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Abstract

Online hashing for streaming data has attracted increasing
attention recently. However, most existing algorithms focus
on batch inputs and instance-balanced optimization, which is
limited in the single datum input case and does not match the
dynamic training in online hashing. Furthermore, constantly
updating the online model with new-coming samples will in-
evitably lead to the catastrophic forgetting problem. In this
paper, we propose a novel online hashing method to han-
dle the above-mentioned issues jointly, termed Asynchronus
Teacher-Guided Bit-wise Hard Mining for Online Hashing.
Firstly, to meet the needs of datum-wise online hashing, we
design a novel binary codebook that is discriminative to sepa-
rate different classes. Secondly, we propose a novel semantic
loss (termed bit-wise attention loss) to dynamically focus on
hard samples of each bit during training. Last but not least, we
design an asynchronous knowledge distillation scheme to al-
leviate the catastrophic forgetting problem, where the teacher
model is delaying updated to maintain the old knowledge,
guiding the student model learning. Extensive experiments
conducted on two public benchmarks demonstrate the favor-
able performance of our method over the state-of-the-arts.

Introduction
In the big data era, large-scale image retrieval is widely used
in many practical applications. One promising family of
these retrieval methods is based on hashing, which merits in
both low storage and efficient computation (Andoni and In-
dyk 2006; Zhang et al. 2014; Cao et al. 2018). Most existing
methods are designed for offline training with a given col-
lection of data, which may not well adapt to online stream-
ing data. To address this issue, online hashing has emerged
as a hot topic for its capacity in processing streaming data.
Representative works include Online Kernel-based Hashing
(OKH) (Huang, Yang, and Zheng 2013, 2017), Online Su-
pervised Hashing (OSH) (Cakir, Bargal, and Sclaroff 2017),
Mutual Information Hashing (MIH) (Cakir et al. 2017),
Hadamard Codebook based Online Hashing (HCOH) (Lin
et al. 2018), Balanced Similarity for Online Discrete Hash-
ing (BSODH) (Lin et al. 2019), and Online Hashing with
Efficient Updating (OHWEU) (Weng and Zhu 2020). In this
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Figure 1: Illustration of the accumulated probability den-
sity for a certain bit during training along the timeline.
With more and more training iterations, we can obtain a
more compact distribution (with smaller standard deviation),
which indicates the improvement of the fitting degree.

paper, to better adapt to the practical scenario, we focus on
the task of datum-wise online hashing.

Existing datum-wise online hashing generally follows a
two-stage protocol. Firstly, a codeword is generated for each
class, then a hashing function is learned to fit this code-
word. Therefore, the retrieval performance is closely related
to the predefined codewords. In the early stage, OSH (Cakir,
Bargal, and Sclaroff 2017) adopts random construction to
generate codewords which degenerates the retrieval perfor-
mance. Intuitively, a good codebook should be well sepa-
rated among the codewords in the hamming space. From
this perspective, the Hadamard (Lin et al. 2018) is proposed
to maintain orthogonality among codewords. Orthogonality
guarantees a good separability among the codewords, signif-
icantly boosting the recognition performance. However, the
Hadamard is limited by the dimension constraint, which is
strictly restricted as the power of 2. To extend it into flexi-
ble dimensions, LSH (Andoni and Indyk 2006) is introduced
to project the initialized codewords, damaging the discrimi-
native property of Hadamard. In addition to online hashing,
the codebook is also adopted in some offline hashing meth-
ods. For example, Central Similarity Quantization (Yuan
et al. 2020) constructs codewords by randomly sampling
from Bernoulli distributions, maintaining sufficient mutual
distances among codewords in expectation.

To construct well-spreading codewords in the binary
space, in this paper, we propose to generate codewords by
utilizing the singular matrix, which avoids the dimension
constraints. Since the singular matrix is mutually orthogo-
nal among rows and columns, it naturally preserves good
separability among different codewords.
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Another drawback of existing OH methods is that all bits
of the hashing codes are equally treated, which neglects the
fact that for each bit, the fitting degree evolves with time
as shown in Fig 1. And for each streaming input, it should
be dynamically re-weighted to reflect the accumulated fit-
ting degree (e.g., a hard sample should be assigned with a
bigger loss weight when it deviates from the ground truth
binary code). To address this issue, we propose a bit-wise
attention loss to pay more attention to the hard samples of
each bit (especially for the well-fitted ones). This is reason-
able since correcting the hard samples helps to generate a
more compact distribution centered at the ground truth bi-
nary code. Specially, a gaussian distribution is calculated to
simulate the fitting degree of each bit (centered at its ground
truth binary code). In such a case, the standard deviation of
the gaussian distribution can be utilized to indicate the fit-
ting degree (e.g., smaller std reflects a better fitting degree).
Then hard samples deviate from the center are affiliated with
higher weights to improve the OH learning.

