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Abstract

Acquiring sufficient ground-truth supervision to train deep vi-
sual models has been a bottleneck over the years due to the
data-hungry nature of deep learning. This is exacerbated in
some structured prediction tasks, such as semantic segmen-
tation, which requires pixel-level annotations. This work ad-
dresses weakly supervised semantic segmentation (WSSS),
with the goal of bridging the gap between image-level anno-
tations and pixel-level segmentation. We formulate WSSS as
a novel group-wise learning task that explicitly models se-
mantic dependencies in a group of images to estimate more
reliable pseudo ground-truths, which can be used for training
more accurate segmentation models. In particular, we devise
a graph neural network (GNN) for group-wise semantic min-
ing, wherein input images are represented as graph nodes, and
the underlying relations between a pair of images are char-
acterized by an efficient co-attention mechanism. Moreover,
in order to prevent the model from paying excessive atten-
tion to common semantics only, we further propose a graph
dropout layer, encouraging the model to learn more accurate
and complete object responses. The whole network is end-
to-end trainable by iterative message passing, which propa-
gates interaction cues over the images to progressively im-
prove the performance. We conduct experiments on the pop-
ular PASCAL VOC 2012 and COCO benchmarks, and our
model yields state-of-the-art performance. Our code is avail-
able at: https://github.com/Lixy1997/Group-WSSS.

Introduction
Semantic segmentation is a fundamental task in computer
vision, aiming to assign a semantic category to each pixel in
an image. It can benefit a wide variety of applications includ-
ing autonomous driving, image editing and medical diag-
nosis. With the recent renaissance of deep neural networks,
semantic segmentation has achieved tremendous progress.
However, most of the leading approaches (Long, Shelhamer,
and Darrell 2015; Wang et al. 2019b; Zhou et al. 2020;
Wang et al. 2021b) are fully supervised, requiring mas-
sive amounts of pixel-level annotated training data, which
are extremely expensive and time-consuming to obtain. In
contrast, the weak supervision alternatives, e.g., image-level
tags (Pathak, Krahenbuhl, and Darrell 2015; Kolesnikov and
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Lampert 2016; Qi et al. 2016; Wei et al. 2016; Chaudhry,
Dokania, and Torr 2017; Ahn and Kwak 2018; Fan et al.
2018), scribbles (Lin et al. 2016; Vernaza and Chandraker
2017) or bounding-box annotations (Dai, He, and Sun 2015;
Khoreva et al. 2017; Song et al. 2019), are less costly. Thus,
it is of interest to explore the potential of these weak supervi-
sion cues in providing a data-efficient solution for semantic
segmentation. In this paper, we aim to address weakly super-
vised semantic segmentation (WSSS) under the supervision
of image-level tags, which can be obtained effortlessly.

WSSS based on image tags is extremely challenging be-
cause fine-grained pixel-level annotations, which are typi-
cally required for semantic segmentation, are difficult to ob-
tain from class labels. The pioneering work, (Zhou et al.
2016), proposes an efficient and straightforward way to
solve this by recognizing the discriminative regions specific
to a given category using class activation maps (CAMs),
which are then refined to obtain pseudo ground-truths for su-
pervising a semantic segmentation network. Along this line,
a number of approaches have been proposed to improve the
estimation of CAMs so that they cover the full extent of ob-
jects rather than only the most representative parts. For ex-
ample, some approaches (Wei et al. 2017; Kolesnikov and
Lampert 2016; Choe and Shim 2019) manipulate internal
feature maps to guide the network to perceive easily ignored
but essential parts, while others (Hou et al. 2018; Chang
et al. 2020; Fan et al. 2020a; Wang et al. 2020b) adopt self-
ensembling or self-supervision to improve localization.

