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Abstract
We present an approach named Dual Composition Network
(DCNet) for interactive image retrieval that searches for the
best target image for a natural language query and a refer-
ence image. To accomplish this task, existing methods have
focused on learning a composite representation of the refer-
ence image and the text query to be as close to the embed-
ding of the target image as possible. We refer this approach as
Composition Network. In this work, we propose to close the
loop with Correction Network that models the difference be-
tween the reference and target image in the embedding space
and matches it with the embedding of the text query. That
is, we consider two cyclic directional mappings for triplets
of (reference image, text query, target image) by using both
Composition Network and Correction Network. We also pro-
pose a joint training loss that can further improve the robust-
ness of multimodal representation learning. We evaluate the
proposed model on three benchmark datasets for multimodal
retrieval: Fashion-IQ, Shoes, and Fashion200K. Our experi-
ments show that our DCNet achieves new state-of-the-art per-
formance on all three datasets, and the addition of Correc-
tion Network consistently improves multiple existing meth-
ods that are solely based on Composition Network. Moreover,
an ensemble of our model won the first place in Fashion-IQ
2020 challenge held in a CVPR 2020 workshop.

1 Introduction
Interactive conversational image search has risen as one of
the next key technologies for search engines as it allows
users to provide their search intent in a more efficient, in-
tuitive, and engaging way. To implement such systems, it
is a prerequisite to develop an algorithm that retrieves im-
ages based on previous search results and additional user
feedback in a form of natural language queries, as shown in
Figure 1. Not only does it have huge potential commercial
values by enhancing the users’ shopping experience, for ex-
ample, but it is also an intriguing research problem to study
multimodal embeddings and cross-modal retrieval.

In this work, we propose an approach named Dual Com-
position Network (DCNet) that can retrieve the best match-
ing target image for a given reference image and a text query.
Existing methods (Vo et al. 2019; Chen, Gong, and Bazzani
2020) have tackled this problem by training a network that
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Figure 1: The key intuition of DCNet. Given a previously re-
trieved image (reference image), a user inputs how to update
the search results in natural language (text query), and our
goal is to search for the best matching image for them (target
image). Our model considers both the forward (Composition
Network) and inverse (Correction Network) pathways.

can produce a composite feature combining the reference
image and the text query and make it closer to the embed-
ding of the corresponding target image. We call this model
Composition Network. Going one step further, our key idea
is to incorporate another network, which we call Correc-
tion Network, that models the difference feature between
the target and reference image and pushes it closer to the
embedding of the corresponding text query. In other words,
as shown in Figure 1, our model can learn a more robust
representation by considering cyclic directional mappings
with no additional label, i.e. using both Ir + Tq → It and
It − Ir → Tq , where Ir/t is the reference/target image and
Tq is the text query.

We summarize the contribution of this work as follows:

1. We propose Correction Network that drives the differ-
ence feature between the target and reference image to
be similar to the corresponding text query embedding.
Compared to existing models such as TIRG (Vo et al.
2019) and VAL (Chen, Gong, and Bazzani 2020) that rely
only on Composition Network, our model complemen-
tarily models another directional mapping by Correction
Network to learn more robust multimodal representations.
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2. As a technical contribution, we propose a Fused Differ-
ence (FD) module to realize Correction Network and in-
troduce a joint loss to synergistically train both networks.
Our experiments show that they significantly improve the
retrieval performance.

3. We achieve new state-of-the-art performance on three
multimodal retrieval datasets: Fashion-IQ (Guo et al.
2019), Shoes (Guo et al. 2018), and Fashion200K (Han
et al. 2017). Furthermore, we demonstrate that our key
idea, the addition of Correction Network, is universally
beneficial for existing methods that are solely based on
Composition Network such as TIRG and VAL. Finally,
our ensemble model won the first place in Fashion-IQ
2020 challenge in a CVPR 2020 workshop.

2 Related Work
Interactive Image Retrieval. Image retrieval is the task
of retrieving the most relevant image for a given query.
It has numerous applications across various domains such
as generic images (Wang et al. 2014), faces (Schroff,
Kalenichenko, and Philbin 2015), persons (Zheng et al.
2015), birds (Forbes et al. 2019), fashion (Liu et al. 2016; Ge
et al. 2019), and landmarks (Weyand et al. 2020), to name a
few. In particular, the use of text query has been widely stud-
ied in the field of computer vision and language processing
including the retrieval of generic images (Karpathy and Li
2015; Klein et al. 2015; Wang, Li, and Lazebnik 2016) and
person images (Li et al. 2017). We explore the type of image
retrieval where both a reference image and a text query are
provided.

