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Abstract

Recently, binary neural network (BNN) based super-
resolution (SR) methods have enjoyed initial success in the
SR field. However, there is a noticeable performance gap be-
tween the binarized model and the full-precision one. Further-
more, the batch normalization (BN) in binary SR networks
introduces floating-point calculations, which is unfriendly to
low-precision hardwares. Therefore, there is still room for im-
provement in terms of model performance and efficiency. Fo-
cusing on this issue, in this paper, we first explore a novel
binary training mechanism based on the feature distribution,
allowing us to replace all BN layers with a simple train-
ing method. Then, we construct a strong baseline by com-
bining the highlights of recent binarization methods, which
already surpasses the state-of-the-arts. Next, to train highly
accurate binarized SR model, we also develop a lightweight
network architecture and a multi-stage knowledge distillation
strategy to enhance the model representation ability. Exten-
sive experiments demonstrate that the proposed method not
only presents advantages of lower computation as compared
to conventional floating-point networks but outperforms the
state-of-the-art binary methods on the standard SR networks.

Introduction

Single image super-resolution (SR), which aims to recon-
struct a high-resolution (HR) image from its degraded low-
resolution (LR) version, has gained increasing research at-
tention for decades. It enjoys various applications ranging
from medical imaging (Greenspan 2008) to security and
surveillance imaging (Rasti et al. 2016; Xin et al. 2020b). In
general, image super-resolution is an ill-posed problem due
to the one-to-many mapping. To address this inverse prob-
lem, various deep learning-based methods have been pro-
posed and achieved significant success.

With the development of deep neural networks, “Big-

ger is better” becomes the ruling maxim in deep learning
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land. Motivated by this, one major trend of SR research is
increasing convolution layers to improve performance(Lim
et al. 2017; Zhang et al. 2018b,a). Although these models re-
ceive excellent performance, they all require large amounts
of computational sources, which severely restrict their ap-
plications in the real world. Therefore, there have been im-
perative demands for light-weight and efficient CNNs for
real-world applications. To achieve this, many researchers
begin to explore the fewer parameters and less computa-
tional complexity model architecture to improve the effec-
tiveness of networks, such as recursive learning and param-
eters sharing (DRRN (Tai, Yang, and Liu 2017) and DRCN
(Kim, Kwon Lee, and Mu Lee 2016b)), squeeze operation
(e.g., IDMN (Hui et al. 2019) and ESRN (Song et al. 2020)),
group convolution (e.g., CARN-M (Ahn, Kang, and Sohn
2018)) and wavelet domain (Xin et al. 2020a). Nevertheless,
these approaches heavily rely on high-performance hard-
ware such as GPU, which are still a huge burden for smaller
devices like cell phones.

As a method to significantly reduce the model size and
inferring time, model quantization recently has been intro-
duced into SR field and has achieved initial success in BNN-
based SR field. The binary neural network (BNN), where the
full-precision floating-point weights and activations are re-
placed with 1-bit representations, enjoys 32 x memory com-
pression ratio and 58 x speed up on CPUs (Rastegari et al.
2016). Benefiting from it, Xin et al. (Xin et al. 2020c) first
explored a complete binary SR network, which utilizes a bit-
accumulation mechanism (BAM) to approximate the full-
precision convolution.

For a binary network, the input activations and weights
can only choose two large-scale values {—1, +1}, exploding
feature map values and making it hard to learn a good feature
distribution. To alleviate this problem, following the BNN-
based image classification methods, BAM also adopts batch
normalization (BN) operations to improve the representation
ability of feature maps. By re-centering the input distribu-
tion, the network could mitigate the effects of the quanti-
zation process and advance performance. However, BN in-
troduces full-precision floating-point calculations and is un-
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Figure 1: Visual qualitative comparison on binarized networks based on VDSR

friendly to low-precision hardwares, resulting in the model
less efficient. Besides, there is still a noticeable performance
gap between the binarized model and the full-precision one.

Considering the above problems, in this paper, our goal
is to train highly accurate binarized SR models without BN
layers. The main contributions of our paper are:

e We explore an effective binary training mechanism
(BTM) based on the feature distribution, which helps bi-
nary SR networks obtain excellent performance without
BN layers (shown in Fig. 1). It means our method fur-
ther saves model storage and computation, which is more
energy-efficient for low-precision devices.

e We perform a thorough experiment to find the most well-
suited optimization method and construct a strong base-
line by combining the highlights of recent binarization
methods. The experimental results show that our baseline
already surpasses all previously binarization methods.

e A novel binary network architecture and a multi-stage
knowledge distillation strategy are proposed to further im-
prove the representation ability of binary SR networks.
Equipped with these, compared to the state-of-the-arts,
our method achieves a significant performance gain.

