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Abstract

Offline signature verification is a challenging issue that is
widely used in various fields. Previous approaches model this
task as a static feature matching or distance metric prob-
lem of two images. In this paper, we propose a novel Static-
Dynamic Interaction Network (SDINet) model which intro-
duces sequential representation into static signature images.
A static signature image is converted to sequences by assum-
ing pseudo dynamic processes in the static image. A static
representation extracting deep features from signature images
describes the global information of signatures. A dynamic
representation extracting sequential features with LSTM net-
works characterizes the local information of signatures. A
dynamic-to-static attention is learned from the sequences to
refine the static features. Through the static-to-dynamic con-
version and the dynamic-to-static attention, the static repre-
sentation and dynamic representation are unified into a com-
pact framework. The proposed method was evaluated on four
popular datasets of different languages. The extensive exper-
imental results manifest the strength of our model.

Introduction
Offline handwritten signature verification is one of the

most important biometric technologies in forensic, commer-
cial, and financial applications. Given a reference signature
image and a test signature image, signature verification is
to discriminate whether the test signature is forged or gen-
uine with respect to the reference signature (Wei, Li, and Hu
2019), as shown in Fig. 1 (a).

This is a challenging problem for the arbitrariness of per-
sonal signing habits, the sparsity of stroke information, and
the camouflage of skillful forgery. The essence of signa-
ture verification is to compare the similarity of the subtle
styles hidden in the reference signature and the test signa-
ture, rather than the specific contents of the signatures (Wei,
Li, and Hu 2019). Previous studies model signature verifica-
tion as a static feature matching problem of the two signa-
ture images. However, static features mainly describing the
global patterns are insufficient to characterize the signature
styles. The dynamic signing process which strings up a se-
rials of local stroke structures such as corners, curves, and
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Figure 1: (a) Static signature verification. (b) Two examples
that signatures are signed part by part in a sequential order.

zigzags contains abundant style information. Modeling the
dynamic process could be helpful for signature verification.

However, the real signing process of finishing a signature
can not be observed in the static signature image. Driven by
this consideration, we can assume a pseudo dynamic pro-
cess in the static image since any handwritten signature is
signed part by part in sequential steps. Fig. 1 (b) illustrates
the pseudo dynamic signing processes of two static signa-
tures. In a sequential order these two signatures are signed
part by part and eventually the signatures are finished. By
assuming the pseudo signing process, the local patches in
a static image can be converted into ‘dynamic’ sequences
from which the effective signature features can be mined.

Inspired by this idea, we propose a novel Static-Dynamic
Interaction Network (SDINet) model for offline signature
verification. The SDINet model hypothesizes a pseudo dy-
namic process in a signature image and converts the signa-
ture image into a sequence of image patches. Based on this
hypothesis, the model is composed of a static representa-
tion, a dynamic representation, and the interactions between
the two representations. The static representation extracts
deep convolutional features from the signature images and
describes the global static information of signatures. The
dynamic representation extracting sequential features with
long short-term memory (LSTM) (Hochreiter and Schmid-
huber 1997) characterizes the sequential and local informa-
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tion. A dynamic-to-static attention is proposed to learn from
the feedback features for re-weighting the static features.
This attention mechanism is designed to intensify the effec-
tive information and weaken the redundant information in
the static features. Through the static-to-dynamic conversion
and the dynamic-to-static attention, the static representation
and dynamic representation are unified into a deep frame-
work. The static and dynamic features are combined to make
the signature verification decision.

It should be noted that introducing the pseudo dynamic
process in a signature image is not to model or character-
ize the real physical dynamic process of writing a signature.
After all this real process cannot be observed in the static im-
age. The objective of introducing the pseudo dynamic pro-
cess is to mine the local and sequential features of signature
strokes. These features are integrated with static global fea-
tures to improve the performance of signature verification.

The proposed method was tested on four challenging
signature datasets of different languages: CEDAR Dataset
(Kalera and Xu 2004), BHSig-B Dataset (Pal et al. 2016),
BHSig-H (Pal et al. 2016), and GPDS Synthetic Signature
Database (Ferrer, Diaz-Cabrera, and Morales 2015a). The
experimental results manifest the strength of our model.