Interactive image retrieval goes one step further by uti-
lizing user feedback to refine the search results. Feedback
is provided in a multitude of different formats, including
attribute labels (Isola, Lim, and Adelson 2015; Zhao et al.
2017; Han et al. 2017; Ak et al. 2018), relative attributes
(e.g. longer or brighter) (Parikh and Grauman 2011; Ko-
vashka, Parikh, and Grauman 2012; Kovashka and Grauman
2013), synthetic sentences (Vo et al. 2019), and human anno-
tated sentences (Guo et al. 2018; Tan et al. 2019; Guo et al.
2019; Yu, Shen, and Jin 2020). In this work, we mainly deal
with natural sentence queries.

Recently, many deep learning methods have been pro-
posed for interactive image retrieval. (Guo et al. 2019) apply
additive attention mechanism, (Vo et al. 2019) propose Text
Image Residual Gating (TIRG) to compose the reference im-
age and text query with a gating function and residual con-
nection, (Hosseinzadeh and Wang 2020) decompose an im-
age into a set of local semantic entities, and (Chen, Gong,
and Bazzani 2020) propose VAL that utilizes intermediate
features of images to which text features attend for compo-
sition. (Chen and Bazzani 2020) enhance image representa-
tion by utilizing extra textual information that directly de-
scribes the image. Most existing methods are confined to
devising a better feature composition between images and
text. On the other hand, our approach extends this idea by
additionally incorporating the difference between the target
and reference image.

Difference Detection between Images. Whereas learn-

ing the pixel-level difference and/or flows of consecutive im-
ages have been extensively studied (Stent et al. 2016; Khan
et al. 2017), only a few attempts have been made to model
the difference between two image embeddings. (Guo et al.
2018) use feature concatenation or feature fusion using lin-
ear layers or convolution layers. (Guo et al. 2019) create a
representation of the difference by simply subtracting two
visual embeddings. (Park, Darrell, and Rohrbach 2019) im-
prove the representation of the difference with dual attention
mechanism.

Multi-task Objectives for Multimodal Tasks. Multi-
task joint training has often been employed to improve the
performance by training relevant tasks together. In image
captioning, (Liu et al. 2018) incorporate image retrieval to
generate more diverse and richer sentences and (Liu et al.
2020) add a text retrieval module to improve the quality of
generated captions. (Qiao et al. 2019; Joseph et al. 2019)
jointly train an image generation model with a captioning
model for better text-to-image generation. (Shah et al. 2019)
train a visual question answering module with question gen-
eration task to be more robust to linguistic variations. (Xu
et al. 2015) build a joint embedding model that tackles lan-
guage generation as well as video retrieval and language re-
trieval. Our approach improves interactive image retrieval
by training both Composition and Correction Network with
multi-task training objectives.

3 Approach
Our goal is to retrieve the best target image from the im-
age database (i.e. It ∈ I) for a given text query Tq with
respect to the reference image Ir. Figure 2 outlines the over-
all architecture of our Dual Composition Network (DCNet),
which consists of two networks.

First, Composition Network learns a composition feature
that combines the reference image and the text query so that
it matches well with that of the correct target image. We ad-
vance the existing composition networks by introducing ex-
perts that generate features by attending to different parts of
the images and text. Second, Correction Network represents
the difference between the reference and target image in the
same embedding space with the query text. Finally, we intro-
duce a joint loss that facilitates the training of both networks
in concert with each other to yield better performance.

3.1 Experts
Inspired by recent works that utilize multiple embeddings
for visual representation (Hosseinzadeh and Wang 2020;
Chen, Gong, and Bazzani 2020), we divide an image and
a sentence into a set of localized components and assign a
representation module denoted expert to each of them. That
is, we represent both images and text as a combination of
multiple features encoded by multiple experts that are spe-
cialized for different parts.

Image Experts. We encode each image with E number
of experts, which are divided into two types: experts for dif-
ferent intermediate layers and for different spatial locations.