Related Work

Single Image Super-Resolution Nowadays various SR
methods have been proposed ranging from early classi-
cal methods (Zhang et al. 2014) to recent promising deep
learning-based methods (Zhang and Tao 2020). Among
them, SRCNN (Dong et al. 2015) contains only three convo-
lutional layers, which is the first deep learning-based SR net-
work. Later on, VDSR (Kim, Kwon Lee, and Mu Lee 2016a)
increases the network depth to 20 layers and introduces
residual learning to alleviate the vanishing-gradient prob-
lem. EDSR (Lim et al. 2017) adopts the residual block and
extremely expands the network depth, which dramatically
advances the SR performance. Recently, RCAN (Zhang
et al. 2018a) utilizes the long and short residual skip con-
nections and channel attention strategy to obtain a very deep
SR network. CS-NL (Mei et al. 2020) develops a cross-
scale non-local attention network to improve the network
performance. Besides extensive efforts spent on improving
SR performance by expanding network size and attention
strategy, lightweight SR models also have been explored.
CARN (Ahn, Kang, and Sohn 2018) designs an architecture
that implemented a cascading mechanism on a residual net-
work and the version CARN-M adopts group convolution to
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reduce model parameters and computational complexity. In
addition, IDMN (Hui et al. 2019) adopts a lightweight infor-
mation multi-distillation network for image SR. OISR (He
etal. 2019) utilizes ODE-inspired schemes(Chen et al. 2018)
to alleviate the huge amount of calculations in SR process-
ing. Recently, Xin et al. (Xin et al. 2020c) first explored to
binarize the weights and activations of SR networks, which
also utilized a bit-accumulation mechanism to approximate
the full-precision convolution.

Binary Neural Networks Neural network binarization
originates from BNN (Hubara et al. 2016), where weights
and activations are restricted to +1 or -1. Later on, XNOR-
Net (Rastegari et al. 2016) improves the performance of
BNN by introducing a gain term to compensate for lost
information. In recently, Bi-Real (Liu et al. 2018) mod-
ifies the ResNet architecture in the forward propagation
and introduced a customized Approcsign function to com-
pute the gradient in the backward propagation. Similarly,
BNN+ (Darabi et al. 2018) adopts an improved approxima-
tion based on linear operations of the derivative of the sign
activation function in the backward propagation. Besides,
RTN (Li et al. 2020) reparamaterizes the weights and ac-
tivations with scale and offset parameters. IRNet (Qin et al.
2020) develops a novel information retention network to re-
tain the information in the forward and backward propaga-
tion.

Methodology
Binary Training Mechanism

In general, most existing binarization strategies do not mod-
ify the backbone architecture, which usually binarize resid-
ual blocks to train models. Let I,, denote the input activa-
tions and I,,4; denote the output activations. For a binary
convolution operation, there is a widely-used setting (shown
in Fig 2a):

L1 = BN (Fa(C(Ap(1n)))) (1)

where Ap denotes the binarization process for input activa-
tions, C'g denotes the binary convolution, F)y and BN are
the activation function and batch normalization.

As shown in Eq. (1), after the full-precision convolu-
tion is replaced with binary convolution, BN becomes the
highest computational complexity operation. It introduces
full-precision floating-point calculations and is unfriendly to
low-precision hardwares. As shown in Fig. 5, we could find
that removing BN layers directly from the BSR network will
seriously degrade network performance.
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Figure 2: (a) original binary residual block (b) the proposed
multiple receptive-field binary residual block (MRB)