Catastrophic forgetting is also demonstrated to severely
influence the performance in an online setting (Weng and
Zhu 2020), since the model is only updated with temporary
input. The similarity relationship between the streaming in-
put and existing database is introduced (Lin et al. 2019),
which can not well adapt to the dynamic changes in on-
line hashing, since hashing codes of database change with
the model update. To address this problem, we introduce
knowledge distillation (Hinton, Vinyals, and Dean 2014)
into hashing and propose an asynchronous Teacher-Student
training scheme.

The proposed Asynchronous Teacher Guided Hashing is
based on the assumption that hashing codes generated by
different sets of codewords should share similar semantic
relationships, and the asynchronous updating scheme can
preserve data distribution on previous data to alleviate the
catastrophic forgetting problem. Please note here, different
from transferring instances (Ba and Caruana 2014) or local
semantic relationships (Yu et al. 2019), our method focuses
on the distillation of global semantic relationships.

Overall, in this paper, we propose a combo to jointly
solve the problem of bit-wise hard sample mining and catas-
trophic forgetting in datum-wise online hashing, termed
Asychronous Teacher-Guided Hard Mining for Online
Hashing (ATHOH).

The main contributions of ATHOH are three-folds:

• We propose a singular-vectors-based method to generate
discriminative codewords, which can be flexibly general-
ized to a flexible number of bits.

• We propose a novel bit-wise attention loss to reweight
each bit of each streaming input, aiming to dynamically
lower weight easy samples and focus on hard samples
considering their fitting differences.

• We introduce knowledge distillation into the datum-wise
online hashing to address the catastrophic forgetting prob-
lem, where global semantic relationships are exploited
for better distillation, and asynchronous update strategy
is utilized to preserve the previous knowledge.

Related Work
We introduce the most related works from two main aspects:
Online Hashing and Knowledge Distillation.

Online Hashing has become a hot topic in recent years
since it merits in updating the hash functions efficiently by
using the streaming data online. Existing OH work can be
further categorized into either supervised methods or un-
supervised ones. Compared with the unsupervised meth-
ods (Leng et al. 2015; Chen, King, and Lyu 2017), super-
vised methods leverage the label information to learn hash-
ing codes. OKH (Huang, Yang, and Zheng 2013) proposes a
structured similarity loss function and learns the hash func-
tions via an online passive-aggressive strategy (Crammer
et al. 2006). Similar to OKH, BSODH (Lin et al. 2019) fur-
ther propose a balanced similarity to reweight positive and
negative pairs. However, these methods take pairs or batches
as input. To consider the case of an extreme input (a sin-
gle datum). Cakir et al. propose the online supervised hash-
ing (OSH) which is inspired by the Error-Correcting Output
Codes (ECOCs) (Dietterich and Bakiri 1994). Very recently,
HCOH (Lin et al. 2018) introduce the Hadamard into online
hashing to boost retrieval performance due to the orthogo-
nality of the Hadamard. However, the strict dimension con-
straint of Hadamard limits its performance in some cases.

Knowledge Distillation is propose by Hinton et al. (Hin-
ton, Vinyals, and Dean 2014) based on a teacher-student
framework, which can be further subdivided into two cat-
egories: the absolute teacher (Zhou et al. 2018) and the
relative one (Liu et al. 2019; Yu et al. 2019). The abso-
lute teacher-based methods focus on transferring instance
features from the teacher to the student, including regress-
ing logits before the Softmax layer (Ba and Caruana 2014),
the instance features of intermediate layers (Romero et al.
2015), the attention maps (Zagoruyko and Komodakis 2017)
and so on (Lee, Kim, and Song 2018). However, the absolute
teacher (Koratana et al. 2019) requires student networks has
very similar architectures with their corresponding teacher,
which is a crucial limitation. Very recently, some relative
teacher based methods (Tung and Mori 2019; Tian, Krish-
nan, and Isola 2020) are proposed to be able to transfer se-
mantic relationships to the student. However, these meth-
ods utilize pairwise similarity for semantic relationships,
which is captured from a local perspective. Different from
the above-mentioned methods, we propose a global seman-
tic relationship-based knowledge distillation loss, where fea-
ture proximities calculated on the teacher model are trans-
ferred to guide the learning process of the student model.