As for the layer experts xlay , we first extract fea-
tures from L intermediate layers of the backbone CNN:
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Figure 2: Overall architecture of our proposed DCNet. For a triplet of (It, It, Tq), Image and Text Experts obtain image and text
representation (section 3.1). (a) Composition Network computes the composition feature between reference image Ir and text
query Tq and then matches it with the target image representation It (Lcomp). (b) Correction Network computes the difference
feature between the reference and target image then matches it with the text query representation (Lcorr) (section 3.2). The
whole model is jointly trained with additional joint loss (Ljoint) (section 3.3).

{φ1, φ2, · · · , φL−1, φ̂} = fCNN(I). For example, we use
ResNet50 for fCNN with L = 2, and choose the outputs from
layer3 and the last layer for φ1 and φ̂. Then, each layer ex-
pert encodes the intermediate output by applying global av-
erage pooling followed by an FC layer to each φi (φL = φ̂):

xlay,i = FC(Avg(φi)) for i = 1, · · · , L. (1)

For interactive image retrieval, a user may want to change
only a part of an image such as collar or sleeve of a shirt.
To better focus on specific parts of the image, we add spatial
experts xspat, each of which is obtained from a particular
location of the last layer φ̂ with an FC layer:

xspat,i = FC(φ̂[wi, hi]) for i = 1, · · · , P. (2)

(wi, hi) denotes the location of φ̂; for example,
(wi, hi) ∈ {(3, 1), (1, 3), (3, 3), (5, 3), (3, 5)} for ResNet50
with φ̂ ∈ R7×7×2048.

Finally, for a total ofE = L+P image experts, the image
representation x is obtained as x = xlay ∪ xspat. Note that
each expert has distinct FC parameters.

Text Experts. Given a text query with l words, we first
embed each word using GloVe (Pennington, Socher, and
Manning 2014) as w∗ = [w∗1 , ..., w

∗
l ] ∈ Rl×300. We then

obtain the query embedding w ∈ Rl×D by

w = FC([Conv1d(w∗);w∗]), (3)

where [; ] denotes concatenation.
Preferably, each image expert should attend to different

words in the text. In the example of Figure 1, experts for
the whole image should attend to yellow or less flowy, while

experts focusing on the top part of the image should attend
to shouldered floral print. To implement this idea, we obtain
the query embedding t∗e ∈ RD for each expert e as

t∗e =
∑
l

αe,lw
∗
l , αe = softmax

l
(FC(FC(me � w))), (4)

where me ∈ RD is a randomly initialized vector and �
is Hadamard product. Finally, we obtain text representa-
tion t by applying an expert specific FC layer to t∗e as
t = ∪Ee=1FC(t∗e). Note that the number of text experts is
also E as each image expert corresponds to one text expert.

3.2 The Dual Composition Network
Composition Network. Composition Network learns to
combine the features of the reference image and the text
query to be as similar as possible to the feature of the correct
target image. As shown in Figure 2(a), we adopt a variant of
Text Image Residual Gating (TIRG) (Vo et al. 2019), whose
principal idea is to perturb the gated feature with a residual
connection to obtain the composite feature:

t̄e = [te; Fusion(xrefe , te)], (5)

ce = wgfgate(x
ref
e , t̄e) + wrfres(x

ref
e , t̄e), (6)

where wg and wr are learnable parameters. We choose
Hadamard product as the fusion function. The gating and
residual connections are computed by

fgate(x
ref
e , t̄e) = σ(FC([xrefe ; t̄e]))� xrefe (7)

fres(x
ref
e , t̄e) = FC(FC([xrefe ; t̄e])) (8)

where σ is the sigmoid function.
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Finally, the matching score of Composition Network sr
for a triplet is evaluated as

sr(xref , t, xtrg) =
∑
e

ce · xtrge . (9)

Correction Network. Correction Network helps the re-
trieval of the correct target image by representing the dif-
ference between the reference and target image and pushing
it closer to the text query embedding. We name the follow-
ing implementation as Fused Difference (FD) module since
it can be used as a part of any multimodal embedding.

As shown in Figure 2(b), we first represent the difference
between the reference and target image as

x̄diffe = x̄trge − x̄refe where (10)

x̄trg/refe = FCtrg/ref ([xtrge � xrefe ;xtrg/refe ]). (11)

We then compute the difference feature as

de = FC([xrefe ;xtrge ; x̄diffe ]). (12)

The intuition is that we concatenate the difference feature
with the original reference and target features and let the net-
work learn to identify which feature dimensions are salient
in the difference.