However, the mainstream methods above are merely
based on single images (Figure 1 (a)), ignoring the valuable
semantic context existing in a group of images. The very
recent studies (Fan et al. 2020b; Sun et al. 2020) utilized
Siamese networks to model the relations between a pair of
images, leading to a pair-wise solution (Figure 1 (b)). These
approaches have proven effective in locating more accurate
object regions. However, seeking relations between two im-
ages at a time is still limited in capturing substantial seman-
tic context. Accordingly, we introduce a more promising,
and fundamentally different group-wise solution (Figure 1
(c)) which comprehensively mines richer semantics from a
group of images. Our main motivation is that the availability
of group images containing instances of the same semantic
classes can make up for the absence of detailed supervisory
information. From this perspective, we hypothesize that it is
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Figure 1: Architecture comparison of existing frameworks vs. Ours. (a) Single-image models feed each image one by one into
the network for training, using standard classifiers (e.g., VGG). (b) Pair-wise methods extract features from a pair of images
using a Siamese network, and make predictions using a pair-wise classifier which has learned the correlation between the image
pair. (c) We propose a group-wise method that accepts an arbitrary number of images as input. The input images are iteratively
processed by a GNN to enable substantial information exchange, and a group-wise classifier is then adopted for prediction.

desirable to take advantage of all available information for
WSSS, including not only individual image properties, but
also group-level synergetic relationships.

Based on the above analysis, we propose a novel deep
learning model for WSSS. Unlike previous pair-wise ap-
proaches, our model is targeted at group-wise semantic min-
ing to capture more comprehensive relations among input
images. Specifically, we develop an efficient, end-to-end
trainable graph neural network (GNN), and conduct recur-
sive reasoning for group-wise semantic understanding. In
our graph, the nodes represent a group of input images, and
edges describe pair-wise relations between two connected
images. We consider two images as connected only if they
share common semantic objects with each other, and their
relation is then characterized by an elaborately designed
co-attention mechanism. Through iterative message passing,
the information from individual elements can be efficiently
integrated and broadcasted over the graph structure. In this
way, our model is capable of leveraging explicit semantic
dependencies among images to obtain better node represen-
tations. However, this graph reasoning strategy mainly fo-
cuses on co-occurring semantics in a group of images, ignor-
ing isolated objects. To address this, we further introduce a
graph dropout layer, which can be seamlessly integrated into
the GNN for iterative inference. The graph dropout layer se-
lectively suppresses the most salient objects, forcing the net-
work to be biased toward their counterparts.

Our method has two appealing characteristics over single-
image and pair-wise methods. First, it is capable of learning
semantic relations from an arbitrary number of images using
a flexible GNN framework. The GNN empowers our model
to inherit the complementary strengths of neural networks
in learning capability and graphical models in structure rep-
resentations. Second, our model adopts multi-step, iterative
inference to progressively improve image representations.
This is more favorable than directly producing representa-
tions by one-step inference in previous approaches

In summary, our main contributions are three-fold: First,
we demonstrate the advantages of group-wise semantic min-
ing for WSSS, and proffer a graph-aware solution for effec-
tive inference. Second, we develop a graph dropout layer
to promote the missing categories, leading to more accurate
localization. Third, we evaluate the proposed approach on

two large-scale benchmarks, i.e., PASCAL VOC 2012 (Ev-
eringham et al. 2010) and COCO (Lin et al. 2014), and the
results demonstrate its superiority.

Related Work
Weakly Supervised Semantic Segmentation. Recent years
have seen a surge of interest in semantic segmentation un-
der weak supervision (e.g., image-level labels, scribbles,
bounding boxes), greatly reducing human efforts in man-
ual labeling. In particular, methods operating with image-
level labels have attracted the most attention since they re-
quire minimal annotation efforts. Most of these methods fol-
low a popular pipeline that trains an image classifier us-
ing image-level labels, and exploits CAMs to highlight the
most discriminative object regions for a particular seman-
tic category as its pseudo ground-truth. However, CAMs are
weak in revealing complete object regions, resulting in poor
segmentation performance. Some pioneering efforts address
this difficulty by learning pixel affinities (Ahn and Kwak
2018), erasing the most discriminative parts (Wei et al. 2017;
Choe and Shim 2019; Lee et al. 2019), optimizing intra-
class discrimination (Fan et al. 2020a), or applying region
growing (Kolesnikov and Lampert 2016; Wei et al. 2018;
Huang et al. 2018) to capture the full extent of objects.
However, these methods are confined to using only limited
image-level information. More recent approaches thus fol-
low the self-supervised paradigm to acquire additional su-
pervisions (Shimoda and Yanai 2019; Wang et al. 2020b),
or rely on Siamese networks to capture semantic relations
between a pair of images (Fan et al. 2020b; Sun et al. 2020).

