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Abstract

Face recognition has achieved significant progress in recent
years. However, the large pose variation between face im-
ages remains a challenge in face recognition. We observe that
the pose variation in the hidden feature maps is one of the
most critical factors to hinder the representations from being
pose-invariant. Based on the observation, we propose an Ad-
versarial Pose Regression Network (APRN) to extract pose-
invariant identity representations by disentangling their pose
variation in hidden feature maps. To model the pose discrim-
inator in APRN as a regression task in its 3D space, we also
propose an Adversarial Regression Loss Function and extend
the adversarial learning from classification problems to re-
gression problems in this paper. Our APRN is a plug-and-
play structure that can be embedded in other state-of-the-art
face recognition algorithms to improve their performance ad-
ditionally. The experiments show that the proposed APRN
consistently and significantly boosts the performance of base-
line networks without extra computational costs in the infer-
ence phase. APRN achieves comparable or even superior to
the state-of-the-art on CFP, Multi-PIE, IJB-A and MegaFace
datasets. The code will be released1, hoping to nourish our
proposals to other computer vision fields.

Introduction
Face recognition is one of the most challenging topics in the
computer vision field. Its performance has been significantly
improved with the help of large-scale datasets (Guo et al.
2016) and the Convolutional Neural Network (Krizhevsky,
Sutskever, and Hinton 2012). Even through top face recog-
nition algorithms (Deng et al. 2019; Liu et al. 2017; Duan,
Lu, and Zhou 2019; Kang et al. 2019; Liu et al. 2019a; Wang
et al. 2019) have surpassed human performance in several
evaluation datasets, Sengupta et al.(Sengupta et al. 2016)
showed that the large intra-person variations caused by their
poses degraded the performance of all state-of-the-art face
recognition algorithms. The Pose-Invariant Face Recogni-
tion (PIFR) is far from being solved.

In this paper, we observe and prove that the hidden fea-
ture maps of the face recognition network are prone to pose
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1https://github.com/pengyuLPY/Adversarial-Pose-Regression-
Network-for-Pose-Invariant-Face-Recognitions

changes. It makes identity representations fail to be pose-
invariant. However, the existing algorithms for PIFR (Yin
and Liu 2017; Tran, Yin, and Liu 2017; Shen et al. 2018;
Peng et al. 2017; Cao et al. 2018a; Chen et al. 2016; Wang
et al. 2019; Zhao et al. 2018; Deng et al. 2018) only focus
on the final identity representations. Few of them have re-
searched the hidden feature maps. Besides, most of the exist-
ing works (Tran, Yin, and Liu 2017; Shen et al. 2018; Deng
et al. 2018) based on the adversarial learning defined pose
discriminator as a classification task and need to generate
synthetic faces. However, the pose estimation is contiguous
in its 3D space objectively, and generating semantic identity-
invariant synthetic faces is a challenging task that requiring
lots of computational consumptions in the training phase.

Motivated by our observation, we propose a plug-and-
play structure, which we name as Adversarial Pose Regres-
sion Network (APRN), to make the face recognition net-
works extract pose-invariant representations by reducing the
pose variation in the hidden feature maps. The architecture
of our proposal includes two modules, an APRN module and
a face recognition network module. The pose discriminator
in the APRN module employs the hidden feature maps of
the face recognition network as inputs to estimate the fa-
cial poses, while the face recognition network reduces the
pose variation to trick the discriminator and extracts repre-
sentations for identification. The visualization of our archi-
tecture is in the supplementary material. Because the APRN
module is removed in the inference phase, our APRN ar-
chitecture has no extra computational costs for its inference.
Besides, There is NO GENERATOR in our APRN, and it
does not need to generate any identity-invariant synthetic
faces. It makes our APRN much easier to be trained and
needs less computational costs in each training iteration than
other works (Tran, Yin, and Liu 2017; Shen et al. 2018;
Deng et al. 2018). What’s more, the APRN can be embedded
in other existing general face recognition techniques (Deng
et al. 2019; Kang et al. 2019; Wang et al. 2019) to improve
their performance additionally.

To model the pose discriminator as a regression task in its
3D space, we propose a novel Adversarial Regression Loss
Function and extend the adversarial learning from classifi-
cation problems to regression problems.

This paper makes the following theoretical contributions:

• We observe and prove that feature maps from the hidden
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Figure 1: The estimation landmarks (red dots) are predicted precisely to the ground truth (green dots) based on the Baseline
model’s hidden feature maps, which proves its feature maps are pose-variant. APRN disentangles the pose variations in the
hidden stages by transforming them into the frontal-view mean face ones (yellow dots).

layers are still prone to pose changes, which makes the
identity representations fail to be pose-invariant.

• We propose a novel plug-and-play structure named as
Adversarial Pose Regression Network (APRN) for PIFR.
The APRN can be embedded in existing face recognition
networks to make the representations pose-invariant with-
out extra computational consumptions in the inference.

• We propose an Adversarial Regression Loss Function to
extend the adversarial learning mechanism from classifi-
cation task to regression task and to model pose discrimi-
nator as a contiguous regression network in the 3D space.

Because of the theoretical contributions above, given a
face recognition network, the proposed APRN consistently
and significantly boosts its performance. Our experiments
show APRN achieves state-of-the-art performance on the
CFP-FP, Multi-PIE and IJB-A evaluation protocol. As far
as we know, we get the best single model without the private
large-scale training datasets in MegaFace Challenge 1.