Methodology
Problem Definition
Given n image samples X = {x1, ..., xn} with their cor-
responding labels Y = {y1, ..., yn}, hashing methods aim
to encode the given data point into a k-bit binary codes
b ∈ {−1, 1}, which can preserve their semantic informa-
tion. Following (Cakir, Bargal, and Sclaroff 2017; Lin et al.
2019), we adopt the linear projection-based hash functions,
which is defined as:

b = sgn(WTx) (1)
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Figure 2: The ATHOH is a two-stage OH method. We first generate discriminative codewords for each label by using singular
vectors. Then each input sample is fed into the model to generate their predicted binary coding. In our method, we construct
two codewords sets for the teacher and student respectively. (1) To optimize the model effectively, we reweight each bit of
streaming input such that focus more on hard samples. (2) To overcome the catastrophic forgetting problem, we asynchronous
update the teacher and the student, where global semantic relationships are exploited to preserve the previous knowledge.

where W = [w1, w2, · · · , wk] ∈ Rd×k is the projection
matrix to be learned with wi ∈ R1×d being responsible for
the i-th hash bit, d denotes the dimensionality of features.
The sign function sgn(x) returns +1 if input variable x > 0,
and returns −1 otherwise. For the online learning problem,
the data comes in a streaming fashion. The current mapping
matrix W are learned on the t-th round input streaming data
X t = {xt1, ..., xtnt

}. In this paper, for the single datum input
case, nt is fixed as 1.

Singular Vector-based Codebook
The proposed algorithm is a two-step hashing method: (1)
for each class, we assign a codeword for it. (2) each new
input with the same labels is encoded to fit this codeword.
For the multi-label case, the target codes for the input datum
is the mean of the codewords of its related class labels. The
objective function can be rewritten as:

l(xt,W ) = ||sgn(WTxt)− sgn(
∑

yt∈Yt

Dyt)||2F (2)

where we denotes D as the codebook, Yt is the class label
set of xt and Dyt is the yt-th column of codebooks.

For this method, as illustrated in the introduction, a good
codebook is important for hashing learning, and discrimina-
tive codewords can significantly benefit the performance. To
generate valid codewords, we propose to construct the code-
book by designing a unitary matrix. The unitary matrix has
the property that the row and column vectors of each uni-
tary matrix are mutually orthogonal, thus the codewords are
well-spread in the binary space. The detailed construction of
the unitary matrix is presented in the following.

In this paper, the unitary matrix is obtained by the sin-
gular value decomposition of a randomly generated matrix.
We first initialize a random matrix M ∈ Rm×m, where
m = max(k, c) and c is the number of classes. Then we

normalize this matrix by row. And the unitary matrix U is
obtained by SVD of M . Finally, we obtain D by:

D = sgn(U [:, 1 : k]) (3)

where U is the singular matrixes of M . Given the codebook
D defined in Eq. 3, we aim to optimize the objective func-
tion as follows. SGD optimization can be used to iteratively
update for Eq. 3. To make the SGD feasible, we relax the
non-convex and non-smooth sign function sgn() as below:

l(xt,W ) = ||WTxt − sgn(
∑

yt∈Yt

Dyt)||2F (4)

In the t-round, the partial derivative of l(xt,W) with re-
gard to wi can be derived as:

wt+1
i = wt

i − η(wt
ix− sgn(

∑
yt∈Yt

Dyti))x
t

(5)

Discussion. In this section, we briefly summarize existing
codewords generation methods, which is divided into two
types: the random sampling-based and the orthogonality-
based methods. The first type maximizes mutual distances
among codewords in expectation. Each bit of codewords is
sampled from a symmetrical distribution, such as Bernoulli
distribution, uniform distribution, standard Gaussian distri-
bution, and beta distribution, which is formulated as:

D = sgn(U > u0) (6)

where U is a random matrix sampled from a symmetrical
distribution and u0 is the mean of this distribution. We can
easily prove that the distance between these codewords is
K/2 in expectation, where k is the length of hashing codes.