This paper makes three major contributions:
1. It introduces pseudo dynamic processes into static im-

ages and proposes a novel formulation to convert static
images to dynamic features.

2. It proposes a novel Static-Dynamic Interaction Net-
work model which integrates static, dynamic, and static-
dynamic interaction features for signature verification.

3. The proposed method outperforms the other comparison
methods on four different language signature datasets.

Related Work
According to data collection, handwritten signature ver-

ification approaches can be roughly divided into the online
ones (Lai and Jin 2018b; Guru and Prakash 2009) and the of-
fline ones (Justino et al. 2000; Yilmaz et al. 2011; Serdouk,
Nemmour, and Chibani 2015). The online approaches col-
lect the sequence data of the whole dynamic writing process
with special devices and make verification decision based
on the sequence data. The offline approaches take static sig-
nature images as inputs. The online approaches require the
users to sign on special devices, which is inapplicable to
the document-based scenarios. The offline approaches can
be used in more occasions. However, the offline approaches
only have static data.

Early traditional studies extract hand-crafted features
to verify signatures (Baltzakis and Papamarkos 2001; El-
Yacoubi et al. 2000; Justino et al. 2000; Yılmaz and
Yanıkoğlu 2016; Yilmaz et al. 2011; Serdouk, Nemmour,
and Chibani 2014, 2015). These hand-crafted features per-
form well on some datasets but the performance drops for
complicated signatures with heavy noise or skillful forgery.

Recently, instead of the hand-crafted features, deep fea-
tures extracted by neural network models have been widely
used for signature verification (Zhang, Liu, and Cui 2017;
Zagoruyko and Komodakis 2015; Gabe Alvarez 2015; Li,

Wei, and Hu 2021). Dey et al (Dey et al. 2017) proposed to
compare the reference signature and the test signature with
siamese networks. Hafemann et al (Hafemann, Sabourin,
and Oliveira 2016, 2017) trained different convolutional
neural networks to extract features for signatures verifica-
tion. While these existing offline neural network approaches
achieved better performance than the methods based hand-
crafted features, they did not model the dynamic information
hidden in static signatures. Our model simulates dynamic
processes to assist signature verification and therefore ac-
quires better performance.

Attention mechanism (Fu, Zheng, and Mei 2017; Woo
et al. 2018; Hu, Shen, and Sun 2018; Wang et al. 2017) is
an effective strategy to enhance useful features. We propose
a novel dynamic-to-static attention which learns attention
maps from sequential data to re-weight static features.

Approach
We propose a novel Static-Dynamic Interaction Network

(SDINet) for offline handwritten signature verification. The
model hypothesizes a pseudo dynamic process in a static sig-
nature image and jointly exploits the static features, dynamic
features, and static-dynamic interactions to make verifica-
tion decision. Under this framework, the signature styles are
deeply learned from both the static and sequential perspec-
tives and therefore the verification performance is improved.

Architecture
The architecture of the SDINet is shown in Fig. 2. The in-

puts of the model are a test signaturex and a reference signa-
ture r. The output is a verification decision result ȳ ∈ {1, 0},
where 1 indicates x is genuine compared with r and 0 in-
dicates x is forged. The overall architecture is comprised
of four major functional components: static representation
(SR), static-to-dynamic conversion (StD), dynamic represen-
tation (DR), and dynamic-to-static attention (DtS), as shown
in Fig. 2. The relations of the four components are: SR ex-
tracts static feature maps from the input images; StD con-
verts the static feature maps into sequences which are fed to
DR to extract sequential features and feedback features; the
feedback features are fed to DtS to learn attention maps for
re-weighting the static features. In this way, the four com-
ponents form a closely-interacting loop. The whole model is
trained in an end-to-end way.

The static representation (SR) component, shown as the
SR blocks in Fig. 2, contains multiple cascaded convolu-
tional layers which extract the static features from the test
signature and the reference signature, respectively. Through
the static representation, the static features Fx ∈ RH×W×C

of the test signature and Fr ∈ RH×W×C of the reference
signature are extracted from the two signature images, re-
spectively. H , W , and C are the height, width, and channel
number of the feature map, respectively.