Related Work
Face Recognition. Face recognition is one of the most
broadly researched topics in computer vision fields. Sun et
al.(Sun, Wang, and Tang 2014) proposed a Convolutional
Neural Networks for the face recognition problem. Be-
sides, some novel loss functions (Deng et al. 2019; Schroff,
Kaleni ko, and Philbin 2015; Wang et al. 2018b; Wen et al.
2016; Duan, Lu, and Zhou 2019) were proposed to make
the learned representations compact in intra-identify and dis-
persive in inter-identify. However, Sengupta et al.(Sengupta
et al. 2016) showed that most state-of-the-art algorithms de-
grade their performance dramatically from frontal-frontal
to frontal-profile face verification. The Pose-Invariant Face
Recognition is far from being solved.

Pose-Invariant Face Recognition (PIFR). Existing al-
gorithms for PIFR are clustered into three groups: 1) Face
synthesis on frontal view. Yin et al.(Yin et al. 2017a) pro-
posed a 3DMM conditioned GAN to frontal the large-pose
faces. Deng et al.(Deng et al. 2018) combined local and

global adversarial CNNs to learn an identity-preserving fa-
cial UV completion model. 2) Pose-invariant feature extrac-
tion. Yin et al.(Yin and Liu 2017) learned different feature
extractors with Multi-Task Convolutional Neural Network
for different poses. Peng et al.(Peng et al. 2017) proposed
a new feature reconstruction metric learning to disentangle
identity explicitly and pose features. 3) An ensemble ap-
proach of the above two. Shen et al.(Shen et al. 2018) ex-
tended the Generative Adversarial Network to a three-player
game, which helped it generate faces of arbitrary viewpoint
and expression while preserving identity. Tran et al.(Tran,
Yin, and Liu 2017) learned both a face synthesis generative
and a discriminative representation based on the Generative
Adversarial Network. However, most of the previous works
only focused on the final representations. Few of them have
researched pose variation in the hidden feature maps.

Adversarial Learning. Adversarial learning achieves a
significant improvement in recent years. Especially the
Generative Adversarial Network (GAN) has been widely
used in many computer vision fields such as image syn-
thesis (Radford, Metz, and Chintala 2015), image super-
resolution (Ledig et al. 2017), and representation learn-
ing (Tran, Yin, and Liu 2017; Shen et al. 2018). In most
previous works, Adversarial Learning was modeled as a bi-
nary classification task or N+1 categories classification task.
Few of them have modeled adversarial learning as a regres-
sion task.

Inspired by the previous works, we propose an Adversar-
ial Pose Regression Network and a novel Adversarial Re-
gression Loss Function to disentangle the pose variations in
face recognition networks.

The Proposal: Adversarial Pose Regression
Network

In this section, we introduce our observation that the hidden
feature maps of deep face recognition networks are prone to
pose changes. Based on the observation, we formulate our
Adversarial Pose Regression Network (APRN). Finally, we
propose the Adversarial Regression Loss Function.
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Observation
There are lots of works proved the facial poses can be esti-
mated from a set of specific facial landmarks and the poses
are by-products of facial landmarks (Gee and Cipolla 1994,
1996; Horprasert, Yacoob, and Davis 1996; Ruiz, Chong,
and Rehg 2018). Based on their works, we infer that a fea-
ture map of a face recognition network is variant with pose
changes if it can be used to precisely estimate the facial land-
marks.

In this sub-section, A ResNet-101 (He et al. 2016) with
the Softmax loss function is trained as the Baseline face
recognition network. Besides, we train five facial landmarks
regressive estimators respectively. The input of each estima-
tor is the hidden feature map (stem, stage1, stage2, stage3, or
stage4) of the Baseline face recognition network. We fix all
the learnable parameters of the Baseline network when the
estimators are training. The details of the network and the
estimators are shown in the Table 1. The training dataset is
MS-Celeb-1M (Guo et al. 2016). The ground truth of land-
marks is annotated automatically (Hu et al. 2018a).

Face Recognition Network APRN
Module Layer Output SizeInputs Conv/BN/Relu Maxpool FCLayer Number 101 152 3×3, stride 2

Input Image 224*224 stem [256,512,
stem 56*56 1024,2048]

2*M
stage1 56*56 stage1[512,1024,2048] 3*3

Feature stage2 28*28 stage2 [1024,2048] stride 2
Extractor stage3 14*14 stage3 [2048]

stage4 7*7 stage4 [2048]
Identity256 512

Loss
pose estimators: L1 Loss

Feature pose discriminators:
Identification N N Adversarial Regression Loss

Classifier

Table 1: The structure of the Pose-Invariant Face Recogni-
tion with Adversarial Pose Regression Network. N is the
number of identities. M is the number of facial landmarks.

Table 2 shows that the Baseline model achieves excel-
lent performance in all evaluation datasets, especially in the
CFP-FP dataset which is a frontal-profile evaluation dataset.
However, Table 3 shows the error range of its landmark esti-
mators is from 1.18 (stem) to 1.50 (stage4). It proves the hid-
den feature maps of the good performance face recognition
network have enough capacity to estimate facial landmarks
precisely. The landmarks visualization in Figure 1 also sup-
ports the conclusion because the estimated landmarks (red
dots) of the Baseline model are close to the ground truth
(green dots) on all three views, even though the feature maps
are extracted from the deepest layer (stage 4).

LFW IJB-A CFP-FF CFP-FP Megaface
(FAR=10−4) unclean\clean

99.37 86.66 99.70 96.24 77.58\91.59

Table 2: Face recognition performance of the Baseline.

Furthermore, we do t-SNE analysis (Maaten and Hinton
2008) in Figure 2. Based on the figure, it can be inferred

Inputs Stem Stage1 Stage2 Stage3 Stage4
L1 Distance 1.18 1.36 1.44 1.46 1.50

Table 3: Pose estimation performance of the Baseline.

that the representations of the same identity are not compact
because of the pose variation, even though the distribution
of identities is almost discriminative. More discussion about
t-SNE analysis is detailed in the ablation study.