To address this problem, we first consider the effect of
BN on binary networks. As we know, BN layers are critical
components for mitigating the 1-bit effects by re-centering
the input distribution. For a binary network, the output ac-
tivations of BN layers will be limited to {—1,+1} in the
subsequent convolution layer, while are independent of its
magnitude. Therefore, the binary output from a symmetric
feature distribution may be similar to that with BN. Besides,
the performance degradation may be largely due to the lack-
ing of BN in the first and last full-precision convolution op-
erations, especially for the first convolution since the global
residual learning is necessary for image-to-image translation
task. According to the discussion above,we explore a new
binary training mechanism (BTM) for better training BSR
networks without BN layers. Details are as follows:

e Weight initialization In the training processing, 1-bit
CNN s are trained with gradient-based learnable quantiza-
tion methods. When without BN layers, a nonuniformity
initialization such as min-max initialization makes the ac-
tivation distribution toward one direction (greater than O
or less than 0), resulting in the inadequate network train-
ing. Therefore, for binary convolutions, we use a simple
initialization scheme: Xavier uniform distribution (Glorot
and Bengio 2010), which is more stable and could achieve
excellent performance.

e Data initialization For binarized networks, in the back-
ward propagation, the gradient becomes zeros when en-
tering the saturating zone (shown in Fig. 3). Therefore,
it cancels the most gradients when inputs get too large,
severely affecting the training of shallow networks. To
make the training more stable and mitigate the effect of
input magnitude, we propose to normalize the input of SR
networks:

xr =

@
g

where x denotes the input images, £ and o denote the
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Figure 3: The derivative of sign function and different ap-
proximations for it

mean value and standard deviation from the dataset. Be-
sides, we add the mean value from the output images in
the last layer. The use of this makes the network obtain
more stable training and reach a better optimization.

e Activation We introduce PRelu, which has a great ability
of facilitating the binary network training.

Baseline

Little binarized SR networks attempt to binarize both
weights and activations in neural networks. Motivated by
prior work, in this section, we explore recent advanced bi-
nary methods and construct a strong SR baseline by the fol-
lowing insights and settings:
Network Settings: Firstly, consistent with the existing work
(Xin et al. 2020c), our network also adopts full-precision
convolution in the first and last convolutional layers, and all
other convolutional layers are binary convolution.
Block Structure: For a binary block, based on our proposed
BTM, we adopt a new setting: Binary Activation — Binary
Convolution — PRelu Function.
Optimization: In forward propagation, we minimize the
quantization error by introducing the scaling factors pro-
posed in (Rastegari et al. 2016). In backward propagation,
due to the sign function is not differentiable (Fig. 3a), it can-
not be applied for parameter updating directly. To handle
this problem, BAM (Xin et al. 2020c) adopts STE (Bengio
and Courville 2013) (Fig. 3b) for gradient computation in
backward propagation, which causes a larger approximation
error. In our baseline, to reduce the gradient mismatch be-
tween the gradient of Sign and STE, the higher-order estima-
tors (Liu et al. 2018; Xu and Cheung 2019) are incorporated
in out networks as the activation and weight approximation
functions to guide gradient update (Fig. 3c and Fig. 3d).
Equipped with these, our baseline achieves excellent per-
formance and already surpasses all previously binarization
methods.

Improved Binary Super-Resolution Network

Network Structure In this section, we further develop a
novel binary architecture to improve the representation abil-
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Figure 4: The output feature distribution of 4-th binary resid-
ual block in BNN+ based VDSR and ours. BTM denotes our
proposed binary training mechanism

ity of binary feature maps. As multi-path learning is effec-
tively in SR, we propose a multiple receptive-field block
(MRB) to ease the information loss in the forward propa-
gation. The basic building block is shown in Fig. 2b. The
unit first learns the representations in parallel using dilated
convolutions with different dilation rates. In order to learn a
large receptive field without additional computational cost,
we adopt the 1 x 5 and 5 x 1 convolution operation. There-
fore, the first binary convolution operation in MRB can be
expressed as:

L1 = Fa(eat(Cp,  (Ap(In)), Ch,  , (Ap(In)),
Chyi (AB(10)), C, (A (10))))

where C; denotes a m x n binary dilation convolution
with dilation rate r and cat(-) is the cross-channel concate-
nated operation. To make it more computationally efficient,
the output channels of C;  is reduced by a factor of 1/4.
In our proposed binary residual block, the parallel feature
extraction first allows the network to capture a more global
feature distribution in the horizon and vertical. Then, a 3 x
3 binary convolution is adopted to focus on local regions
information. Therefore, we can better encode the spatial in-
formation and learn richer feature representation. Besides,
it’s worth noting that the total complexity of the proposed
module is reduced by a factor of 1/3.