In the second category, the orthogonality among code-
words helps to generate discriminative codebooks. For ex-
ample, a mutually orthogonal binary matrix is an optimal
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Figure 3: Statistics of the hamming distance of 32-bit code-
words for 100 classes by adopting singular vectors or sam-
pled from various symmetrical distribution. (a) Correspond-
ing histogram distribution. (b) Cumulative distribution.

codebook. In this situation, codewords have a fixed distance
k/2 to each other. Hadamard (Lin et al. 2018) is a special
case when the dimension of the matrix is strictly restricted
in the power of 2. The proposed method belongs to this
category. However, different from existing methods (e.g.,
Hadamard matrix), we utilize a unitary matrix to retain or-
thogonality, which avoids the dimension limitation.

To compare the quality of these above-mentioned code-
books, we synthesize the codebooks for 104 times and
then calculate the hamming distance among codeword pairs.
Fig. 3 left is the corresponding distance histogram over all
codewords pairs, and Fig. 3 right shows the distance cumu-
lative histogram. It can be seen that singular vectors-based
codewords are more stable and discriminative.

Bit-wise Attention Loss
The novel dynamic attention loss is designed to perform
hard sample mining for each bit according to its fitting de-
gree among bits during training. In the single-label case, by
decomposition Eq.4 into bit-level, we can obtain the objec-
tive related the i-th bit as:

l(xt,W ) =
∑
i

(sgn(wT
i x

t)−Dyti)
2 (7)

where Dyti is the i-th bits of the codeword Dyt .
From Eq.7, we can see that each upcoming sample is

equally weighted during the training process. As analyzed
in the introduction part, more attention should be paid to the
hard sample that deviates from the ground truth binary code.
To address this issue, we propose a fitting degree guided
weights to better guide the learning process.

In this paper, we calculate the accumulated statistics to
reflect the fitting degree of each bit. The mean is set as its
ground truth binary code and the standard deviation is cal-
culated during the training stage. For the coming input, if its
calculated (sgn(Wx)) deviates from the ground truth, then
it is regarded as a hard sample on that bit. In this case, its
density score will be small, therefore we utilize 1 − p(bi|y)
as the loss weight, to impose a huge punishment on the hard
samples. The details of the information-aware loss are given
below. First, we assume the bit follows a gaussian distribu-
tion based on their label, which is formulated as:

p(bi|y) ∼ N (Dyi, σyi) (8)

where bi denotes the i th-bit of b, Dyi the i th-bit of the
codeword Dy and σ the std. The value of σyi is updated in
the training stage, which is computed as below:

σt
yi =

1

nty
(nt−1y ∗ σt−1

yi + (wt−1
i x−Dyti)

2) (9)

where nty denotes the numbers of samples with label y in the
round t. In the practical experiments, the variance is updated
at intervals.

Then we obtain the formulation of the loss weight for the
i-th bit at the t-th iteration as follows::

αt
i = max((T − p(bi|y))/T, 0) (10)

where T > 0 is a constant, which rescales the value of
weights within [0, 1], since the value of probability density
can be very large in some extreme cases.

Finally, the bit-wsie attention loss is formulated as:

l(xt,W ) =
∑
i

αi(sgn(w
T
i x

t)−Dyt)2 (11)

where αi is the balanced weight.
The gradient of the attention loss is formulated as:

wt+1
i = wt

i − ηαt
i(w

t
ix−Dyti)x

t (12)

where η is the learning rate.
For the multi-label case, we compute the weight of xt un-

der their class label set Yt, and then the overall weight is
obtained by minimum over these values:

αt = min
yt∈Yt

(α′) (13)

Using minimum value in the multi-label case can help the
hash function focus more on the shared bits among code-
words.

Asynchronous Knowledge Distillation
For the online tasks, the previous samples cannot be used
to retrain models, which leads to catastrophic forgetting. To
solve the catastrophic forgetting in online hashing, we pro-
pose an asynchronous teacher-student framework by intro-
ducing a novel delaying teaching strategy, as illustrated in
Figure 2. Specially, we first generate different codebooks for
the teacher and the student, respectively. Then we train the
hashing functions guided by these codebooks. To preserve
the knowledge from former periods, the teacher model is up-
dated and fixed between two updates at intervals.