Based on the experiments shown in Table 2, Table 3, Fig-
ure 1 and Figure 2, it is proved that even though the face
recognition network gets good performance in evaluation
datasets, its feature maps from hidden layers are still prone
to pose changes.

Adversarial Pose Regression Network
Based on our observation, we propose the Adversarial Pose
Regression Network (APRN) to extract pose-invariant iden-
tity representations by reducing the pose variation in the hid-
den feature maps.

The face recognition network with our APRN is formu-
lated as Equation 1:

L = αV (D,R′) + Lc(R) (1)

The L is the loss function of our architecture. The D de-
notes the pose discriminator in APRN, which is modeled as
a facial landmarks estimator. R denotes the face recognition
network, and R′ is a subset of R (R′ ∈ R). The α is the loss
weight to balance V (D,R′) and Lc(R).

The V (D,R′) is an adversarial loss function. It can be
formulated as (Goodfellow et al. 2014) or (Tran, Yin, and
Liu 2017) if the pose discriminator is modeled as a discrete
task. However, the pose estimation is contiguous, and it is
better to be modeled as a regression task than a classification
one. To extend the V (D,R′) as a contiguous regression task,
we propose the Adversarial Regression Loss Function in the
following section.

There is a crucial difference between our V (D,R′) and
the existing works based on GAN (Cao et al. 2018a; Deng
et al. 2018; Shen et al. 2018; Tran, Yin, and Liu 2017). There
is NO GENERATOR in our APRN. The R′ is not a genera-
tor but a part of the face recognition network. Our APRN
does not need to generate any identity-invariant fake faces,
which helps it easier to be trained and need much less com-
putational consumptions in each training iteration than the
previous works.

The Lc(R) is an identification loss function. It can be set
as Softmax loss function, Large Margin Cosine loss func-
tion (Wang et al. 2018b), Additive Angular Margin loss
function (Deng et al. 2019) etc. The identification loss func-
tion is not the scope of this paper.

Based on Equation 1, the architecture with APRN consists
of two modules, an APRN module and a face recognition
network module. The pose discriminator in the APRN mod-
ule employs the hidden feature maps of the face recognition
network as inputs to regress the facial landmarks (optimized
by the V (D,R′)). The face recognition network reduces the
pose variations to trick the discriminator (optimized by the
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V (D,R′)) and extracts the representations for identification
(optimized by the Lc(R)). We visualize the architecture in
the supplementary material. There are no extra computa-
tional costs in the inference phase because the APRN mod-
ule is removed in the phase.

Adversarial Regression Loss Function
As the adversarial learning was treated as a binary clas-
sification or an N+1 categories classification in the previ-
ous works, the pose discriminator has to be modeled as a
classification network in (Tran, Yin, and Liu 2017; Yin and
Liu 2017), even though pose estimation is contiguous ob-
jectively. To model the pose discriminator as a regression
network in adversarial learning, we propose an Adversarial
Regression Loss Function and extend the adversarial learn-
ing from the classification task to the regression task.

As the face recognition algorithms have achieved an ex-
cellent performance in the frontal-view (Deng et al. 2019;
Kang et al. 2019; Liu et al. 2019a; Wang et al. 2019), we dis-
entangle the pose variations by transferring them to the same
as the frontal-view mean face. Our Adversarial Regression
Loss Function is formulated as the following:

LAdv Reg(D,R
′) = argmin

D
E[‖D(R′(x))− l‖11] +

argmin
R′

E[‖D(R′(x))− l̃‖11]
(2)

The x is the input face image. The l denotes the ground truth
facial landmarks of x, and the l̃ denotes landmarks of the
frontal-view mean face.

There are two parts in LAdv Reg(D,R
′). The D and R′

are optimized respectively in different parts. In the first part,
the discriminator (D) is optimized to estimate the facial
landmarks (l).In the second part, the subset of face recog-
nition network (R′) is optimized to cheat the D by making
its outputs close to the frontal-view mean face landmarks
(l̃). The targets of the D(R′(x)) are adversarial in different
parts of LAdv Reg(D,R

′). It makes our formulation be an
adversarial learning mechanism.

Both parts in LAdv Reg(D,R
′) are essential in our pro-

posal. The face recognition network would not be optimized
to be pose-invariant if the second part is absent. Removing
the first part and optimizing both D and R′ in the second
part leads D to output l̃ directly, even though the R′(x) is
generated by random noise. The influence of each part in
Equation 2 is analyzed in the ablation study.

The LAdv Reg(D,R
′) is optimized iteratively with the

Stochastic Gradient Descent (SGD). For the details on the
optimization, we refer to (Goodfellow et al. 2014).

Experiment
Datasets
In this paper, MS-Celeb-1M (MS-1M) (Guo et al. 2016)
and CASIA-WebFace(CASIA) (Yi et al. 2014) are used as
training datasets respectively in different experiments. The
ground truth of facial landmarks in both training datasets
is annotated automatically with the algorithms proposed in
(Hu et al. 2018a). In the MS-Celeb-1M, there are almost

100 thousand global celebrities and 10 million images re-
leased. We clean the dataset with the automatic method
proposed in (Wu et al. 2018). The cleaned MS-Celeb-1M
dataset in this paper contains 74,974 identities and 4.8 mil-
lion images. The CASIA-WebFace consists of 494,414
near-frontal faces of 10,575 subjects from the internet.

Multi-PIE (Gross et al. 2010) dataset consists of 754, 200
images of 337 subjects. We follow the setting in (Zhao et al.
2018; Hu et al. 2018b; Yin et al. 2017b), 337 subjects with
neutral expression, 13 poses within ±90◦ and 20 illumina-
tions are used. The first 200 subjects are used for training.
The rest 137 subjects are used for testing.