Multi-stage Knowledge Distillation In this paper, we
also propose to increase the representational capability of
BSR networks by distilling the information from the full-
precision network to the binary network. The teacher net-
work and the student network have a similar architecture, ex-
cept that the student is low-precision and the teacher is full-
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precision. For better illustration, we denote the full-precision
network as T and the low-precision network as S. The basic
idea is letting S mimic the behavior of T by minimizing the
loss between the outputs of T and S. To further constrain the
training of S, a multi-stage knowledge distillation strategy is
explored, which introduces the loss terms at different stages
of the network. The total loss can be expressed as:

n

Liotat = A\Lcp(SR,HR) +~ Y KL(Gs | G%)  (4)

i=1

where G = softmax(z:) and Gs = softmax(zs) denote
different-level deep features of T and S, 2; and 2 are the
logits of them. SR denotes the super-resolved image and HR
denotes the high-resolution target. We choose the L1 loss as
the main loss to measure the difference between SR and HR
and use kull-back-Leiber divergence to minimize the distri-
bution loss between T and S. A\ and v are hyper-parameters
for balancing the two losses. Besides, considering that the
SR task depends on the accuracy of pixel values, we also add
a pixel-wise loss between the outputs of student and teacher.
In our implementation, the whole function consists of two
pixel-based losses and multiple distribution-based losses:

Liotat = ALce(SR, HR) + BLcr(GS, GT)

- 4)

19> KL(G | G
i=1

Regulable Activation In order to further make the activa-
tion distributions of S more closely match them of T, we in-
troduce a regulable activation to distill information from the
teacher network. Given the activation outputs, we readjust
them by a regulable activation based on PRelu:

_ z—0+0 if >0, 6
Y= \a(z—0)+6 otherwies ©)
where 6 and ¢ are the adaptive variables varying during
the training process. By Eq.(6), the network can learn a
better distribution depending on the network training (also
shown in Fig. 4d). The rectified activations could enhance
the model representation ability and thus improve network
performance.

Experiments
Experimental Setup

Datasets DIV2K (Timofte et al. 2017), a high quality image
dataset, consists of 800 training images, 100 validation im-
ages and 100 test images. Following the setting in (Lim et al.
2017; He et al. 2019), for training, we use the 800 training
images from DIV2K. For testing, we employ four bench-
mark datasets: Set5 (Bevilacqua et al. 2012), Set14 (Zeyde,
Elad, and Protter 2012), BSD100 (Martin et al. 2001) and
Urban100 (Huang, Singh, and Ahuja 2015).

Implementation Details In this paper, to evaluate the ef-
fectiveness and universality of the proposed method, we
conduct extensive experiments on two types of SR net-
works, including the interpolation-based method VDSR