The static-to-dynamic conversion (StD) component,
shown as the StD blocks in Fig. 2, receives the static fea-
ture maps Fx and Fr from the static representation and con-
verts Fx and Fr into sequences. Corresponding to the two
static feature extraction streams, there are two StD compo-
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Figure 2: Overall architecture of the Static-Dynamic Interaction Network. ‘SR’, ‘StD’, ‘DR’, and ‘DtS’ indicate static repre-
sentation, static-to-dynamic conversion, dynamic representation, and dynamic-to-static attention, respectively.

nents which address Fx and Fr respectively. The structure
of StD will be detailed in the following section.

The dynamic representation (DR) component, shown as
the DR blocks in Fig. 2, receives the converted sequences
from the StD component and outputs the sequential features
Zx and Zr of the test signature and the reference signature,
respectively. It aims to extract the sequential features of the
signatures. A LSTM module is utilized to formulate the se-
quence data of signatures and outputs the dynamic features
Zx and Zr . Meanwhile, the DR component also produces
feedback features which are used to generate attention maps
for re-weighting the static features.

The dynamic-to-static attention (DtS) component, shown
as the DtS triangular blocks in Fig. 2, receives feedback fea-
tures from the DR component and learns the attention maps
Ax andAr for the static features Fx and Fr . The DtS com-
ponent seeks to enhance the informative static features and
restrain the ineffective features. It associates the dynamic
representation with the static representation in a feedback
way, which feeds the information hidden in dynamic se-
quences back to the static features.

Multiplying the static features Fx and Fr by the atten-
tion weight maps Ax and Ar generates the refined static
features Gx and Gr , respectively. A convolutional network
module is used to further extract deep features fromGx and
Gr , respectively. The extracted deep features from Gx and
Gr are concatenated by channels into unified feature maps,
which are sent to another convolutional module to fuse the
features. The fusion features are sent to a global average
pooling (GAP) layer to generate the final static features Zs

of the input reference and test signature images.

The concatenation of the static features Zs and the dy-
namic features Zx, Zr is sent to a fully-connected layer.
The final result is computed with a binary softmax classifier.

Static-To-Dynamic Conversion

The static-to-dynamic conversion component is designed
to convert the static feature maps of signatures into dynamic
sequences which simulate the hidden process of signing the
signatures. Handwritten signatures are written by humans in
a sequential way. The dynamic process of signing the sig-
natures contains rich information about the writing styles
of the signers. However, in static signature images, the real
signing process cannot be observed and all the dynamic in-
formation has been hidden in the complete static signatures.
How to convert the static signatures into dynamic sequences
and how to simulate the signing process hidden in the image
are the key issues for signature verification.

We observe that humans write an entire signature part by
part. Fortunately, the convolutional feature extraction also
follows the “block by block” way, i.e each local receptive
field is a block and the convolutional computation is sequen-
tially implemented block by block in both the vertical and
horizontal directions. In this way, we can imagine that each
local receptive field in the convolution computation corre-
sponds to a small part of the signature and the convolution
computation process characterizes the signing process.

Thus, a feature map extracted from the static signature
image is uniformly split into rows and columns. We as-
sume that each row or column represents one dynamic unit
of the signing process. All of the rows and columns form
the dynamic sequences of signing the signature. Since a
static signature image has multiple channels of convolu-
tional feature maps, to enhance the descriptive ability of the
dynamic sequences, we use a convolutional network to fuse
the multi-channel feature maps and convert them to dynamic
sequences. The conversion is illustrated in Fig. 3.

We use the static feature maps Fx ∈ RH×W×C of the
test signature to explain the static-to-dynamic conversion.
We use a 1 × 3 kernel and a 3 × 1 kernel respectively to
implement convolution on Fx and generate two H ×W × 1
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Figure 3: The inside structures of the static-to-dynamic conversion and dynamic representation components.

feature maps. This process is summarized as

U = f1×3(Fx), V = f3×1(Fx) (1)

where f1×3 and f3×1 represent the convolutions along the
rows and columns, respectively. U ∈ RH×W×1 and V ∈
RH×W×1 are the 2D feature maps of Fx along the rows and
columns, respectively, as shown in Fig. 3.