Finally, we calculate the triplet score of Correction Net-
work by

sc(xref , xtrg, t) =
∑
e

de · te. (13)

3.3 Joint Training and Inference
We jointly train all of the components of DCNet, including
Composition and Correction Networks with image and text
experts. For a minibatch of size B that consists of ground
truth triplets {xrefi , ti, xtrgi }Bi=1, the loss functions for the
two networks are defined as the cross-entropy loss:

Lcomp = − 1

B

B∑
i=1

log
exp(sr(xref

i , ti, xtrgi ))∑B
j=1 exp(sr(xref

i , ti, xtrgj ))
, (14)

Lcorr = − 1

B

B∑
i=1

log
exp(sc(xref

i , xtrgi , ti))∑B
j=1 exp(sc(xref

i , xtrgj , ti))
. (15)

where sr and sc are the scores obtained from Composition
and Correction Network (Eq. (9) and Eq. (13)), respectively.

In addition, we introduce another joint loss Ljoint that
connects the two networks:

Ljoint = − 1

B

B∑
i=1

log
exp(sj(xref

i , xtrgi , ti))∑B
j=1 exp(sj(xref

i , xtrgj , ti))
, (16)

where

sj =
∑
e

ce · COMP(xrefe , (γde + (1− γ)te)). (17)

COMP denotes the composition network, and γ = 0.5 is
the hyperparameter for perturbation. The intuition behind
score sj emanates from the idea that the joint loss should

ultimately serve as a bond between the two seemingly op-
posite Networks. The resultant feature de should ideally
be adequate as a replacement for te, as they both model
the difference. Therefore, replacing xtrge in Eq. (9) with
COMP(xrefe , γde+(1−γ)te) should have the same effect as
Eq. (9) and connect the two Networks. In our experiments,
the addition of joint loss Ljoint helps both networks more to
be robust to text variations.

The final loss function for joint training is the weighted
sum of these three losses:

L = Lcomp + Lcorr + λLjoint, (18)

where λ is a hyperparameter (e.g. λ = 0.5 for experiments).
Inference. At test time, the final score s for a triplet is

calculated as s = sr + sc.

4 Experiments
We assess the performance of our approach on three bench-
mark datasets, including Fashion-IQ (Guo et al. 2019),
Shoes (Guo et al. 2018) and Fashion200K (Han et al. 2017).
The natural sentence queries are collected by humans in the
first two datasets but synthesized in the last dataset. Follow-
ing previous works on these datasets, we report the recall
at rank k (Recall@k) as the evaluation metric, specifically
Recall@10 (R@10) and Recall@50 (R@50).

Datasets. (1) Fashion-IQ (Guo et al. 2019) is an interac-
tive image retrieval dataset that contains 30,134 triplets from
77,683 fashion images of three categories (i.e. Dress, Shirt
and Tops&Tees) crawled from Amazon.com.

(2) Shoes (Guo et al. 2018) is a dataset based on images
crawled from like.com (Berg, Berg, and Shih 2010). For in-
teractive image retrieval, natural language query sentences
are additionally obtained from human annotators. Following
(Chen, Gong, and Bazzani 2020), we use 10K images for
training and 4,658 images for evaluation.

(3) Fashion200K (Han et al. 2017) contains about 200K
fashion images. Following (Vo et al. 2019), we pair two im-
ages that have only one word difference in their descriptions
as reference and target images to synthesize query sentences.
As done in (Vo et al. 2019), we use about 172K triplets for
training and 33,480 triplets for evaluation.

Implementation. For a fair comparison with VAL (Chen,
Gong, and Bazzani 2020), we select ResNet50 (He et al.
2016) pretrained on ImageNet (Wang et al. 2014) as our
backbone encoder. We also employ random cropping and
horizontal flipping for image augmentation. We extract
GloVe from text using the en vectors web lg model
of spaCy. We set the hidden dimension to 1024 and use
ReLU activation for every FC layer with dropout (Srivastava
et al. 2014) of rate 0.2. We apply L2 normalization to image
and text embeddings. Each training batch contains B = 32
triplets of (reference image, text query, target image) and is
shuffled at the beginning of every training epoch. We use
Adam (Kingma and Ba 2015) optimizer with a learning rate
of 1×10−4 and an exponential decay of 0.95 at every epoch.
All models are implemented with PyTorch.
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Category Dress Shirt Toptee Total
Metric R@10 R@50 R@10 R@50 R@10 R@50 Avg