Method Scale Param Set5 Set14 B100 Urban100
PSNR [ SSIM | PSNR | SSIM | PSNR | SSIM [ PSNR | SSIM
Bicubic X2 - 33.66 | 0930 | 30.24 | 0.869 | 29.56 | 0.843 | 26.88 | 0.840
VDSR X2 667k | 37.53 | 0959 | 33.05 | 0913 | 31.90 | 0.896 | 30.77 | 0914
VDSR-BNNx X2 667k | 36.50 | 0.952 | 3233 | 0905 | 31.25 | 0.886 | 29.40 | 0.894
VDSR-BiReal* X2 667k | 36.60 | 0952 | 3241 | 0903 | 31.30 | 0.886 | 29.51 | 0.896
VDSR-BNN-+x X2 667k | 36.81 | 0.955 | 32.53 | 0.907 | 31.40 | 0.888 | 29.62 | 0.899
VDSR-RTNx X2 667k | 36.87 | 0.955 | 32.59 | 0.908 | 31.45 | 0.889 | 29.75 | 0.900
VDSR-IRNetx X2 667k | 36.94 | 0.956 | 32.64 | 0.909 | 31.47 | 0.890 | 29.80 | 0.901
VDSR-BTM(ours) X2 667k | 37.06 | 0956 | 32.72 | 0908 | 31.53 | 0.889 | 29.96 | 0.902
VDSR-IBTM(ours) |  x2 519k | 37.24 | 0.958 | 32.82 | 0.911 | 31.60 | 0.891 | 30.14 | 0.907
Bicubic x3 - 30.39 | 0.868 | 27.55 | 0.774 | 27.21 | 0.739 | 24.46 | 0.735
VDSR x3 667k | 33.66 | 0.921 | 29.77 | 0.831 | 28.82 | 0.798 | 27.14 | 0.828
VDSR-BNNx x3 667k | 3248 | 0.906 | 29.10 | 0.816 | 2821 | 0.778 | 25.97 | 0.793
VDSR-BiReal* x3 667k | 32.67 | 0907 | 29.25 | 0817 | 2832 | 0.779 | 26.10 | 0.796
VDSR-BNN+x x3 667k | 32.84 | 0.911 | 29.33 | 0.822 | 28.40 | 0.786 | 26.24 | 0.803
VDSR-RTNx x3 667k | 32.89 | 0912 | 2941 | 0823 | 2844 | 0.786 | 26.34 | 0.806
VDSR-IRNetx x3 667k | 32.88 | 0.911 | 29.40 | 0.822 | 28.43 | 0.786 | 26.30 | 0.804
VDSR-BTM(ours) x3 667k | 33.07 | 0.914 | 29.53 | 0.825 | 28.50 | 0.788 | 26.41 | 0.807
VDSR-IBTM(ours) |  x3 519k | 3323 | 0915 | 29.60 | 0.827 | 28.60 | 0.791 | 26.64 | 0.815
Bicubic x4 - 2842 | 0810 | 26.00 | 0.703 | 25.96 | 0.668 | 23.14 | 0.658
VDSR x4 667k | 31.35 | 0.884 | 28.01 | 0.767 | 27.29 | 0.725 | 25.18 | 0.752
VDSR-BNNx x4 667k | 30.19 | 0.858 | 27.30 | 0.744 | 26.70 | 0.700 | 24.28 | 0.715
VDSR-BiReal* x4 667k | 30.38 | 0.861 | 27.41 | 0.748 | 26.82 | 0.705 | 24.35 | 0.718
VDSR-BNN+x x4 667k | 3042 | 0.863 | 27.42 | 0.750 | 26.84 | 0.707 | 24.37 | 0.720
VDSR-RTNx* x4 667k | 30.54 | 0.867 | 27.53 | 0.753 | 26.89 | 0.710 | 24.45 | 0.724
VDSR-IRNetx x4 667k | 30.66 | 0.869 | 27.62 | 0.757 | 26.93 | 0.713 | 24.56 | 0.730
VDSR-BTM(ours) x4 667k | 30.83 | 0.873 | 27.76 | 0.761 | 27.03 | 0.717 | 24.73 | 0.736
VDSR-IBTM(ours) | x4 519k | 31.06 | 0.877 | 27.85 | 0.762 | 27.07 | 0.718 | 24.88 | 0.740

Table 1: Quantitative evaluation of VDSR-based state-of-the-art binarization methods. Blod indicates the best performance.
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Figure 5: Performance comparison on X2 scale datasets
of VDSR-based state-of-the-art binarization methods
with/without BN

(Kim, Kwon Lee, and Mu Lee 2016b) and the learning-
based method EDSR (Lim et al. 2017) , which are the most
typical networks in SR field. For a fair comparison, we first
construct our baseline. For VDSR, we divide the middle 18
convolution layers into 9 baseline blocks and every block
contains one short connection. For EDSR, we do not modify
the network structure and the residual blocks are directly re-
placed with our baseline binary blocks. Besides, we adopt
the sub-pixel convolution as upscale modules, where the
convolution weights are also binary. Then, for our improved
binary super-resolution network, the baseline binary blocks
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Models Set5 B100
VDSR 37.06 31.53
VDSR + MRB 37.16 31.57
VDSR + MRB + DL 37.19 31.58
VDSR + MRB + DL + PL 37.21 31.58
VDSR + MRB + DL + PL + RA 37.24 31.60

Table 2: The effect of different components in the pro-
posed method. MRB = Multiple receptive-field block, DL
= distribution-based distillation loss, PL. = pixle-based dis-
tillation loss, RL = regulable activation.

are replaced with our multiple receptive-field block. Be-
sides, the VDSR and EDSR are all divided into four stages
for knowledge distillation and the hyper-parameters A , (3
and -y are set to 0.4, 0.6 and 0.005.

Training Details In this paper, we reconstruct SR images
from LR images with different scaling factors x 2, x 3 and
x4. We obtain LR images by bicubic interpolation and ran-
dom crop them into a set of 48 x 48. Due to the training
difficulty of large scaling factors, for the interpolation-based
method VDSR, the size of x3 and x 4 input patches are 32
x 32 and 24 x 24. The mini-batch size is set to 16 and the
learning rate is set to 1 x 10~%. For optimization, we use
Adam with 5; = 0.99 and 82 = 0.999 and implement all
experiments with Pytorch framework on a Telsa V100 GPU.