For the sequence representation, the weight of each row or
column in the 2D feature maps should be different. There-
fore we introduce a process that learns weights for each row
and column of the 2D feature maps. Firstly, a row average
pooling (RAP) and a column average pooling (CAP) are ap-
plied to U and V respectively. A following fully-connected
layer (FC) with sigmoid function computes the row weights
ρ and the column weights η, which multiply U and V re-
spectively to generate the weighted 2D feature maps Û and
V̂ . This process is formulated as follows:

Û = ρ�U , V̂ = η � V (2)

where ρ � U means multiplying each row of U with each
item in ρ respectively. η � V means multiplying each col-
umn of V with each item in η respectively.

Then we generate the dynamic sequence by splitting the
Û and V̂ in different dimensions. Uniformly splitting Û
into m rows generates a sequence u = [u1, u2, ..., um], and
splitting V̂ into n columns produces another sequence v =
[v1, v2, ..., vn], where m and n denote the sequence lengths.
Each sequence consists of a series of fixed-length vectors.
Each vector ut (t = 1, 2, ...,m) or vt (t = 1, 2, ..., n) can
be regarded as a sequence frame at time point t.

The two sequences u and v acquired from different di-
mensions of the static features simulate the signing pro-
cesses in different directions. They are used for the dynamic
representation of signature images.

Dynamic Representation
Given the dynamic sequence u = [u1, u2, ..., um] and

v = [v1, v2, ..., vn], we seek to learn the dynamic features
of the signatures. We use a deep Long Short Term Memory

(LSTM) module to represent the signature sequences and
learn the deep dynamic features, as shown in Fig. 3. It is a
multilayer network architecture receiving the sequencesu or
v as inputs, where each item of u or v is taken as a frame at
a time point. The proposed module has three stacked LSTM
layers to learn the dynamic features. The LSTM architecture
computes the hidden features at each time point and outputs
the feature sequences, which is represented as:

h = φ(u), h̄ = φ(v) (3)

where φ represents the proposed LSTM architecture. h =
[h1, h2, ..., hm] is the output feature sequence for u, where
ht (t = 1, 2, ...,m) is a feature at time point t. h̄ =
[h̄1, h̄2, ..., h̄n] is the output for the sequence v.
hm and h̄n are the dynamic features output at the last time

point in the feature sequence h and h̄, respectively. The con-
catenation of hm and h̄n is fed to a fully-connected layer
to output the final dynamic features of the signature. For
the reference signature r and the test signature x, the cor-
responding dynamic features are denoted as Zr and Zx, re-
spectively. The signature verification decision is made based
on static features and these two dynamic features.

The learned h and h̄ at all time points contain rich infor-
mation about the signature in the signing process. Thus h
and h̄ are fed back to learn the attention maps for the static
features. In this sense, we regard h and h̄ as the feedback
sequence features, which will be detailed as follows.

Dynamic-To-Static Attention
The dynamic representation (DR) component produces

the dynamic features Zr and Zx for verification decision,
and also the feedback sequence features for learning atten-
tion maps for static features.

Learning static attention from sequence features is in-
spired by the characteristic of signatures. On a static feature
map, the features at different locations should have differ-
ent weights. This is because based on the dynamic signing
process the effects of features at successive locations on sig-
nature verification are closely correlated. For example, if the
authenticity score at one location is very low, the score at
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the next signing location would not be very high. This is de-
termined by the smoothness of the signing process and the
coherence of the signing style. We propose a Dynamic-To-
Static Attention (DtS) to learn this attention maps from the
feedback sequence features, as shown in Fig. 4.

The sequence features h = [h1, h2, ..., hm] and h̄ =
[h̄1, h̄2, ..., h̄n] correspond to the row sequence and col-
umn sequence respectively. ht or h̄t represents the long-
range temporal relationships that indicate all of the pre-
vious signing steps have impacts on the current signing
step. To learn the attention maps for the static features,
the proposed DtS component accepts h and h̄ as inputs,
which are fed to the fully-connected layers with sigmoid
function to generate the attention sequences [a1, a2, ..., am]
and [ā1, ā2, ..., ān], respectively. Combining the attention
sequences of [a1, a2, ..., am] by rows generates the atten-
tion map a = [a1, a2, ..., am]. Combining the sequences
of [ā1, ā2, ..., ān] by columns generates the attention map
ā = [ā1, ā2, ..., ān]. These two maps are shown in Fig. 4.

