Temporal Pyramid Network for Pedestrian Trajectory Prediction with Multi-Supervision
DOI:
https://doi.org/10.1609/aaai.v35i3.16299Keywords:
Motion & Tracking, Video Understanding & Activity Analysis, Motion and Path Planning, Behavior Learning & ControlAbstract
Predicting human motion behavior in a crowd is important for many applications, ranging from the natural navigation of autonomous vehicles to intelligent security systems of video surveillance. All the previous works model and predict the trajectory with a single resolution, which is relatively ineffective and difficult to simultaneously exploit the long-range information (e.g., the destination of the trajectory), and the short-range information (e.g., the walking direction and speed at a certain time) of the motion behavior. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. Our hierarchical framework builds a feature pyramid with increasingly richer temporal information from top to bottom, which can better capture the motion behavior at various tempos. Furthermore, we propose a coarse-to-fine fusion strategy with multi-supervision. By progressively merging the top coarse features of global context to the bottom fine features of rich local context, our method can fully exploit both the long-range and short-range information of the trajectory. Experimental results on two benchmarks demonstrate the superiority of our method. Our code and models will be available upon acceptance.Downloads
Published
2021-05-18
How to Cite
Liang, R., Li, Y., Li, X., Tang, Y., Zhou, J., & Zou, W. (2021). Temporal Pyramid Network for Pedestrian Trajectory Prediction with Multi-Supervision. Proceedings of the AAAI Conference on Artificial Intelligence, 35(3), 2029-2037. https://doi.org/10.1609/aaai.v35i3.16299
Issue
Section
AAAI Technical Track on Computer Vision II