Method Scale Param Set5 Set14 B100 Urban100
PSNR [ SSIM | PSNR | SSIM | PSNR | SSIM [ PSNR | SSIM
Bicubic X2 - 33.66 | 0930 | 30.24 | 0.869 | 29.56 | 0.843 | 26.88 | 0.840
EDSR x2 | 40.12M | 38.11 | 0960 | 33.92 | 0.920 | 32.32 | 0.901 | 3293 | 0.935
EDSR-BNN x2 | 40.12M | 3447 | 0938 | 31.06 | 0.891 | 30.27 | 0.872 | 27.72 | 0.864
EDSR-BiReal* x2 | 40.12M | 37.13 | 0.956 | 32.73 | 0.909 | 31.54 | 0.891 | 29.94 | 0.903
EDSR-BNN+x x2 | 40.12M | 37.49 | 0958 | 33.00 | 0912 | 31.76 | 0.893 | 30.49 | 0911
EDSR-RTNx x2 | 40.12M | 37.66 | 0.956 | 33.13 | 0.914 | 31.85 | 0.895 | 30.82 | 0.915
EDSR-BTM(ours) x2 | 40.12M | 37.68 | 0.956 | 33.20 | 0.914 | 31.87 | 0.895 | 30.98 | 0.916
EDSR-IBTM(ours) x2 | 31.73M | 37.80 | 0.960 | 3338 | 0.916 | 32.04 | 0.898 | 31.49 | 0.922
Bicubic x3 - 30.39 | 0.868 | 27.55 | 0.774 | 27.21 | 0.739 | 24.46 | 0.735
EDSR x3 | 43.07M | 34.65 | 0.928 | 30.52 | 0.846 | 29.25 | 0.809 | 28.80 | 0.865
EDSR-BNNx x3 | 43.07M | 20.85 | 0.399 | 19.47 | 0299 | 19.23 | 0.285 | 18.18 | 0.307
EDSR-BiRealx x3 | 43.07M | 33.17 | 0.914 | 29.53 | 0.826 | 28.53 | 0.790 | 26.46 | 0.801
EDSR-BNN+x x3 | 43.07M | 3356 | 0919 | 29.73 | 0.831 | 28.68 | 0.794 | 26.80 | 0.820
EDSR-RTNx x3 | 43.07M | 3392 | 0922 | 29.95 | 0.835 | 28.80 | 0.797 | 27.19 | 0.831
EDSR-BTM(ours) x3 | 43.07M | 33.98 | 0.923 | 30.04 | 0.836 | 28.85 | 0.798 | 27.34 | 0.833
EDSR-IBTM(ours) x3 | 34.68M | 3410 | 0.924 | 30.11 | 0.838 | 28.93 | 0.801 | 27.49 | 0.839
Bicubic x4 - 28.42 | 0810 | 26.00 | 0.703 | 25.96 | 0.668 | 23.14 | 0.658
EDSR x4 | 42.48M | 3246 | 0.897 | 28.80 | 0.787 | 27.71 | 0.742 | 26.64 | 0.803
EDSR-BNNx x4 | 4248M | 17.53 | 0.188 | 17.51 | 0.160 | 17.15 | 0.151 | 16.35 | 0.163
EDSR-BiReal* x4 | 4248M | 3081 | 0871 | 27.71 | 0.760 | 27.01 | 0.716 | 24.66 | 0.733
EDSR-BNN+x x4 | 4248M | 31.35 | 0.882 | 28.07 | 0.769 | 27.21 | 0.724 | 25.04 | 0.749
EDSR-RTNx x4 | 4248M | 31.49 | 0.884 | 28.14 | 0.771 | 2727 | 0.726 | 2520 | 0.756
EDSR-BTM(ours) x4 | 42.48M | 31.63 | 0.886 | 2825 | 0.773 | 27.34 | 0.728 | 2538 | 0.762
EDSR-IBTM(ours) | x4 | 34.09M | 31.84 | 0.890 | 28.33 | 0.777 | 27.42 | 0.732 | 2554 | 0.769

Table 3: Quantitative evaluation of EDSR-based state-of-the-art binarization methods. Blod indicates the best performance.