In this paper, we take a further step toward discovering
higher-order relations among images. A graph model is de-
signed to encode such relationships. Through graph reason-
ing, our model iteratively refines object representations by
accepting informative knowledge from other images.
Graph Neural Networks. Graph neural networks were pro-
posed in (Scarselli et al. 2008), and have since gained
widespread attention due to their superiority in dealing with
flexible graph-structured data. GNNs typically model the
graph elements (e.g., nodes, edges) and approximation in-
ference as learnable neural networks, and conduct iterative
reasoning to explicitly discover the relations among nodes.
They have achieved wide success in a variety of fields, in-
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Figure 2: Overview of the proposed group-wise semantic mining network during the training phase. Given a group of images
(i.e., {Ii}4i=1), our model uses VGG16 to extract convolutional features (i.e., h0

i }4i=1), which are used as the initial embeddings
for graph construction. Next, our model conducts T -step graph reasoning to iteratively refine the features by message passing
(Eq.(8)), message aggregation (Eq.(2)), and graph dropout (Eq.(10)). The final features (i.e., {ĥT

i }4i=1) are fed into a readout
function (Eq.(9)) to get the predictions (i.e., {lgi }4i=1).

cluding molecular biology (Gilmer et al. 2017), computer
vision (Qi et al. 2017; Lu et al. 2020; Marino, Salakhutdi-
nov, and Gupta 2017; Wang et al. 2019a; Santoro et al. 2017;
Zhou et al. 2021a; Wang et al. 2021a), medical image anal-
ysis (Zhou et al. 2021b) and machine learning (Veličković
et al. 2018; Qu, Bengio, and Tang 2019). Inspired by these
efforts, we build an image-level graph network to model
their semantic relations for the WSSS task. Assisted by a
graph dropout layer, our model can generate more accurate
pseudo ground-truths for semantic segmentation.

Methodology
In this section, we elaborate on the proposed model for
WSSS. Given training images with only image-level labels,
current efforts operate on two sub-tasks to achieve pixel-
wise predictions. The first one is pseudo ground-truth gen-
eration, which relies on an image classification network to
localize discriminative regions. The other one is seman-
tic segmentation, which conducts dense predictions using
a fully convolutional network (FCN) under the supervision
of pseudo labels. Our approach also follows this pipeline.
However, unlike previous approaches that treat each single
image independently, our model aims to mine common se-
mantic patterns from multiple images by graph inference. In
this way, our model can alleviate the incomplete-annotation
problem in WSSS and produce more accurate pseudo labels.

Preliminary: Graph Neural Networks
We start by revisiting the basic concept of GNNs. We define
a graph G=(V, E) by its node set V={v1, . . . , vn} and edge
set E = {ei,j = (vi, vj)|vi, vj ∈ V}. We assume that each
node vi is associated with a feature embedding vector hi,
and each edge ei,j has an edge representation ei,j . During
inference, GNNs iteratively improve the feature represen-
tations at a node by aggregating its neighborhood features.
Specifically, a GNN maps the graph G to the node outputs
through two phases: a message passing phase and a readout
phase. The message passing phase is defined in terms of a
message function FM , whose input is a node’s features and

output is a message, and an aggregation function FA, whose
input is a set of messages and output is the updated features.
Suppose we conduct T rounds of message passing; the t-th
round for a node vi can be described as:

message passing: mt
i =

∑

vj∈Ni

F t
M (ht−1

i ,ht−1
j , ei,j), (1)

message aggregation: ht
i = FA(h

t−1
i ,mt

i), (2)

where for vi, the message function firstly summarizes the in-
formation (i.e., mt

i) from its neighbors Ni, and then uses it
to update the node state. Then, in the readout phase, a task-
specific readout function FR operates on the final node rep-
resentation hT

i to produce a node output:

readout phase: oi = FR(h
T
i ). (3)

Next, we will present the details of the proposed graph-
based semantic mining model for pseudo ground-truth gen-
eration in WSSS.