We regard a and ā as two channels of feature maps which
are fed to a convolutional layer with sigmoid function. The
output of this convolutional layer is the final attention map
Ax, which is used to refine the static features Fx. For the
reference signature image, the attention map is denoted as
Ar . The refined static features are

Gr = Fr ⊗Ar, Gx = Fx ⊗Ax (4)

where ⊗ denotes the element-wise multiplication for each
channel of the static features. Gr and Gx are the re-
weighted static features corresponding to the reference sig-
nature and test signature, respectively. Gr and Gx are fed
to a convolutional module to generate the combined static
feature Zs, as described in Section Architecture.

The proposed dynamic-to-static method learns attention
for static features from sequence features. It is a novel mech-
anism and different from the previous approaches which
learn attention for static features from static data or learn
attention for sequence features from sequences.

Loss Function
For model learning, suppose a training set{

(xi, ri, yi)|i = 1, ..., N
}

is consisted of N signature
samples, where xi is the test signature and ri is the refer-
ence signature. yi ∈ {0, 1} is a binary ground truth label of
the test signature, where 1 indicates the genuine one and 0
means the forged one. We define ŷi as the probability value
predicted by the model for the reference-test pair (xi, ri).
For all the training samples, the loss function is

L = −
N∑
i=1

[
yi log ŷi + (1− yi) log(1− ŷi))

]
. (5)

Experiments
We test our SDINet model on four public signature

datasets: CEDAR Dataset (Kalera and Xu 2004), BHSig-B
Dataset (Pal et al. 2016), BHSig-H (Pal et al. 2016), and
GPDS Synthetic Signature Database (Ferrer, Diaz-Cabrera,
and Morales 2015a). We also perform extensive ablation
study experiments. The results manifest the effectiveness of
SDINet.

Experimental Setup
Five widely-used metrics are adopted to evaluate the

method: False Acceptance Rate (FAR), False Rejection Rate
(FRR), Accuracy (Acc), Equal Error Rate (EER), and Area
Under Curve (AUC). All signature images are preprocessed
by removing backgrounds using OTSU algorithm (Otsu
1979) and non-standard Binarization that is the same as
(Wei, Li, and Hu 2019). We resize all images to the same
size of 155 × 220. We construct the proposed model based
on TensorFlow 1.8.0. The parameters of batch normalization
layer are set as decay=0.99 and ε = 10−5 respectively.

CEDAR Dataset
Each individual on CEDAR signature dataset has 24 gen-

uine and 24 forged signatures. Referring to previous ap-
proaches, 50 people’s signatures are used to train our model
and the rest of 5 people’s signatures for test. According to
writer-independent signature verification method, a positive
sample is consisted of a reference signature and a genuine
signature; a reference signature and a forged signature are
paired as a negative sample. Each signatory has 276 positive
pairs and 276 negative pairs.

We compare our SDINet model with other typical ap-
proaches such as Morphology (Kumar et al. 2010), IDN
(Wei, Li, and Hu 2019), Surroundness (Kumar, Sharma,
and Chanda 2012), and SigNet-F (Hafemann, Sabourin, and
Oliveira 2017). Table 1 shows the results of different ap-
proaches. The experiment results in this table manifest that
our SDINet model outperforms the existing approaches. Al-
though the 2.17% FRR in IDN (Wei, Li, and Hu 2019) is
better than our model, FRR and FAR are the mutually re-
stricted indicators. The comprehensive metric EER of our
model is the best, which convincingly proves the effective-
ness of our method.