As for what knowledge to transfer from the teacher to
the student model, existing work focus on absolute knowl-
edge such as instance-features or local semantic relation-
ships (e.g., pairwise similarity). However, in the datum-wise
online hashing case, the local semantic knowledge is not
available due to the single datum input. And different code-
books in our method result in the inconsistent output be-
tween the teacher and the student, rendering absolute knowl-
edge transfer invalid. Therefore, we propose a novel knowl-
edge transfer strategy, which models the global semantic re-
lationship. Illustration of the differences among all the men-
tioned distillation losses are presented in Fig. 4.
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The proposed semantic relationship-based knowledge dis-
tillation allows the student to have different network archi-
tecture with the teacher, making it more flexible. The global
semantic loss is defined as:

Lglo
KD = λ||rS − rTe||2 (14)

where rS and rTe are the distances between hashing codes
of the input datum xt and the pregenerated codebooks from
the student and teacher model respectively:

rS = (k −WT
stux

tDstu)/2k

rTe = (k −WT
teax

tDtea)/2k
(15)

where Dstu and Dtea is the codebooks for the teacher and
student, respectively.

∂Lglo
KD

∂Wstu
= λWstu(r

S − rTe)DT
stu

(16)

where λ is the weight parameters.

Optimization
The overall framework of the proposed ATHOH is a
teacher-student framework. The teacher model is trained by
the objective loss defined in Eq. 4 and updated by:

W t+1
tea =W t

tea − ηxt(αt
tea · (xt

T
W t

tea −DT
teayt)) (17)

where αt
tea = [αt

tea1, α
t
tea2, · · · , αt

teak] ∈ R1×k is the
weight vector and αt

teai is defined in Eq. 10. · represents
the element-wise multiplication.

The student model is trained by the objective loss defined
in Eq. 4 and the novel global relative knowledge distillation
loss defined in Eq 14, which is updated by:

W t+1
stu =W t

stu − ηxt(αt
stu · (xt

T
W t

stu −DT
stuyt))

− λWstu(r
S − rTe)DT

stu

(18)

where rTe and rS are defined in Eq. 15 and αt
stu is defined

in the same way as αt
tea. The whole learning procedure is

summarized in Alg.1.

Algorithm 1 Asychronous Teacher-guided Bit-wise Hard
Mining for Online Hashing (ATHOH)

Input: Training set X with their label Y , the number of
hash bits k, the learning rate η, parameters λ, the total
number n of training samples and the interval size nt;

Output: The projection coefficient matrix Wstu.
1: Initialize Wstu and Wtea with the normal Gaussian dis-

tribution. Set Flag = 1.
2: Generate teacher codebooks Dtea and student Dtea as

stated in Sec. Singular vectors-based Codebooks.
3: for t = 1 : n do
4: if t <= nt then
5: Update Wstu and Wtea by Eq. 5.
6: end if
7: if Flag == 1 then
8: Update Wtea by Eq. 17.
9: end if

10: Update Wstu by Eq. 18.
11: if t%nt == 0 then
12: Flag = -Flag
13: end if
14: end for
15: return Wstu.

Experiment
Dataset and Evaluation Metric
CIFAR-10 (Krizhevsky and Hinton 2009) contains 60K 32
× 32 images in 10 classes. We randomly select 1000 images
to form the test set and 20K instances from the rest images
to form a train set. The rest images are used as the database.

NUS-WIDE (Chua et al. 2009) contains nearly 270k im-
ages with 81 classes. For NUS-WIDE, we follow (Weng and
Zhu 2020) to use the images associated with the 21 most fre-
quent concepts as the subset. We randomly select 2000 im-
ages as the test set and the remaining images are used as the
training set and the database.
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Dataset CIFAR-10 NUSWIDE
8 bits 16 bits 32 bits 48 bits 64 bits 128 bits 8 bits 16 bits 32 bits 48 bits 64 bits 128 bits

OSH 0.123 0.126 0.129 0.131 0.127 0.125 0.402 0.458 0.482 0.498 0.508 0.524
MIHash 0.512 0.640 0.675 0.668 0.667 0.664 0.551 0.608 0.632 0.634 0.635 0.617
HCOH 0.536 0.688 0.698 0.707 0.724 0.734 0.595 0.645 0.692 0.691 0.694 0.698

BSODH 0.564 0.604 0.689 0.656 0.709 0.711 0.602 0.650 0.655 0.658 0.660 0.672
OHWEU 0.528 0.619 0.680 0.683 0.705 0.702 0.610 0.632 0.658 0.661 0.665 0.682
ATHOH 0.613 0.713 0.734 0.745 0.751 0.762 0.645 0.691 0.717 0.724 0.731 0.739

Table 1: Mean Average Precision results for different number of bits on two widely-used datasets.