Group-Wise Semantic Mining Network
Problem Definition: Given a collection of training samples,
our first goal is to generate corresponding pseudo ground-
truths, which will later be used to supervise semantic seg-
mentation networks. To achieve this, we formulate the prob-
lem as graph-based semantic co-mining among multiple im-
ages. Formally, we denote I = {(Ii, li)}Ni=1 as the training

data, where Ii ∈R
w×h×3 is an image and li ∈ {0, 1}L is the

corresponding image-level ground-truth with L possible se-
mantic categories. During training, we selectively sample K
images {Ii}Ki=1 as a mini-batch, and model their relations
as a directed graph G = (V, E), where the image Ii is de-
noted as node vi ∈ V , and the relation between vi and vj is
represented by edge ei,j ∈E . To better capture more compre-
hensive common semantics, we consider two nodes vi and
vj to be linked only if there is at least one semantic category
shared between them. Besides, we assume that every node
has a self-edge, e.g., ei,i for vi.
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Given the above definitions, our network aims to conduct
pseudo ground-truth generation in a graph learning scheme,
under the full supervision of image-level labels as well as the
implicit semantic relations among different images. In this
manner, our model can capture richer semantic information
and obtain more accurate pseudo labels. Next, we describe
the details of each component in our model.
Node Embedding: As an initial step, we abstract a high-
level feature representation for each input image. Formally,
given Ii, we extract features hi ∈ R

W×H×C from the con-
volutional stages of a standard classification network (e.g.,
VGG (Simonyan and Zisserman 2015)). The embedding of
node vi is then initialized by hi, which is a (W,H,C)-
dimensional tensor preserving full spatial details for more
effective pixel-level matching during graph reasoning.
Edge Embedding: For each edge ei,j connecting vi to vj ,
we aim to learn an edge embedding eti,j at each iteration
t to find the correct semantic correspondence between the
two nodes. This is achieved by dense matching over node
embeddings using the following bilinear model:

et
i,j = ht

iWht�
j ∈ R

WH×WH , (4)

where ht
i∈R

WH×C and ht
j ∈R

WH×C are flattened into ma-
trix representations for computational convenience. W ∈
R

C×C is a trainable weight matrix. In Eq. (4), eti,j encodes

the similarity between ht
i and ht

j for all pairs of spatial loca-
tions. For the edge ej,i, its embedding at iteration t is simply

calculated as etj,i = et�i,j .
It should be noted that Eq. (4) introduces a large number

of parameters, increasing the computational cost. To allevi-
ate this, W is approximately factorized into two low-rank

matrices P ∈ R
C×C

d and Q ∈ R
C×C

d , where d (d > 1) is a
reduction ratio. Then, Eq. (4) can be rewritten as:

et
i,j = ht

iPQ�ht�
j ∈ R

WH×WH . (5)

Eq. (5) has significant advantages over Eq. (4) in both
model parameters and computational cost: 1) it reduces the
number of parameters by 2/d times; 2) it only requires
(2WHC2+W 2H2C)/d multiplication operations, instead
of the WHC2 +W 2H2C in Eq. (4).

In addition, for each self-edge ei,i, its embedding ei,i cap-
tures the self-relation over the node representation hi. We
compute eti,i at iteration t by self-attention (Vaswani et al.
2017; Wang et al. 2018a), which can effectively capture
long-range semantic dependencies. In particular, the self-
attention calculates the response at a position by attending
to all the positions within the same node embedding:

et
i,i = softmax(φf (h

t
i)φ

�
g (h

t
i))φh(h

t
i) + ht

i∈R
W×H×C , (6)

where φ{f,g,h} are 1×1 convolutional operators. As seen, we
also consider it to be a residual layer in Eq. (6), which can
effectively preserve information in the original feature map.
Message Passing: Given the node and edge embeddings,
our model iteratively updates the hidden states of graph
nodes by applying message functions to collect information
from their neighboring nodes. More specifically, for a node
vi, it absorbs knowledge along two types of edges: 1) a self-
edge ei,i that encodes rich context-aware knowledge in vi;

and 2) other edges {ej,i}j that connect vj to vi. For the for-
mer, our message function directly reads the message from
ei,i, i.e., mt

i,i = et−1
i,i ; while for the latter, the messages are

summarized as:

mt
j,i=softmaxr(e

t−1
i,j )ht−1

j ∈R
WH×C , (7)

where softmaxr denotes the row-wise softmax operation.
In Eq. (7), we accumulate knowledge from ht−1

j , which is

weighted based on the similarity between ht−1
i and ht−1

j .

mt
j,i is then reshaped to a (W,H,C)-dimensional tensor.

