identical with that during training.
The result of this approach is lower than the proposed way.
So we simply use the all-one frame masking vector during
testing.

Note that even though frame masking looks a bit like the
attention mechanism, but they are totally different in the fol-
lowing three aspects. First, the goal of attention is to attend
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

OA-BTG (Zhang and Peng 2019) - - - 56.9 36.2 - 90.6
JSRL+VCT (Hou et al. 2019) - - - 52.8 36.1 71.8 87.8
L-HOCA-UBT (Jin et al. 2019) - - - 52.9 35.5 72.0 86.1
SAVC (Chen et al. 2019) - - - 61.8 37.8 76.8 103.0
ORG-TRL (Zhang et al. 2020) - - - 54.3 36.4 73.9 95.2
ST (Pan et al. 2020) - - - 52.2 36.9 73.9 93.0
SAAT (Zheng, Wang, and Tao 2020) - - - 46.5 33.5 69.4 81.0
PMI-CAP (Chen et al. 2020) - - - 54.6 36.4 - 95.1

Ours: Single Model 86.4 76.8 67.5 58.0 39.2 76.2 108.3
Ours: Ensemble 86.8 77.3 68.2 58.8 39.7 76.9 109.5

Table 3: Benchmarking result on MSVD dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

OA-BTG (Zhang and Peng 2019) - - - 41.4 28.2 - 46.9
JSRL+VCT (Hou et al. 2019) - - - 42.3 29.7 62.8 49.1
L-HOCA-UBT (Jin et al. 2019) - - - 44.6 29.5 62.6 49.8
SAVC (Chen et al. 2019) - - - 43.8 28.9 62.4 51.4
ORG-TRL (Zhang et al. 2020) - - - 43.6 28.8 62.1 50.9
ST (Pan et al. 2020) - - - 40.5 28.3 60.9 47.1
SAAT (Zheng, Wang, and Tao 2020) 79.6 65.9 52.1 39.9 27.7 61.2 51.0
PMI-CAP (Chen et al. 2020) - - - 42.1 28.8 - 49.4

Ours: Single Model 82.9 67.5 53.6 43.8 30.3 63.6 52.2
Ours: Ensemble 83.4 68.3 54.4 45.7 31.4 64.4 52.7

Table 4: Benchmarking results on MSR-VTT dataset.

on different frames when generating a new word given previ-
ous words. While frame masking is proposed to address the
”one-to-many” mapping problem. Second, attention weights
are obtained by the visual feature and previous word em-
bedding, but frame masking taking visual feature and the
whole sentence as input. Third, attention weights vary with
the position of generated words, but frame masking is fixed
for one training sample. Frame masking is also different with
PickNet (Chen et al. 2018), because the picked frames of
PickNet are identical for each caption annotation.

Ablation Study for Number of Decoders
Table 6. shows the result of an ablation study for the number
of decoders trained using augmented partial mutual learning
on MSVD dataset. By enlarging the number of decoders, the
performance only increases slightly, but the time complexity
and memory cost of training are multiplied. Thus, we use two
decoders for all experiments in this study.

Conclusion
We propose an APML training method where multiple de-
coders are trained jointly with a shared encoder for video
captioning. Multi-decoders benefit from the mutual guidence
intrinsicly and extrinsicly. Furthermore, we propose an
annotation-wise frame masking approach to address the ”one-
to-many” mapping problem. The experiments performed on
MSVD and MSR-VTT datasets demonstrate that the pro-
posed framework achieves the state-of-the-art performance.

Masking Type CIDEr METEOR
No Masking 96.4 37.1
No Masking + Attention 97.1 37.3
Randomly Masking 2 frames 97.5 37.2
Randomly Masking 4 frames 96.8 37.0

Soft Masking 97.7 37.5
Hard Masking 2 frames 100.1 38.2
Hard Masking 4 frames 101.2 38.7
Hard Masking 8 frames 100.8 38.6
Hard Masking 12 frames 98.6 38.0

Table 5: Ablation study on frame masking.

Number of Decoders CIDEr METEOR
2 Decoders 108.3 39.3
3 Decoders 108.8 39.2
4 Decoders 109.0 39.3
5 Decoders 107.9 39.4

Table 6: Ablation study on number of decoders
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