CFP (Sengupta et al. 2016), LFW (Huang et al. 2008),
IJB-A (Klare et al. 2015) and MegaFace (Kemelmacher-
Shlizerman et al. 2016) are used as evaluation datasets. The
CFP consist of 10 folders, each folder contains 350 same-
person pairs and 350 different-person pairs for both frontal-
frontal (CFP-FF) and frontal-profile (CFP-FP) experiments.
The LFW consists of 13,323 web photos of 5,749 celebri-
ties which are divided into 6,000 face pairs in 10 splits. In
this paper, we follow the standard protocols of LFW and
CFP and report their mean accuracy and the standard error
of the mean. The IJB-A dataset contains 5,397 images and
20,412 video frames split from 2,042 videos of 500 individ-
uals. We evaluate the performance with its standard verifi-
cation protocol. The true accepted rates (TAR) under vary-
ing false accepted rates (FAR) are reported. The MegaFace
dataset includes the probe and gallery set. The probe set is
the FaceScrub dataset (Ng and Winkler 2014), which con-
tains 100,000 images of 530 identities, and the gallery set
consists of about 1,027, 060 images from 690,572 differ-
ent subjects. We report its rank1@106 accuracy2. We report
both the performance tested on the original dataset and the
cleaned one by Deng et al.(Deng et al. 2019)3.

Implementation Details
For proving APRN can be embedded in different face recog-
nition networks, three backbones are trained in this pa-
per. They are CASIA-Net (Yi et al. 2014), ResNet-101 and
ResNet-152 (He et al. 2016). ResNet-152 use the ArcFace
loss (Deng et al. 2019) as Lc(R) while CASIA-Net and
ResNet-101 use the Softmax loss function simply. We train
two models for every backbone, one is the Baseline model
and the other one is our APRN. All three ARPN models
use our proposed Adversarial Regression Loss Function as
V (D,R′). Their pose discriminators employ the last con-
volutional layer of face recognition network as input except
for the ablation study section. The training details are the
same between Baseline models and APRN models, except
the APRN models are pre-trained by the Baseline models
and their learning rates are 10 times smaller than the Base-
lines. All the models are implemented on the publicly avail-
able PyTorch platform (Paszke et al. 2017).

Implementation details of CASIA-Net. For a fair com-
parison with other state-of-the-art works on the CFP dataset,
we train the CASIA-Net with CASIA-WebFace. The imple-

2http://megaface.cs.washington.edu
3https://github.com/deepinsight/insightface
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mentation details of our CAISA-Net is the same as other
PIFR algorithms (Sengupta et al. 2016; Chen et al. 2016;
Tran, Yin, and Liu 2017; Peng et al. 2017). We randomly
sample 96×96 regions from the aligned 100×100 face im-
ages for data augmentation. Image intensities are linearly
scaled to the range of [−1, 1]. The network is trained for
30 epochs. The learning rate of Baseline models is 0.1 and
decays 10 times at the 20th, 27th and 29th epoch. Momen-
tum is 0.9, weight decay is 0.0005, and α in Equation 1 is
0.2. The pose discriminator is detailed in Table 4.

For fairly comparing with other works on the Multi-PIE
dataset, we train another CASIA-Net with the same imple-
mentation details except includes the Multi-PIE as the train-
ing dataset. The protocol of Multi-PIE is the same as (Zhao
et al. 2018; Hu et al. 2018b; Yin et al. 2017b).

Inputs The last convolutional layer

Conv+BN+Relu
3×3×320,stride 1
3×3×320,stride 1
3×3×320,stride 1

Fully Connected (FC) Layer M×2

Table 4: Structure of the pose discriminator for CASIA-Net.

Implementation details of ResNet-101 and ResNet-
152. The details of the networks is introduced in the Table 1.
We import the ArcFace loss function (Deng et al. 2019) as
the Lc(R) of the ResNet-152 to proves our APRN can be
embedded in the state-of-the-art works to boosts their perfor-
mance. Furthermore, the ResNet-101 with the Softmax loss
function proves that the APRN works well in the complex
backbone with a simple loss function as Lc(R). The train-
ing dataset for both networks is the cleaned MS-Celeb-1M
datasets. We also train a ResNet-101 with ArcFace loss func-
tion in the the supplementary material. We randomly sample
224×224 regions from the aligned 230×230 face images for
data augmentation. Image intensities are scaled to [-1, 1].
The networks are optimized with SGD for 20 epochs. The
learning rate of the Baseline models is 0.01 and decays ten
times at the 16th, 18th and 19th epoch. Momentum is 0.9,
weight decay is 0.0005, and α is 0.2.

Comparison with the State-of-the-art
Comparison on CFP. Table 5 shows that our APRN im-
proves the performance of the Baseline model from 90.46%
to 94.61% and outperforms the state-of-the-art method
(94.39%, Multi-task) in the Frontal-Profile protocol. Be-
sides, in Frontal-Frontal protocol, the APRN also improves
the performance of the Baseline model from 98.43% to
99.19% and surpasses the previous best model (98.83%, UV-
GAN) trained in the small-scale dataset (CAISA). Further-
more, our APRN needs much less computational cost than
previous methods (Tran, Yin, and Liu 2017; Yin and Liu
2017; Peng et al. 2017). It is because there are only three
convolutional layers and a single fully-connected layer in
our APRN. The extra module is much simpler than theirs.
The computational consumption analysis is detailed in the
supplementary material.