Then, we can easily summarize the message for vi at the
t-th iteration as:

mt
i =

∑
vj∈Ni

mt−1
j,i +mt−1

i,i . (8)

Next, the aggregation function A updates the hidden states
of nodes, as given in Eq.(2). In our method, A is instantiated
by a ConvGRU network (Ballas et al. 2016), which is an
extension of the GRU update function used in (Gilmer et al.
2017). In this way, the message passing algorithm runs for
T steps before convergence, iteratively collecting messages
and updating node embeddings.
Readout Phase: Having repeated the above process for
T time steps, we obtain the final node embedding hT

i ∈
R

W×H×C for vi. Then, the readout function R is applied to
the features hT

i for image classification:

lgi = FR(h
T
i ) = GAP(φr(h

T
i )) ∈ R

L, (9)

where φr is a class-aware convolutional layer with kernel
size 1×1 that obtains a feature map with L channels, and
GAP denotes a global average pooling layer which produces
the final classification outputs.
Pseudo Ground-Truth Generation by Self-Ensembling:
Once the classification results are obtained (Eq.(9)), we dis-
cover the discriminative image regions for a particular cate-
gory following (Jiang et al. 2019). These regions are further
thresholded to generate pseudo ground-truths.

Besides, as shown in Figure 2, for each input image, our
network produces two outputs based on raw convolutional
features h0

i as well as enriched features hT
i . This not only in-

troduces additional deeply supervised constraints (Lee et al.
2015) which could benefit the performance, but also enables
the results to be further improved by ensembling the CAMs
of multiple outputs. We found that the pseudo ground-truths
from different outputs are well complementary with each
other, and self-ensembling them by averaging can further
improve the performance (see Table 3).

Graph Dropout Layer
The above graph reasoning scheme enables our model to
discover common semantics present in different images
(Eq.(5)). The features of these semantics can be accordingly
enriched by summarizing all the information from other im-
ages (Eq. (8)). However, standalone categories, which may
exist only in a single image, are almost ignored in this proce-
dure. To address this, we introduce a graph dropout layer to
force the network to pay more attention to these categories.
Formally, given the feature map ht

i ∈ R
W×H×C at the t-th
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Methods Pub. Val Test
∗MEFF (Ge, Yang, and Yu 2018) CVPR18 - 55.6%
∗GAIN (Li et al. 2018) CVPR18 55.3% 56.8%
∗MDC (Wei et al. 2018) CVPR18 60.4% 60.8%
∗RRM (Zhang et al. 2020) AAAI20 60.7% 61.0%
†MCOF (Wang et al. 2018b) CVPR18 60.3% 61.2%
†SeeNet (Hou et al. 2018) NIPS18 63.1% 62.8%
†DSRG (Huang et al. 2018) CVPR18 61.4% 63.2%
†AffinityNet (Ahn and Kwak 2018) CVPR18 61.7% 63.7%
†SS-WSSS (Araslanov and Roth 2020) CVPR20 62.7% 64.3%
†SSNet (Zeng et al. 2019) ICCV19 63.3% 64.3%
†IRNet (Ahn, Cho, and Kwak 2019) CVPR19 63.5% 64.8%
†CIAN (Fan et al. 2020b) AAAI20 64.3% 65.3%
†FickleNet (Lee et al. 2019) CVPR19 64.9% 65.3%
†IAL (Wang et al. 2020a) IJCV20 64.3% 65.4%
†SSDD (Shimoda and Yanai 2019) ICCV19 64.9% 65.5%
†SEAM (Wang et al. 2020b) CVPR20 64.5% 65.7%
†SubCat (Chang et al. 2020) CVPR20 66.1% 65.9%
†OAA+ (Jiang et al. 2019) ICCV19 65.2% 66.4%
†RRM (Zhang et al. 2020) AAAI20 66.3% 66.5%
†BES (Chen et al. 2020) ECCV20 65.7% 66.6%
†EME (Fan, Zhang, and Tan 2020) ECCV20 67.2% 66.7%
†MCIS (Sun et al. 2020) ECCV20 66.2% 66.9%
†ICD (Fan et al. 2020a) CVPR20 67.8% 68.0%
∗Ours (VGG16) – 63.3% 63.6%
†Ours (ResNet101) – 68.2% 68.5%

Table 1: Quantitative comparison of different methods on
PASCAL VOC 2012 val and test in terms of mIoU. ∗: VGG
backbone. †: ResNet backbone.