Dataset CIFAR-10 NUSWIDE
8 bits 16 bits 32 bits 48 bits 64 bits 128 bits 8 bits 16 bits 32 bits 48 bits 64 bits 128 bits

OSH 0.138 0.150 0.150 0.152 0.154 0.157 0.501 0.558 0.572 0.590 0.605 0.619
MIHash 0.560 0.703 0.744 0.743 0.739 0.745 0.668 0.714 0.732 0.735 0.734 0.729
HCOH 0.636 0.752 0.756 0.762 0.772 0.779 0.714 0.772 0.794 0.798 0.807 0.818

BSODH 0.623 0.709 0.730 0.742 0.749 0.767 0.703 0.722 0.728 0.735 0.758 0.772
OHWEU 0.632 0.723 0.745 0.749 0.768 0.773 0.724 0.770 0.782 0.788 0.795 0.801
ATHOH 0.697 0.786 0.791 0.795 0.805 0.812 0.762 0.807 0.825 0.836 0.844 0.853

Table 2: Precision@top500 results for different number of bits on two widely-used datasets.

Figure 5: Precision-recall curves on CIFAR10 with 32 and
64 hash bits.

Each image in CIFAR-10 and NUS-WIDE is repre-
sented by 4096 dimension features (Simonyan and Andrew
2015). For fair comparisons with existing work, all meth-
ods use identical training and test sets. We adopt Mean
Average Precision (MAP), the precision of the top 500
retrieved examples (Precision@top500), Precision-Recall
curves, Precision@top-N for quantitative evaluation, and
mAP vs. different sizes of training instances curves.

Experimental Settings

We compare our method (ATHOH) with several state-of-
the-art OH methods, including Online Supervised Hashing
(OSH) (Cakir, Bargal, and Sclaroff 2017), OH with Mu-
tual Information (MIHash) (Cakir et al. 2017), Hadamard
Codebook based Online Hashing (HCOH)(Lin et al. 2018),
Balanced Similarity for Online Discrete Hashing (BSODH)
(Lin et al. 2019) and Online Hashing with Efficient Updating
(OHWEU)(Weng and Zhu 2020).

Parameter Settings. The interval size ni is 200. The
learning rates η is 0.2 and the parameters λ to balance infor-
matic semantic loss and global knowledge distillation loss is
0.1, which is discussed in the Supplementary.

Figure 6: TopN-precision curves on CIFAR10 with 32 and
64 hash bits.

Quantitative Results
We first show the experimental results of MAP and Preci-
sion@topN on CIFAR-10 and NUS-WIDE. The results are
shown in Tab. 1 and Tab. 2. Generally, the proposed ATHOH
performs consistently better in terms of MAP and Preci-
sion@top500 on all two benchmarks. For a depth analysis,
in terms of MAP, compared with the second-best method,
i.e., HCOH, the proposed method achieves improvements of
9.3%, 3.4% on CIFAR10 and NUSWIDE, respectively. As
for Precision@top500, compared with HCOH, the proposed
method improves by 13.73%, 5.58% on two benchmarks, re-
spectively. The large performance gain in terms of MAP and
Precision@top500 validates the effectiveness of ATHOH.

Moreover, to illustrate the hash lookup results, we also
evaluate Precision-Recall curves and Precision@top100
curves under the hash bit of 32 and 64 on CIFAR10. The re-
sults are shown in Fig. 5, Fig. 6 and Fig. 7. It clearly shows
that our ATHOH obtains better results in most cases, which
is consistent with the observations in Tab. 1 and Tab. 2.

Ablation Study
To further verify our method, we conduct experiments in-
cluding (1) the analysis of each proposed component, (2) the
effectiveness of singular vectors-based codewords, (3) the
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Methods CIFAR-10 NUSWIDE
32 bits 48 bits 32 bits 48 bits

Guassian 0.692 0.709 0.689 0.698
Bernouli 0.695 0.706 0.686 0.695

Hadamard 0.704 0.707 0.692 0.691
Singular vectors 0.702 0.716 0.690 0.701

+Bit-wise Attention 0.728 0.738 0.708 0.717
+lgloKD 0.725 0.735 0.704 0.712

Ours(full) 0.734 0.745 0.717 0.724

Table 3: The mAP scores of ATHOH using components.