Side+Gating (Guo et al. 2019) 11.24 32.39 13.73 37.03 13.52 34.73 23.77
FiLM (Perez et al. 2018)‡ 14.23 33.34 15.04 34.09 17.30 37.68 25.28
TIRG (Vo et al. 2019)‡ 14.87 34.66 18.26 37.89 19.08 39.62 27.40
Relationship (Santoro et al. 2017)‡ 15.44 38.08 18.33 38.63 21.10 44.77 29.39
VAL (Lvv) (Chen, Gong, and Bazzani 2020)‡ 21.12 42.19 21.03 43.44 25.64 49.49 33.82
VAL (GloVe) (Chen, Gong, and Bazzani 2020)‡ 22.53 44.00 22.38 44.15 27.53 51.68 35.38
CurlingNet (Yu et al. 2020) 26.15 53.24 21.45 44.56 30.12 55.23 38.45
DCNet 28.95 56.07 23.95 47.30 30.44 58.29 40.83

Table 1: Comparison between our DCNet and baselines on the Fashion-IQ validation set. ‡ denotes the results cited from (Chen,
Gong, and Bazzani 2020).

Participants AvgR@(10,50)
cuberick 0.33
emd 0.39
skywalker (Li et al. 2019) 0.44
shuan (Yu et al. 2020) 0.47
superraptors 0.49
zyday 0.43
stellastra 0.48
ganfu.wb 0.50
tianxi.tl 0.50
Ours 0.52

Table 2: Final results on the Test Phase of Fashion-IQ 2020
Challenge. We also report the results of last year’s partic-
ipants (Fashion-IQ 2019) in the upper part. Note that the
use of attribute metadata for the test split is prohibited this
year, which was a crucial reason of strong performance of
last year’s methods. Our method won the first place in the
challenge.

4.1 Results on Fashion-IQ
Table 1 shows the quantitative results on Fashion-IQ valida-
tion set. Our DCNet approach achieves the new state-of-the-
art performance over all three categories of the dataset.

Challenge. To demonstrate the practical competence of
our method, we participated in Fashion-IQ 2020 challenge
organized in a CVPR 2020 workshop1. Table 2 summarizes
the official leaderboard, where our ensembled method won
the first place. For a better representation of fashion related
features, we use a backbone image encoder pre-trained on
Deepfashion (Liu et al. 2016) attribute prediction task. We
ensemble the following variants of our method:
(1) Image encoders: ResNet50/152, DenseNet169 (Huang

et al. 2017).
(2) Text embeddings: BERT (Devlin et al. 2019).
(3) Text encoders: FC, and average pooling.
(4) Image experts: 3 layer experts (i.e. L = 3), no spatial

expert (i.e. P = 0)

1https://sites.google.com/view/cvcreative2020/fashion-iq

DCNet Variants AvgR@10 AvgR@50 Avg

Separate (Comp) 26.14 51.82 38.98
Separate (Corr) 26.44 52.82 39.63
Experts (Comp) 26.41 52.68 39.55
Experts (Corr) 26.75 52.81 39.78
Joint (Comp) 26.61 52.85 39.73
Joint (Corr) 27.21 53.41 40.31

Table 3: Ablation results of our joint training procedure on
Fashion-IQ validation set. (Comp) and (Corr) denote the re-
sults of using only Composition and Correction Network at
test time, respectively. (Separate) is the separate training for
the two networks, (Experts) jointly train only image and text
experts without the joint loss Ljoint, and (Joint) follows our
full training procedure.

Methods AvgR@10 AvgR@50 Avg

Concat 20.21 45.33 32.77
+ Joint 20.96 46.12 33.54
TIRG 20.72 45.88 33.31
+ Joint 21.73 46.01 33.87
VAL 24.37 49.90 37.13
+ Joint 25.35 51.02 38.19

Table 4: Results of joint training with Correction Network
for three existing methods on the Fashion-IQ validation split.