iteration, we average it along the channel dimension to ob-
tain ot

i ∈R
W×H . Then, we generate a mask sti ∈ R

W×H as
follows:

st
i=

{
sigmoid(ot

i), if r < δr;

ot
i1(o

t
i < max(ot

i) ∗ δd), otherwise.
(10)

Here, the parameter δr is a drop rate threshold, determining
whether to carry out the dropout operation or not. The pa-
rameter r is a scalar generated from a random generator. If
r < δr, sti is an importance map which supports the acti-
vations in ht

i; otherwise, the layer drops the highly activated
semantic regions to emphasize standalone semantics. 1(x) is
a matrix indicator function which returns 1 for the true ele-
ments in x, and 0 otherwise. The max(·) operation calculates
the maximum value for a 2D tensor. δd is a threshold con-
trolling the dropout. Finally, we enhance the feature maps
by:

ĥt
i = ht

i ⊗ st
i, (11)

where ⊗ denotes spatial-wise multiplication. Note that ĥt
i is

then used to replace original features ht
i in the next iteration.

Detailed Network Architecture
Our model is comprised of two sub-networks: a classifica-
tion network for group-wise pseudo ground-truth generation
and a segmentation network for semantic segmentation.
Classification Network. We choose VGG16 (Simonyan and
Zisserman 2015) as the backbone, which is pre-trained on

Methods Pub. Val
BFBP (Saleh et al. 2016) ECCV16 20.4%
SEC (Kolesnikov and Lampert 2016) ECCV16 22.4%
DSRG (Huang et al. 2018) CVPR18 26.0%
IAL (Wang et al. 2020a) IJCV20 27.7%
Ours – 28.4%

Table 2: Quantitative comparison of different methods on
COCO val in terms of mIoU. All methods use VGG16 as
the backbone.

ImageNet (Deng et al. 2009). We replace the last convolu-
tional layer in VGG16 by dilated convolutions with a rate
of 2, and the feature maps from this layer are taken as the
initial node representations for the GNN. For each image
Ii, our network has two outputs: an intermediate output lmi
which is directly obtained from the backbone (Figure 2), and
a final output lgi after graph reasoning (Figure 2). Then, the
loss function of the classification network for image i is:

L = LCE (lgi , li) + λLCE (lmi , li) , (12)

where LCE indicates the standard sigmoid cross entropy loss,
and λ balances the two losses.

After training, we obtain the CAMs for each training im-
age from the two classification layers mentioned earlier, and
combine them to obtain foreground object seeds. Besides,
we also follow conventional practices (Jiang et al. 2019; Fan
et al. 2020a) to estimate background seeds using an off-the-
shelf salient object detection model (Hou et al. 2017). The
final pseudo labels are generated by combining the fore-
ground and background seeds.
Segmentation Network. Following (Chang et al. 2020; Fan
et al. 2020b), we choose DeepLab-v2 (Chen et al. 2017) as
the segmentation network due to its superior performance in
fully supervised semantic segmentation tasks.

Experiments
Experimental Setup
Datasets: We conduct our experiments on two datasets:
PASCAL VOC 2012 (Everingham et al. 2010) and
COCO (Lin et al. 2014). 1) PASCAL VOC 2012 is cur-
rently the most popular benchmark for WSSS. The dataset
contains 20 semantic categories (e.g., person, bicycle, cow)
and one background category. Following standard proto-
col (Huang et al. 2018; Lee et al. 2019; Wang et al. 2020b),
extra data from SBD (Hariharan et al. 2011) is also used
for training, leading to a total of 10,582 training images. We
evaluate our model on the standard validation and test sets,
which have 1,449 and 1,456 images, respectively. 2) COCO
is a more challenging benchmark with 80 semantic classes.
Since more complex contextual relations exist among these
categories, it is interesting to examine the performance of
our model in this dataset. Following (Wang et al. 2020a), we
use the default train/val splits (80k images for training and
40k for validation) in the experiment.
Evaluation Metric: For fair comparison, we utilize a widely
used metric (Wang et al. 2018b; Choe and Shim 2019; Sun
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et al. 2020), mean Intersection-over-Union (mIoU), for eval-
uation. The scores on the test set of PASCAL VOC are ob-
tained from the official evaluation server.