Comparison on Multi-PIE. Table 6 shows that our

Training
CFP-FF CFP-FPDataset

Sengupta et al.(Sengupta et al. 2016) CASIA 96.40 84.91
Sankaran et al. CASIA 96.93 89.17(Sankaranarayanan et al. 2016)

Chen et al.(Chen et al. 2016) CASIA 98.67 91.97
Peng et al.(Peng et al. 2017) CASIA 98.67 93.76

DR-GAN(Tran, Yin, and Liu 2017) CASIA 97.84 93.41
Multi-task(Yin and Liu 2017) CASIA 97.79 94.39

UV-GAN(Deng et al. 2018) CASIA, 98.83 93.09UVDB
PIM(Zhao et al. 2018) MS-1M 99.44 93.10

Co-Mining(Wang et al. 2019) CASIA, - 91.75

Ours: Baseline CASIA 98.43 90.46
Ours: APRN CASIA 99.19 94.61

Table 5: Performance on CFP (CASIA-Net).

APRN improves the Baseline model significantly. Espe-
cially in the large pose variations views, our APRN improves
the performance from 88.8% to 92.8% in the±75◦ view and
from 65.6% to 77.1% in the±90◦ view. The performance of
APRN is superior to the state-of-the-art.

Methods ±0◦ ±30◦ ±60◦ ±75◦ ±90◦

Zhu et al. (Zhu et al. 2013) - 98.5 - - -
Zhu et al. (Zhu et al. 2014) 95.7 83.7 60.1 - -
Yim et al. (Yim et al. 2015) 99.5 88.5 61.9 - -

MvDN (Kan, Shan, and Chen 2016) - 99.1 89.7 81.0 70.7
DR-GAN (Tran, Yin, and Liu 2017) 97.0 90.1 83.2 - -

FF-GAN (Yin et al. 2017b) 95.7 92.5 85.2 77.2 61.2
CAPG-GAN (Hu et al. 2018b) - 99.6 90.6 83.1 66.1

PIM (Zhao et al. 2018) - 99.4 97.7 91.2 75.0

ours:Baseline 100 99.9 98.8 88.8 65.6
ours:ARPN 99.9 99.9 98.8 92.8 77.1

Table 6: Performance on the Multi-PIE (CASIA-Net).

Comparison on IJB-A. Table 7 shows that our APRN
improves the performance of the Baseline from 93.1% to
95.1% when FAR is 10−3. It is superior to the state-of-the-
art which the AFRN gets. When the FAR is 10−1 or 10−2,
the APRN also improves the Baseline model and achieves
comparable performance to the AFRN.

Comparison on MegaFace. Table 8 shows that our
APRN improves the rank1@106 accuracy of Baseline
ResNet-152 from 99.49% to 99.78%. In particular, Lc(R)
of the ResNet-152 is the same as the ArcFace (Deng et al.
2019) and the performance of Baseline has been already su-
perior to the ArcFace (98.35%). It provides strong evidence
for the effectiveness of APRN. Because the Baseline that
exceeding state-of-the-art is much more difficult to be im-
proved, but our APRN did it. The improvement also proves
our APRN can be embedded in other state-of-the-art face
recognition network (such as ArcFace) to improve it addi-
tionally. Besides, The APRN is superior to the 4th perfor-
mance (99.42%) on the MegaFace leaderboard4. As far as

4http://megaface.cs.washington.edu/results/facescrub.html
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Methods FAR=
10−1 10−2 10−3 10−4

DR-GAN(Tran, Yin, and Liu 2017) - 77.4 53.9 -
Multi-task(Yin and Liu 2017) - 77.5 53.9 -

FF-GAN(Yin et al. 2017b) - 85.2 66.3 -
Contrastive CNN(Han et al. 2018) 95.3 84.0 63.9 -

DREAM(Cao et al. 2018a) - 89.1 76.4 -
VGGFace2 ft(Cao et al. 2018b) 99.0 96.8 92.1 -

PRN+(Kang, Kim, and Kim 2018) 98.8 96.5 91.9 -
FTL(Yin et al. 2019) - 95.3 91.2 -

UniformFace(Duan, Lu, and Zhou 2019) - 96.9 92.3 -
AFRN(Kang et al. 2019) 99.8 98.5 94.9 -

ours:Baseline 98.8 97.0 93.1 86.7
ours:APRN 99.1 98.2 95.1 90.1

Table 7: Performance on IJB-A (ResNet-101).

we know, our APRN is the best single model trained with-
out private large-scale training datasets.5

Methods rank1@106

unclean/clean

Leaderboard

top1: Sogou AIGROUP-SFace∗ -/99.94
top2: SRC-Beijing-FR∗ -/99.89

top3: SenseTime PureFace∗ -/99.80
top4: EI Networks∗ -/99.42

Publications

CosFace(Wang et al. 2018b) 84.26/97.91
IMDB-Face(Wang et al. 2018a) 84.06/-

FairLoss(Liu et al. 2019a) 77.45/-
UniformFace 79.98/-(Duan, Lu, and Zhou 2019)

Co-Mining(Wang et al. 2019) -/87.37
AdaptiveFace(Liu et al. 2019b) -/95.02

ArcFace(Deng et al. 2019) -/98.35

Ours: ResNet-101 Baseline 77.58/91.59
APRN 79.21/93.91

Ours: ResNet-152 Baseline 84.76/99.49
APRN 84.78/99.78

Table 8: Performance on MegaFace Challenge 1. The meth-
ods with ∗ means the private large-scale dataset was used.

Ablation Study
In this sub-section, we prove our APRN boosts the perfor-
mance of Baseline models firstly.Secondly, we prove our
APRN disentangles the pose variations in the hidden fea-
ture maps. Thirdly, we study the influence of the input lay-
ers for our APRN. Fourthly, we compare the performance
of APRN trained with different α to study the influence of
loss weight in Equation 1. Finally, we prove that both parts
in our LAdv Reg(D,R

′) are indispensable. All the models in
this sub-section are trained with MS-Celeb-1M. The archi-
tecture is based on the ResNet-101 shown in Table 1.