Models PSNR SSIM Params
VDSR-BAM 36.60 0.953 668K
VDSR-BTM 37.06 0.956 667K
SRResNet-BAM  37.21 0.956 1547K
VDSR-IBTM 37.24 0.958 519K

Table 4: Comparison between VDSR-BAM and SRResNet-
BAM and ours on Set5 test set(x2).

Comparison with State-of-the-Art Methods

In this paper, we use two typical image quality metrics
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) to evaluate the performance of the super-resolved
images. Figure 5 shows the effect of BN layers in existing
BNN based SR networks. Table 1 and Table 3 show the com-
parison between our method and the start-of-the-art binary
methods, including BNN (Hubara et al. 2016), Bi-Real (Liu
etal. 2018), BNN+ (Darabi et al. 2018), RTN (Li et al. 2020)
and IRNet (Qin et al. 2020) .

Comparison with/without BN In our experiments, we first
remove all BN layers to demonstrate the effect of BN layers
in existing BNNs. Besides, considering that the Relu will
make the input activations only contain +1 values, we adopt
the Hardtanh as activation function that is adapted to the sign
function. The quantitative comparisons of the performances
are summarized in Fig 5. From it we can see when without
BN, the existing binary methods suffer serious performance
degradation. Among them, Bi-Real is significantly higher
than most other methods due to the information protection
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capability of shortcuts. RTN obtains the best performance
by reparameterizing the weights and activations with scale
and offset, which provides a similar effect like BN.
Comparison on VDSR In order to apply most existing bi-
nary methods into SR networks without BN, we first train all
comparison methods by our proposed binary training mech-
anism. * denotes the training with our binary training mech-
anism. Form Table 1 and Figure 5, we can clearly see the
performance of all methods is significantly improved by the
BTM. Besides, based on the same network, our baseline
named VDSR-BTM already surpasses most preciously bi-
narization methods. For our VDSR-IBTM, benefiting from
the structure improvement and knowledge distillation, our
method could achieve the best on all benchmark datasets
over other state-of-the-art BNNs. Besides, we observe that
the output activation with our strategies presents a better fea-
ture distribution which is similar to it with BN (shown in Fig
4). For scaling factor x 2, our VDSR-IBTM achieves 37.24
dB on Set5, which is better than BNN+, RTN and IRNet by
0.43 dB, 0.37 dB and 0.3 dB.

Comparison on EDSR During our experiments on EDSR,
we find that a complete binary upscale module will lead to a
noticeable drop in performance. Therefore, we adopt binary
filters and full-precision activations in this paper while the
weights and activations are all full-precision in (Xin et al.
2020c). Table 3 shows quantitative comparisons for EDSR.
As for our EDSR-IBTM, it can reduce the performance gap
with its full-precision counterpart to ~0.3 dB on x4 B100,
which is powerful enough to become a viable alternative to
the full-precision network.

Comparison with State-of-the-Art BSR In this paper,
we also show a comparison between our method and
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Figure 6: Visual qualitative comparison on x4 scale datasets

the start-of-the-art BSR method: bit-accumulation mecha-
nism (BAM) proposed in (Xin et al. 2020c). For VDSR-
BAM and VDSR-BTM, our residual block contains one
skip-connection while BAM contains multi-skip connec-
tions. Compared with VDSR-BAM, our method needs fewer
floating-point calculations. From Table 4, our baseline al-
ready outperforms it and our VDSR-IBTM outperforms it in
a large margin.

Qualitative Evaluation In Figure 6, we also show visual
comparisons on different testing datasets. It can be found
that our method achieves better qualitative results compared
with other methods. The SR images using our method are
similar to their original full-precision counterparts.

Ablation Study

In order to study the effects of each part proposed in our
work, we gradually modify the model and compare their dif-
ferences. From Table 3, when we compare the results of the
first row and second row, we find the proposed network is
efficient in reducing model parameters and improving net-
work performance. It is also observed that benefiting from
multi-stage knowledge distillation and regulable activation,
the SR networks could obtain excellent performance. Be-
sides, the feature distributions can be adjusted by network
training (as shown in Fig 4), which advances the network
performance. These all illustrate that our proposed method
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is effective for binary super-resolution.

Conclusion

In this work, we explore a novel training mechanism, help-
ing us train an accurate binary SR network without batch
normalization operations. In addition, we construct a strong
baseline by combining the highlights of recent binarization
methods. We also develop a novel binary network structure
and a multi-stage knowledge distillation strategy to reduce
the performance gap between the binarized network and the
full-precision one.
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