Training Details: 1) Greedy Mini-Batch Sampling. During
training, we design a heuristic, greedy strategy to sample
K training images in each mini-batch. Starting from a ran-
domly sampled image Ii, we further find another K−1 im-
ages, each of which shares as many common semantic ob-
jects with Ii as possible. These K images are then used to
build a K-node GNN. This sampling strategy enables our
model to better explore rich relationships among groups of
images and improve the results. 2) Training Settings. For the
classification network, the number of nodes K and message
passing steps T in the GNN are separately set to 4 and 3
by default. The input image size is 224×224. The entire net-
work is trained using the SGD optimizer with initial learning
rates of 1e-3 for the backbone and 1e-2 for the GNN, which
are reduced by 0.1 every five epochs. The total number of
epochs, momentum and weight decay are set to 15, 0.9, and
5e-4, respectively. The λ in Eq. (12) is empirically set to 0.4
and the d in Eq. (5) is set to 4. For the segmentation network,
we follow the training setting in (Chen et al. 2017), but use
the generated pseudo ground-truths as the supervision.

Performance on PASCAL VOC 2012

We evaluate the proposed approach on PASCAL VOC 2012
against current top-performing WSSS methods that only op-
erate with image-level labels. Following conventions, we
evaluate the performance of our model using VGG16 (Si-
monyan and Zisserman 2015) and ResNet101 (He et al.
2016) as the backbones, respectively. As reported in Table 1,
our model with ResNet101 achieves the best performance,
scoring 68.2% and 68.5% on the val and test sets, respec-
tively. It significantly outperforms the current leading ap-
proach, i.e., ICD (Fan et al. 2020a), by +0.4% and +0.5%
on the two evaluation sets.

In addition, Table 1 also shows that the proposed approach
outperforms both pair-wise models (i.e., CIAN (Fan et al.
2020b) and MCIS (Sun et al. 2020)), and all single-image
based models (e.g., RRM (Zhang et al. 2020), OAA+ (Jiang
et al. 2019)), by a large margin. The reason lies in that ex-
isting methods exploit limited context in image collection,
while our approach can learn more effective inter-image rep-
resentations with GNNs.

In Figure 3, we also provide sample results for represen-
tative images in PASCAL VOC 2012 val. The images cover
various challenging factors in WSSS, such as multiple ob-
jects, different semantic categories, small objects, and clut-
tered background. We see that our model can deal with these
difficulties well, resulting in appealing segmentation results.

Performance on COCO

We further examine the performance of our model on
COCO. As reported in Table 2, our model achieves the best
mIoU score (i.e., 28.4%) on the validation set, outperform-
ing the second-best result, i.e., IAL (Wang et al. 2020a), by
0.7%. This further proves the superiority of our model.

Aspect Variant mIoU

Full Model T = 3, K = 4 68.2%
δr = 0.8, δd = 0.7

Node
Number

K = 3 68.1%
K = 5 67.8%
K = 6 67.6%

Graph
Reasoning

Message
Passing

T = 2 67.8%
T = 4 68.0%
T = 5 68.0%

Graph
Dropout

δr = 0.8
δd = 0.9 68.0%
δd = 0.5 67.7%

δr = 0.6
δd = 0.7

66.8%
δr = 0.4 63.6%

w/o dropout 67.7%

Self-Ensembling
intermediate output 64.1%

graph output 67.8%
self-ensembling 68.2%

Table 3: Diagnostic experiments of our model on PASCAL
VOC 2012 val in terms of mIoU. For all variants, we use
ResNet101 as the backbone.