5We also train a ResNet-101 with arcFace loss asLc(R). APRN
improve its performance to 98.59% and outperformance the (Deng
et al. 2019). More details are in the supplementary material.

As a plug-and-play structure, our APRN boosts the
performance of Baseline models consistently and signif-
icantly. We compare all Baseline models and the APRN
models in Table 9. The table shows that our APRN always
improves the performance of Baseline models on all evalua-
tion datasets, no matter the Baseline model is a small-scale
network as CASIA-Net, a medium-scale network as ResNet-
101, or a large-scale one as ResNet-152.

Inference LFW IJB-A CFP-FF CFP-FP MegaFace
Backbone @10−4 unclean/clean

CASIA-NetBaseline97.80 61.85 98.43 90.46 60.79/68.94
APRN 98.80 64.72 99.19 94.61 61.01/70.12

ResNet-101Baseline99.37 86.66 99.70 96.24 77.58/91.59
APRN 99.50 90.10 99.80 96.84 79.21/93.91

ResNet-152Baseline99.59 91.29 99.93 97.75 84.76/99.49
APRN 99.62 93.62 99.94 97.89 84.78/99.78

Table 9: As a plug-and-play structure, the APRN consis-
tently and significantly boosts the performance of Baselines.

Our APRN disentangles the pose variations in the hid-
den feature maps. We do t-SNE analysis in Figure 2. We
get three observations based on the figure and prove the ob-
servations quantitatively in the following: 1) The first col-
umn (A) in the figure shows that inter-identity representa-
tions (denoted as different colors) are discriminative both
in the Baseline and our APRN. Their performance in Ta-
ble 9 also proves the observation. 2) The second column (B)
shows that the representations of intra-identity (denoted as
the same colors) are much more compact in the APRN than
in the Baseline. We calculate the cosine distance between ev-
ery representation and the centroid of the identity. Mean±std
of the distance in Baseline is 0.792±0.122. The APRN’s is
0.804±0.14. The statistics result supports the observation in
the second column. 3) The third column (C) shows that our
APRN makes the representation of the same identity dis-
tributed uniformly in its discriminative local space regard-
less of their poses, but there is a margin in the Baseline to
separate the frontal-view (denoted as dots) from the profile-
view (denoted as circles). A linear Support Vector Machine
(SVM) is trained to classify the frontal face and profile face
to prove the observation. We sample 5000 images from the
CFP dataset to be the training dataset and 2000 images to be
the testing dataset. The pose classification accuracy on the
Baseline Model is 94.95%/95.48% (val/train). The one on
the APRN is 85.20%/88.44% (val/train). The SVM classi-
fiers prove the APRN disentangles the pose variations.

The influence of the input hidden layer. We employ dif-
ferent hidden layers as the inputs of discriminators to study
the influence of the input layers for our APRN. The pose
discriminators for different hidden layers are shown in the
Table 1. The face recognition accuracy is shown in Table 10
and the landmark estimation is illustrated in Figure 1.

Based on Table 10, we find:
1) Except for the stem layer, the APRN improves the per-

formance of the Baseline network on all datasets no matter
which layer is employed as the input.

2) The performance is better when the pose discriminator
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Figure 2: t-SNE analysis for our ResNet-101 in the CFP dataset. The different colors denote different subjects. The dots are the
representations in frontal-view faces, and the circles are in the profile-view.

Inputs LFW JB-A CFP-FF CFP-FP MegaFace
@10−4 unclean/clean

None 99.37 86.66 99.70 96.24 77.58\91.59
stem 99.3 86.50 99.33 96.17 77.02\91.51

stage1 99.43 87.76 99.70 96.33 78.01\92.07
stage2 99.38 87.74 99.80 96.61 78.34\92.30
stage3 99.47 87.91 99.74 96.61 79.29\93.16
stage4 99.50 90.10 99.80 96.84 79.21\93.91

Table 10: The influence of the hidden layers to APRN. None
is the Baseline model.

is equipped to the deeper layers. Especially on the CFP-FP
and the MegaFace dataset, the performance is always im-
proved by employing the deeper layer as the input of pose
discriminator. It is because the pose variations are easier to
be disentangled in deep layers than in the shallow ones.

3)The performances on CFP-FP, IJB-A, and MegaFace
datasets are improved more than on LFW and CFP-FF. It is
because the CFP-FP is a frontal-profile dataset, IJB-A con-
tains extreme pose variations, and the MegaFace is collected
in the wild with 1 million images.All of them have a stricter
requirement for pose-invariance than the LFW and CFP-FF.

The influence of the loss weight. There is a loss weight
α in Equation 1. We employ the stage4 layer as the input
of pose discriminator and use different α to evaluate the in-
fluence of α. As Table 11 shows our APRN improves the
performance of the Baseline model (α = 0.0) when the α is
set to be 0.1, 0.2, or 0.3. It improves most when the α equals
to 0.2. However, the performance decreases when the α is
0.4. We think it is because a big α would lead the model to
ignore the Lc(R) and lose some capacity of identification.

α LFW JB-A CFP-FF CFP-FP MegaFace
@10−4 unclean/clean

0.0 99.37 86.66 99.70 96.24 77.58/91.59
0.1 99.45 90.42 99.71 96.61 78.07/92.96
0.2 99.50 90.10 99.80 96.84 79.21/93.91
0.3 99.48 89.59 99.69 96.31 77.98/92.78
0.4 99.26 86.67 99.74 95.77 75.90/88.32

Table 11: The influence of α. α = 0.0 is the Baseline model.

The influence of the two parts in LAdv Reg(D,R
′). To

analyze the influence of the two parts in Equation 2, we
reformulate the LAdv Reg(D,R

′) to be L1
Reg(D,R

′) and

L2
Reg(D,R

′) as Equation 3 shows.