The reason that SDINet model outperforms other ap-
proaches is that our model introduces the dynamic process
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Model FRR FAR EER
IDN (Wei, Li, and Hu 2019) 2.17 5.87 3.62
Morphology (Kumar et al. 2010) 12.39 11.23 11.59
Graph Matching (Chen and Srihari
2006)

7.7 8.2

HOCCNN (Shariatmadari, Emadi, and
Akbari 2019)

4.79 5.07 -

Partially Ordered Sets (Zois, Alewijnse,
and Economou 2016)

5.83 11.52 3.02

Chain Code (Bharathi and Shekar
2013)

9.36 7.84 -

Tree structured sparsity (Zois et al.
2018)

6.95 6.06 2.30

Archetypes (Zois, Theodorakopoulos,
and Economou 2017)

2.07 2.07 2.07

Surroundness (Kumar, Sharma, and
Chanda 2012)

8.33 8.33 -

Distance Statistics (Kalera and Xu
2004)

20.62 23.18 21.90

SigNet-F (Hafemann, Sabourin, and
Oliveira 2017)

- - 4.63

PDSN (Lai and Jin 2018a) - - 4.37
Triplet Nets-Graph (Maergner et al.
2019)

12.21 12.35 12.27

Our SDINet 3.42 0.73 1.75

Table 1: Signature verification comparison on CEDAR(%).

and mines the dynamic features. Other approaches only ex-
tract static features which cannot sufficiently characterize
the essential styles of signatures.

BHSig-B and BHSig-H Dataset
BHSig-B data and BHSig-H data are contained in the

whole BHSig260 dataset. BHSig-B Dataset contains 100
people’s signatures signed by Bengal. Each signer has 24
genuine signatures and 30 forged signatures. We use 50 peo-
ples’ signatures for training and the rest of people’s signature
images for test. BHSig-H Dataset contains 160 peoples’ sig-
nature images. Each signatory also has 24 genuine signa-
tures and 30 forged signatures. We use 100 people’s signa-
tures to train our model and the rest 60 persons’ signatures as
testing data. On these two datasets, we compare our method
with approaches such as SigNet (Dey et al. 2017), FHTF
(Bhunia, Alaei, and Roy 2019), Correlated Feature (Dutta,
Pal, and Lladós 2016) and others.

Table 2 shows the comparison results. On BHSig-B
Dataset, our method obtains 94.42% Acc, 7.86% FRR and
3.30% FAR; on BHSig-H, it obtains 95.00% Acc, 3.77%
FRR and 6.24% FAR. Our model achieves better perfor-
mance than other approaches, which proves the effectiveness
of the proposed strategies and modules.

GPDS Synthetic Dataset
GPDS Synthetic Dataset (Ferrer, Diaz-Cabrera, and

Morales 2015b) is a large-scale and challenging signature

BHSig-B Dataset
Model FRR FAR Acc
SigNet (Dey et al. 2017) 13.89 13.89 86.11
Texture Feature (Pal et al. 2016) 33.82 33.82 66.18
FHTF (Bhunia, Alaei, and Roy 2019) 11.46 10.36 -
IsRFsM (Alaei et al. 2017) 30.12 16.18 -
Correlated Feature (Dutta, Pal, and
Lladós 2016)

14.43 15.78 84.90

Our SDINet 7.86 3.30 94.42
BHSig-H Dataset

IDN (Wei, Li, and Hu 2019) 4.93 8.99 93.04
SigNet (Dey et al. 2017) 15.36 15.36 84.64
Texture Feature (Pal et al. 2016) 24.47 24.47 75.53
Correlated Feature (Dutta, Pal, and
Lladós 2016)

15.09 13.10 85.90

FHTF (Bhunia, Alaei, and Roy 2019) 11.46 10.36 -
IsRFsM (Alaei et al. 2017) 30.12 16.18 -
Our SDINet 3.77 6.24 95.00

Table 2: Signature verification comparison on BHSig-H and
BHSig-B Dataset (%).

Model FRR FAR Acc
SigNet (Dey et al. 2017) 22.24 22.24 77.76
Correlated Feature (Dutta, Pal, and
Lladós 2016)

27.62 28.34 73.67

Our SDINet 8.32 12.37 89.66

Table 3: Signature verification comparison on GPDS (%).

verification dataset of Spanish. It is composed of 4000 peo-
ple’s signature samples, of which each person has 24 gen-
uine signatures and 30 forged signatures. On this dataset,
3200 people’s signatures are utilized to train the model and
the rest people’s signatures as testing set.