Diagnostic Experiments
We further conduct diagnostic analysis on PASCAL VOC
2012 val set to verify the effectiveness of the essential mod-
ules in our approach. We use ResNet101 as the default back-
bone for all the studies. The performance of our full model
with default parameters is given in the first row of Table 3.
Number of Nodes K: We first investigate the effect of the
node number K used in the GNN, which indicates the num-
ber of images in a group. As shown in Table 3, the model
achieves comparably high performance with three or four
nodes. However, when more nodes are added, the perfor-
mance decreases significantly. This can be attributed to the
trade-off between meaningful semantic relations and noise
brought by group images. When K=3 or 4, the semantic re-
lations can be fully exploited to improve the integral regions
of objects. However, when more images are further con-
sidered, meaningful semantic cues reach a bottleneck and
noise, introduced by imperfect localization of the classifier,
dominates, thus leading to performance degradation.
Number of Message Passing Steps T : We further evaluate
the impact of the message passing steps by comparing the
performance with different T ranging from 2 to 5. From Ta-
ble 3, we observe that the mIoU score is significantly im-
proved when T varies from 2 to 3. The performance de-
creases slightly when considering more steps. Therefore, we
set T =3 as default for message passing.
Graph Dropout Layer: To verify the effectiveness of the
proposed graph dropout layer, we design multiple exper-
iments to search the optimal configuration of parameters
drop-rate and drop-th. We observe that both parameters have
great influences on the performance. As observed in Table 3,
our model reaches the best performance at δr = 0.8 and
δd = 0.7. If δd is higher (e.g., 0.9), most discriminative re-
gions will be kept, and thus ignored regions will remain un-
activated. In contrast, if the δd is lower, the regions with high
responses will be excessively dropped, leading to degraded
classification accuracy.

1989



Figure 3: Qualitative results on PASCAL VOC 2012 val. From top to bottom: input images, ground-truths, and our results.

Images CAMs 
w/o Dropout

CAMs 
w/ Dropout Images CAMs 

w/o Dropout
CAMs 

w/ Dropout

Figure 4: Visual comparisons of CAMs generated w/ or w/o
the graph dropout layer.

Group #1: bird Group #2: person

Figure 5: Visual comparisons of CAMs. Here we provide
the results of two groups of images. For each group, we
show the input images, CAMs from the intermediate read-
out layer and CAMs from the graph readout layer (from left
to right). Our model clearly provides more accurate CAMs
after group-wise graph reasoning.

In addition, the parameter δr controls whether to drop the
responses or not during training. As shown in Table 3, a δr
of 0.8 helps to achieve the best mIoU score. Such a setting
not only maintains the classification ability of the network
by keeping discriminative regions with a high probability,
but also drives the network to mildly attend to other regions.
We can also see that by setting δr to smaller values (e.g., 0.6
or 0.4), the performance encounters a significant decrease.

Moreover, we examine the performance of our model
without the graph dropout layer. As seen, without the
dropout layer, the performance of our model decreases by
0.5% in terms of mIoU, which reveals its importance.

Finally, we illustrate some examples of the final CAMs
generated with or without the graph dropout layer. As shown
in Figure 4, without the dropout layer, the network only fo-

cuses on the most discriminative parts (e.g., heads of the
cat and the horse). This is improved with our dropout layer,
which helps to highlight non-discriminative object regions.
Self-Ensembling: In addition to the supervision on the fi-
nal outputs, we also introduce deep supervision signals on
the intermediate features. Such multi-level supervision has
proven effective for improving the performance of various
vision tasks. Besides, this enables us to combine the multi-
ple outputs with low cost to further boost the performance.
Here, we examine the self-ensembling strategy by building
three network variants, i.e., intermediate output, graph out-
put and self-ensembling, in which the final CAMs are sepa-
rately extracted from the intermediate readout layer, graph-
aware readout layer, and their ensemble, respectively. As
shown in Table 3, the intermediate output only obtains an
mIoU score of 64.1%, greatly lagging behind the 67.8% ob-
tained by the graph output. This demonstrates that through
iterative graph reasoning, our model can improve the image
representations by integrating information from group im-
ages, leading to huge performance gains. Furthermore, the
self-ensembling strategy boosts the performance to 68.2%.

In Figure 5, we illustrate two groups of images with their
CAMs from the intermediate readout layer and graph read-
out layer. As seen, in both groups, the CAMs are well-
refined to cover more complete foreground regions after
graph reasoning. Besides, in many cases, the CAMs from
two output layers complement with each other well, en-
abling better results to be obtained by self-ensembling.

Conclusion
In this paper, we have introduced a group-wise learn-
ing model for weakly supervised semantic segmentation
(WSSS). We formulate the task within a graph neural net-
work (GNN), which operates on a group of images and ex-
plores their semantic relations for representation learning.
By iterative reasoning, our model provides better pseudo
ground-truths, further improving the semantic segmentation
results. Experimental results on PASCAL VOC 2012 and
COCO demonstrate that the proposed approach performs fa-
vorably against the state-of-the-art methods.
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