(5) Hidden dimension sizes (512 and 1024), batch sizes (16
and 32) and 5 different random seeds.
Ablation for Joint Training. Table 3 shows the results

of ablation studies on our joint training procedure by vary-
ing the level of joint training: (1) Separate: Composition
and Correction Networks are trained separately, (2) Experts:
only image and text experts are jointly trained without the
joint loss Ljoint, and (3) Joint: our joint loss is used. (Comp)
and (Corr) respectively indicate that only Composition and
Correction Network is used for retrieval at test time. The re-
sults show that the both networks gradually improve in per-
formance as more components are jointly trained.

Effects of Correction Network. Our key novelty lies in
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Methods AvgR@10 AvgR@50 Avg

Concat 19.32 42.79 31.06
Diff 21.42 45.83 33.63
Diff-expert 24.75 50.59 37.67
TIRG 10.85 30.14 20.49
DUDA 22.21 48.25 35.23
Ours-singleText 26.34 51.18 38.75
Ours 26.44 52.82 39.63

Table 5: Comparison between the difference representations
for images on the Fashion-IQ validation split. Ours is the
proposed Fused Difference (FD) module and -singleText in-
dicates that only a single text expert is used. Diff-expert indi-
cates that multiple experts are used for image representation.

Methods R@10 R@50

FiLM† 38.89 68.30
TIRG† 45.45 69.39
Relationship† 45.10 71.45
VAL (Lvv + Lvs)† 49.12 73.53
VAL (GloVe)† 51.52 75.83
Separate (Comp) 51.24 78.04
Separate (Corr) 51.70 78.75
Joint (Comp) 51.88 78.53
Joint (Corr) 53.24 78.67
DCNet 53.82 79.33

Table 6: Results on the Shoes validation split. Baseline re-
sults are shown in top, while those of variants of our DCNet
are in bottom. Please refer to the caption of Table 3 for the
variants. †: results from (Chen, Gong, and Bazzani 2020).

the introduction of Correction Network to close the loop
with Composition Network for a synergetic performance im-
provement. Thus, we validate that the joint training with
Correction Network universally benefits existing methods
that take Composition Network only approach. We test with
three types of existing methods for composition networks:
Concat (Guo et al. 2018, 2019), TIRG (Vo et al. 2019) and
VAL (Chen, Gong, and Bazzani 2020). Concat indicates the
simple concatenation between the embeddings of the refer-
ence image and the text query, followed by a single FC layer.
For image embedding of Concat and TIRG, we use a glob-
ally pooled feature from the last convolution layer. For that
of VAL, we use the output from three intermediate layers
(layer 2, 3, and 4) following the original paper. To match the
feature dimension, we apply global pooling before Correc-
tion Network.

Table 4 compares the results when our design of Compo-
sition Network is replaced with three conventional methods.
Correction Network improves R@10 and R@50 of Concat
by 0.75, 0.79 on average, TIRG by 1.01, 0.13, and VAL
by 0.98 and 1.12, respectively. These results indicate that
our Correction Network is universally beneficial for existing
state-of-the-art methods.

Difference Representation. To validate our design of the

Methods R@10 R@50

FiLM† 39.5 61.9
Relationship† 40.5 62.4
TIRG† 42.5 63.8
VAL (Lvv)‡ 45.75 66.10
TIRG∗ 45.62 67.24
Separate (Corr) 44.18 63.41
Joint (TIRG) 46.31 67.41
Joint (Corr) 45.96 66.62
DCNet 46.89 67.56

Table 7: Results on Fashion200K. †: results from (Vo et al.
2019), ‡: results from the execution of the official code2, ∗:
re-implementation using MobileNetV1 (Howard et al. 2017)
as the backbone.

Fused Difference module in Correction Network, we test
several techniques to obtain the difference representation
between the reference and target images. Table 5 summa-
rizes the results. Concat simply concatenates the reference
and target image features and applies an FC layer, and DIFF
additionally concatenates the subtraction of two features be-
fore the FC layer. We also compare with some state-of-the-
art fusion models including TIRG and DUDA (Park, Darrell,
and Rohrbach 2019). For a fair comparison, we use our im-
age expert representation in all techniques (x ∈ RE×D). For
TIRG, Fusion, Concat and Diff, we average the image repre-
sentation (Avg(x) ∈ RD). In the table, Diff-expert indicates
Diff but with multiple image experts and Ours-singleText is
our model but with only a single text expert as other base-
lines use only one as well. The results show that our FD
module outperforms other methods. Comparison between
Diff and TIRG shows that the summation-based TIRG is not
capable of representing the difference between features. Fur-
thermore, Diff surpasses Concat by 2.57 and DUDA (Park,
Darrell, and Rohrbach 2019) outperforms Diff by 1.6 in av-
erage recall. Our FD module with a single text expert sur-
passes DUDA by 3.52 and Diff-expert by 1.08, which indi-
cates the proposed FD module can generate a better differ-
ence representation.