Figure 7: mAP vs. different sizes of training instances curves
on CIFAR10 with 32 and 64 hash bits.

effectiveness of asynchronous teacher-student framework,
(4) the effectiveness of global knowledge distillation loss.

Component Analysis of the ATHOH. Our proposed
ATHOH method consists of two major components: bit-wise
attention loss and the asynchronous teacher-student frame-
work. To evaluate each component, we conduct an abla-
tion study on retrieval performance. The experimental re-
sults are shown in TABLE 3. The bit-wise attention loss and
the knowledge distillation framework alone can improve the
performance by a large margin (almost 3%) on both multi-
labels and single-label cases. Among which the bit-wise at-
tention loss brings more improvement, since the reweight
strategy is calculated on the existing database, which solves
catastrophic forgetting in some degree. More importantly,
altogether, the proposed ATHOH achives the best result.

Evaluation on Codewords Generation Approach.
Since discriminant codewords are validated important for
the datum-wise online hashing. We conduct experiments
by using different strategies for codebooks construction, in-
cluding sampling from Bernoulli distribution and Gaussian
distribution, using the hadamada, and adopting singular vec-
tors. The experimental results are shown in TABLE 3. First,
when the value of bits is the power of 2, the singular vectors-
based methods are comparable to directly using hadamada.
Both hadamada- and singular vectors-based methods per-
form better with codewords random sampled from the sym-
metrical distribution. Second, when the length of bits is more
general, singular-vectors based methods outperform others.

Evaluation on Asynchronous Teacher-Student Frame-
work. To verify the effectiveness of the asynchronous
training strategy, we compare our proposed teacher-student
framework with two settings: (1) teacher and student are
trained synchronously. (2) We design a short-term teacher to
compare with our proposed model. The update frequency of

Methods CIFAR-10 NUSWIDE
32 bits 48 bits 32 bits 48 bits

absolute 0.706 0.720 0.688 0.701
center-s 0.707 0.722 0.691 0.698

shared 0.713 0.725 0.692 0.704
center 0.715 0.728 0.697 0.705

synchronous 0.712 0.722 0.687 0.696
short-term 0.720 0.727 0.694 0.703
Ours(full) 0.725 0.735 0.704 0.712

Table 4: The mAP scores of ATHOH by using different
teacher-student framework.

teacher is faster than that of data distribution in Eq. 9. The
experimental results are shown in TABLE 4. First, among
these teacher models, the synchronous teacher is relatively
worse. Since the student is trained in step with the teacher,
the proposed loss degrades to a general distillation loss. Sec-
ond, our proposed teacher model is better than its short-term
counterpart. Since the short-term teacher can not preserve
sufficient information of the existing database. Some param-
eters experimental results on the updata frequency of teacher
are shown in Supplementary.

Evaluation on Global Semantic Knowledge. We evalu-
ate the effectiveness of our proposed knowledge loss. First,
we train the teacher and the student with shared codewords.
In this setting, we transfer three types of knowledge, includ-
ing instance hashing codes (absolute), the similarity of hash-
ing codes, and their target codewords (center), and our pro-
posed loss (shared). Besides, we also conduct comparative
experiments with center knowledge loss where the teacher
and student are trained by different codewords. First, using
different codewords is better than using the same codewords
to train the teacher and student, respectively, which means
that the former has diverse semantic information. Second,
our novel global semantic distillation loss is better than the
center knowledge. Since the proposed loss transfers the re-
lationship between hashing codes and the other codewords
besides their target codeword. Finally, all the relative teach-
ers are better than the absolute one.

Conclusion

In this paper, we present a novel Asychronous Teacher-
Guided Bit-wise Hard Mining for Online Hashing
(ATHOH) method. The ATHOH aims to jointly address
three challenging problems in datum-wise online hashing in-
cluding the discriminative codebook design, online bit-wise
hard mining, and catastrophic forgetting. Specifically, sin-
gular vectors is utilized to generate well-spreading code-
book for datum-wise hashing. Bit-wise Attention Loss is in-
troduced to reweight each sample to pursue more compact
fitting to the ground truth during training. Last but not least,
the asynchronous scheme is proposed to alleviate the catas-
trophic forgetting by delaying update the teacher model.
Extensive experiments demonstrate the effectiveness of our
method (ATHOH).
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