On this database, our model is compared with SigNet
(Dey et al. 2017) and Correlated Feature (Dutta, Pal, and
Lladós 2016). Table 3 shows the experiment results. Our
model achieves 8.32% FRR, 12.37% FAR, and 89.66% Acc,
respectively, which outperforms the comparison methods
under all metrics by a remarkable margin.

Ablation Study
Our model introduces novel pseudo dynamic process and

dynamic-to-static attention for signature verification. It in-
cludes static representation (SR), dynamic representation
(DR), and dynamic-to-static attention (DtS) function com-
ponents. To analyse the effects of different components, we
carried out four group ablation experiments on the four sig-
nature datasets: (1) ‘SR’ is the base network model only
using static representation; (2) ‘SR + DR’ uses static rep-
resentation with dynamic representation; (3) ‘SR + DtS’
uses static representation with dynamic-to-static attention;
(4) ‘SR + DtS + DR’ is our overall model (SDINet).
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Model
CEDAR BHSig-Bengali BHSig-Hindi GPDS

EER Acc AUC EER Acc AUC EER Acc AUC EER Acc AUC
SR 3.56 96.54 99.43 8.71 91.39 97.36 8.21 91.66 97.74 10.97 88.98 95.83

SR + DR 2.18 97.86 99.82 7.51 92.48 97.90 6.15 93.84 98.60 10.36 89.48 96.19
SR + DtS 2.40 97.60 99.69 5.43 94.41 98.86 5.74 94.09 98.77 10.40 89.58 96.20

SR + DtS + DR (Our SDINet) 1.75 97.93 99.84 5.39 94.42 98.89 5.11 95.00 98.84 10.43 89.66 96.10

Table 4: Ablation analysis of dynamic representation (DR) and dynamic-to-static attention (DtS) (%).

(a) (b)

(c) (d)

Figure 5: The ROC curves of different methods.

Table 4 shows the ablation experiment results and Fig. 5
shows the ROC curves of different methods. The method
‘SR + DR’ outperforms the ‘SR’ method on all the four
datasets of all evaluation metrics. ‘SR + DtS + DR’ performs
much better than ‘SR + DtS’. These results prove that intro-
ducing the dynamic representation can greatly improve the
performance. The DR extracts dynamic features that provide
important information of signing styles and therefore the in-
corporation of DR greatly improves performance.

Furthermore, the method ‘SR + DtS’ outperforms the
method ‘SR’ and the method ‘SR + DtS + DR’ outperforms
the method ‘SR + DR’. These two groups of comparison
manifest the effect of the dynamic-to-static attention (DtS).
DtS learns weight maps to refine static features, which helps
the model to gain impressive performance improvement.

In addition, we show the features to visually analyse the
effect of the dynamic-to-static attention. Fig. 6 shows exam-
ples of original signature images (the first row), the static
feature maps (the second row ‘SR’), and the refined static
features by the dynamic-to-static attention (the third row
‘SR+DtS’), where warmer colors indicate larger weights.
As is shown, compared with SR, the model with dynamic-
to-static attention can exactly focus on the signature stroke

SR
SR

+D
tS

 
In

pu
t

Figure 6: Visualization analysis for effectiveness of the
dynamic-to-static attention (DtS).

areas with informative features. The visual results further
prove the effect of dynamic-to-static attention.

The above ablation experiments comprehensively prove
the effects of the dynamic representation and the dynamic-
to-static attention.

Conclusion
In this paper, we formulate a novel Static-Dynamic In-

teraction Network model for offline writer-independent sig-
nature verification that contains four key functional com-
ponents: static representation, static-to-dynamic conversion,
dynamic representation, and dynamic-to-static attention.
Our model utilizes static features and dynamic features to
make decision. The proposed model is evaluated on four
popular signature datasets and the experiment results have
manifested the effectiveness of our SDINet model. The fu-
ture work will concentrate on the extension of the dynamic
representation to other relevant tasks.
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