4.2 Results on Shoes
Table 6 summarizes the quantitative results on Shoes. Even
when using only our Composition Network, denoted Sepa-
rate (Comp), we can achieve comparable performance with
the SOTA VAL (Chen, Gong, and Bazzani 2020) in R@10
and outperforms all conventional methods in R@50. The
addition of Correction Network significantly improves the
performance in both metrics. Note that in contrast to VAL,
the scores of our methods are attained without pretraining
the networks with additional descriptive texts (i.e. caption-
ing sentences).

4.3 Results on Fashion200K
Table 7 shows the results on Fashion200K. While ResNet-50
is used for all methods in previous experiments, we here test
with two CNN backbones: ResNet-18 for top three methods
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(a)

Target Image
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(b)

Attention Plot

Figure 3: Visualization of attention weights αe,l of text ex-
perts for the retrieved samples. xlay,i denote layer experts
and xspat,i denote spatial experts corresponding to the up,
left, center, right, and bottom section.

in the table and MobileNetV1 (Howard et al. 2017) for bot-
tom six methods, since these two have been used in previous
works. For image and text embedding, we follow TIRG (Vo
et al. 2019) that uses global pooling of the last CNN layer
for images and LSTMs for text. The results demonstrate that
our dual network approach is also powerful for a dataset
with synthesized text queries that are far simpler than hu-
man annotated natural language sentences. For example, our
Correction Network combined with TIRG, denoted DCNet,
improves TIRG by 1.27 and 0.32 on R@10 and R@50, re-
spectively.

4.4 Qualitative Results
Figure 3 visualizes the attention weights αe,l of experts for
each word, where xlay,i and xspat,i each denotes layer and
spatial experts. Specifically, xspat,1, · · · , xspat,5 focus on
the up, left, center, right and bottom part of the image, re-
spectively. We can observe that the layer experts attend to
color-related words such as “autumn colored” and “teal”,
while the spatial experts attend to words describing spe-
cific parts of clothes such as “straps” (up, left, and right),
“longer” (bottom), “buttons” and “collars” (up and center),
and “sleeves” (left and right). This confirms that the pro-
posed module matches each word to the appropriate image
expert as intended.

Figure 4 qualitatively assesses the performance of our
model while varying the joint training procedure, and Fig-
ure 5 qualitatively compares our DCNet with TIRG (Vo et al.
2019) and VAL (Chen, Gong, and Bazzani 2020). In the left,
we present the correct triplets of (query, reference, target)
and compare the top-4 ranked images from different mod-
els. Thanks to double checking by Correction Network, our
joint method can better find the best matching target images
that satisfy all conditions in the queries than all other models
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Figure 4: Examples of the variants of our DCNet. Please re-
fer to the caption of Table 3 for the variants.

compared. Figure 6 further illustrates the retrieval results of
our method for some test examples on three datasets. We dis-
play reference images and text queries in the left and 4 high-
est scored images in the right. While maintaining the style
of the reference images, our model correctly assigns high
scores to the samples that adequately reflect the description
of user queries.

5 Conclusion
In this work, we proposed Dual Composition Network (DC-
Net) for interactive image retrieval with a natural language
query. The two key components of the model, Composi-
tion and Correction Networks, were indeed synergetic to im-
prove the performance of text-based image retrieval; as a re-
sult, our method achieved new state-of-the-art performance
on Fashion-IQ, Shoes and Fashion200K, and won the first
place in Fashion-IQ 2020 challenge. Interestingly, our idea
of closing the loop with Correction Network was general
enough to improve the performance of existing Composition
Network only methods.

Moving forward, it is an interesting future work to ex-
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Figure 5: Qualitative comparison with TIRG (Vo et al. 2019)
and VAL (Chen, Gong, and Bazzani 2020). We compare the
results sampled from Fashion-IQ validation split.

pand the applicability of DCNet; we can modify our model
to solve multi-hop interactive image search tasks, or we can
tackle relative caption or dialogue generation tasks for mul-
timodal conversational systems.
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