L1
Reg(D,R

′) = arg min
D,R′

E[‖D(R′(x))− l‖1]

L2
Reg(D,R

′) = arg min
D,R′

E[‖D(R′(x))− l̃‖1]
(3)

L1
Reg(D,R

′) is the reformulation of the first part of
LAdv Reg(D,R

′), and the L2
Reg(D,R

′) is the reformulation
of the second part. The target of L1

Reg(D,R
′) is to estimate

the ground truth landmarks by optimizing both D and R′ si-
multaneously. L2

Reg(D,R
′) attempts to estimate the frontal-

view mean facial landmarks.

LFW JB-A CFP-FF CFP-FP Megaface
@10−4 (unclean/clean)

None 99.37 86.66 99.70 96.24 77.58/91.59
L1

Reg 99.43 88.30 99.79 96.14 78.53/92.58
L2

Reg 99.37 87.81 99.79 96.46 78.64/92.42
LAdv Reg 99.50 90.10 99.80 96.84 79.21/93.91

Table 12: The influence of the two parts inLAdv Reg(D,R
′).

None is the Baseline model.

Table 12 shows that both L1
Reg(D,R

′) and L2
Reg(D,R

′)
have limited help to the face recognition. We hypothesize
the reason why L2

Adv Reg(D,R
′) doesn’t work well is that

D ignores the inputs (R′(x)) and does not optimize theR′ to
be pose-invariant. To prove our hypothesis, we put one hun-
dred images whose pixels are random noise within [-1, 1] as
the inputs of the network. The L1 Distance between the pre-
diction and the frontal-view mean face is 0.83 ± 0.13 if the
model is trained with L2

Reg(D,R
′). However, the distance is

4.12± 0.67 if the model is trained with LAdv Reg(D,R
′).

Conclusion
In this paper, we proposed an Adversarial Pose Regression
Network (APRN) for Pose-Invariant Face Recognition. We
also extend adversarial learning from classification task to
regression task and presented the Adversarial Regression
Loss Function to model the pose discriminator of APRN
in its contiguous 3D space. As a plug-and-play structure,
APRN consistently and significantly boosts the performance
of state-of-the-art networks without any extra computational
costs in the inference phase.

1946



References
Cao, K.; Rong, Y.; Li, C.; Tang, X.; and Change Loy, C.
2018a. Pose-robust face recognition via deep residual equiv-
ariant mapping. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 5187–
5196.

Cao, Q.; Shen, L.; Xie, W.; Parkhi, O. M.; and Zisserman,
A. 2018b. Vggface2: A dataset for recognising faces across
pose and age. In 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018), 67–
74. IEEE.

Chen, J.-C.; Zheng, J.; Patel, V. M.; and Chellappa, R. 2016.
Fisher vector encoded deep convolutional features for un-
constrained face verification. In 2016 IEEE International
Conference on Image Processing (ICIP), 2981–2985. IEEE.

Deng, J.; Cheng, S.; Xue, N.; Zhou, Y.; and Zafeiriou, S.
2018. Uv-gan: Adversarial facial uv map completion for
pose-invariant face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 7093–7102.

Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2019. Arcface:
Additive angular margin loss for deep face recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 4690–4699.

Duan, Y.; Lu, J.; and Zhou, J. 2019. UniformFace: Learning
Deep Equidistributed Representation for Face Recognition.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 3415–3424.

Gee, A.; and Cipolla, R. 1994. Determining the gaze of faces
in images. Image and Vision Computing 12(10): 639–647.

Gee, A.; and Cipolla, R. 1996. Fast visual tracking by tem-
poral consensus. Image and Vision Computing 14(2): 105–
114.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.

Gross, R.; Matthews, I.; Cohn, J.; Kanade, T.; and Baker, S.
2010. Multi-pie. Image and Vision Computing 28(5): 807–
813.

Guo, Y.; Zhang, L.; Hu, Y.; He, X.; and Gao, J. 2016. Ms-
celeb-1m: A dataset and benchmark for large-scale face
recognition. In Proceedings of the European Conference on
Computer Vision (ECCV), 87–102. Springer.

Han, C.; Shan, S.; Kan, M.; Wu, S.; and Chen, X. 2018. Face
recognition with contrastive convolution. In Proceedings
of the European Conference on Computer Vision (ECCV),
118–134.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity map-
pings in deep residual networks. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), 630–645.
Springer.

Horprasert, T.; Yacoob, Y.; and Davis, L. S. 1996. Comput-
ing 3-d head orientation from a monocular image sequence.

In Proceedings of the second international conference on
automatic face and gesture recognition, 242–247. IEEE.
Hu, T.; Qi, H.; Xu, J.; and Huang, Q. 2018a. Fa-
cial landmarks detection by self-iterative regression based
landmarks-attention network. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.
Hu, Y.; Wu, X.; Yu, B.; He, R.; and Sun, Z. 2018b. Pose-
guided photorealistic face rotation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 8398–8406.
Huang, G. B.; Mattar, M.; Berg, T.; and Learned-Miller, E.
2008. Labeled faces in the wild: A database forstudying face
recognition in unconstrained environments. In Workshop on
faces in’Real-Life’Images: detection, alignment, and recog-
nition.
Kan, M.; Shan, S.; and Chen, X. 2016. Multi-view deep
network for cross-view classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 4847–4855.
Kang, B.-N.; Kim, Y.; and Kim, D. 2018. Pairwise relational
networks for face recognition. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 628–645.
Kang, G.-N.; Kim, Y.; Jun, B.; and Kim, D. 2019. At-
tentional Feature-Pair Relation Networks for Accurate Face
Recognition. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV).
Kemelmacher-Shlizerman, I.; Seitz, S. M.; Miller, D.; and
Brossard, E. 2016. The megaface benchmark: 1 million
faces for recognition at scale. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 4873–4882.
Klare, B. F.; Klein, B.; Taborsky, E.; Blanton, A.; Cheney,
J.; Allen, K.; Grother, P.; Mah, A.; and Jain, A. K. 2015.
Pushing the frontiers of unconstrained face detection and
recognition: Iarpa janus benchmark a. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 1931–1939.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham,
A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.;
et al. 2017. Photo-realistic single image super-resolution us-
ing a generative adversarial network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 4681–4690.
Liu, B.; Deng, W.; Zhong, Y.; Wang, M.; and Hu, j. 2019a.
Fair Loss: Margin-Aware Reinforcement Learning for Deep
Face Recognition. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).
Liu, H.; Zhu, X.; Lei, Z.; and Li, S. Z. 2019b. AdaptiveFace:
Adaptive Margin and Sampling for Face Recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 11947–11956.

1947



Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; and Song, L. 2017.
Sphereface: Deep hypersphere embedding for face recogni-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 212–220.
Maaten, L. v. d.; and Hinton, G. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9(Nov): 2579–
2605.
Ng, H.-W.; and Winkler, S. 2014. A data-driven approach
to cleaning large face datasets. In Image Processing (ICIP),
2014 IEEE International Conference on, 343–347. IEEE.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS-W.
Peng, X.; Yu, X.; Sohn, K.; Metaxas, D. N.; and Chandraker,
M. 2017. Reconstruction-based disentanglement for pose-
invariant face recognition. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), 1623–
1632.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434 .
Ruiz, N.; Chong, E.; and Rehg, J. M. 2018. Fine-grained
head pose estimation without keypoints. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition workshops, 2074–2083.
Sankaranarayanan, S.; Alavi, A.; Castillo, C. D.; and Chel-
lappa, R. 2016. Triplet probabilistic embedding for face
verification and clustering. In 2016 IEEE 8th international
conference on biometrics theory, applications and systems
(BTAS), 1–8. IEEE.
Schroff, F.; Kaleni ko, D.; and Philbin, J. 2015. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 815–823.
Sengupta, S.; Chen, J.-C.; Castillo, C.; Patel, V. M.; Chel-
lappa, R.; and Jacobs, D. W. 2016. Frontal to profile face
verification in the wild. In Applications of Computer Vision
(WACV), 2016 IEEE Winter Conference on, 1–9. IEEE.
Shen, Y.; Luo, P.; Yan, J.; Wang, X.; and Tang, X. 2018.
Faceid-gan: Learning a symmetry three-player gan for
identity-preserving face synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 821–830.
Sun, Y.; Wang, X.; and Tang, X. 2014. Deep learning face
representation from predicting 10,000 classes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 1891–1898.
Tran, L.; Yin, X.; and Liu, X. 2017. Disentangled represen-
tation learning gan for pose-invariant face recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1415–1424.
Wang, F.; Chen, L.; Li, C.; Huang, S.; Chen, Y.; Qian, C.;
and Change Loy, C. 2018a. The devil of face recognition is
in the noise. In Proceedings of the European Conference on
Computer Vision (ECCV), 765–780.

Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li,
Z.; and Liu, W. 2018b. Cosface: Large margin cosine loss for
deep face recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
5265–5274.
Wang, X.; Wang, S.; Wang, J.; Shi, H.; and Mei, T. 2019.
Co-Mining: Deep Face Recognition with Noisy Labels. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV).
Wen, Y.; Zhang, K.; Li, Z.; and Qiao, Y. 2016. A dis-
criminative feature learning approach for deep face recog-
nition. In European Conference on Computer Vision, 499–
515. Springer.
Wu, X.; He, R.; Sun, Z.; and Tan, T. 2018. A light CNN for
deep face representation with noisy labels. IEEE Transac-
tions on Information Forensics and Security 13(11): 2884–
2896.
Yi, D.; Lei, Z.; Liao, S.; and Li, S. Z. 2014. Learn-
ing face representation from scratch. arXiv preprint
arXiv:1411.7923 .
Yim, J.; Jung, H.; Yoo, B.; Choi, C.; Park, D.; and Kim, J.
2015. Rotating your face using multi-task deep neural net-
work. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 676–684.
Yin, X.; and Liu, X. 2017. Multi-task convolutional neural
network for pose-invariant face recognition. IEEE Transac-
tions on Image Processing (TIP) 27(2): 964–975.
Yin, X.; Yu, X.; Sohn, K.; Liu, X.; and Chandraker, M.
2017a. Towards large-pose face frontalization in the wild. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 3990–3999.
Yin, X.; Yu, X.; Sohn, K.; Liu, X.; and Chandraker, M.
2017b. Towards large-pose face frontalization in the wild. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 3990–3999.
Yin, X.; Yu, X.; Sohn, K.; Liu, X.; and Chandraker, M. 2019.
Feature transfer learning for face recognition with under-
represented data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 5704–5713.
Zhao, J.; Cheng, Y.; Xu, Y.; Xiong, L.; Li, J.; Zhao, F.;
Jayashree, K.; Pranata, S.; Shen, S.; Xing, J.; et al. 2018.
Towards pose invariant face recognition in the wild. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2207–2216.
Zhu, Z.; Luo, P.; Wang, X.; and Tang, X. 2013. Deep learn-
ing identity-preserving face space. In Proceedings of the
IEEE International Conference on Computer Vision, 113–
120.
Zhu, Z.; Luo, P.; Wang, X.; and Tang, X. 2014. Multi-view
perceptron: a deep model for learning face identity and view
representations. In Advances in Neural Information Process-
ing Systems, 217–225.

1948


