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Abstract

The significant progress on Generative Adversarial Networks
(GANs) has facilitated realistic single-object image genera-
tion based on language input. However, complex-scene gener-
ation (with various interactions among multiple objects) still
suffers from messy layouts and object distortions, due to di-
verse configurations in layouts and appearances. Prior meth-
ods are mostly object-driven and ignore their inter-relations
that play a significant role in complex-scene images. This
work explores relationship-aware complex-scene image gen-
eration, where multiple objects are inter-related as a scene
graph. With the help of relationships, we propose three major
updates in the generation framework. First, reasonable spa-
tial layouts are inferred by jointly considering the semantics
and relationships among objects. Compared to standard loca-
tion regression, we show relative scales and distances serve
a more reliable target. Second, since the relations between
objects significantly influence an object’s appearance, we de-
sign a relation-guided generator to generate objects reflecting
their relationships. Third, a novel scene graph discriminator
is proposed to guarantee the consistency between the gener-
ated image and the input scene graph. Our method tends to
synthesize plausible layouts and objects, respecting the inter-
play of multiple objects in an image. Experimental results on
Visual Genome and HICO-DET datasets show that our pro-
posed method significantly outperforms prior arts in terms of
IS and FID metrics. Based on our user study and visual in-
spection, our method is more effective in generating logical
layout and appearance for complex-scenes.

Introduction
In the past few years, text-to-image generation has drawn
extensive research attention for its potential applications in
art generation, computer-aided design, image manipulation,
etc. However, such success is only restricted to simple image
generation, which only contains a single object in a small do-
main, such as flowers, birds, and faces (Reed et al. 2016; Bao
et al. 2017). Complex-scene generation, on the other hand,
targets for synthesizing realistic scene images out of com-
plex sentences depicting multiple objects as well as their in-
teractions. Nevertheless, generating complex-scenes on de-
mand is still far from mature based on recent studies (John-
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Figure 1: Relationship matters for complex-scene image
generation. The same object pair (e.g., man and board)
could show different object shapes, scene layouts and ap-
pearances under different relationships.

son, Gupta, and Fei-Fei 2018; Xu et al. 2018; Li et al. 2019;
Hinz, Heinrich, and Wermter 2019).

Scene graph, a structured language representation, cap-
tures objects and their relationships described in the sen-
tence (Xu et al. 2017). Such representation is proven ef-
fective for image-text cross-modal tasks, such as structural
image retrieval (Johnson et al. 2015; Schuster et al. 2015;
Johnson, Gupta, and Fei-Fei 2018), image captioning (Yang
et al. 2019; Li and Jiang 2019; Li et al. 2018) and visual
question answering (Teney, Liu, and van Den Hengel 2017;
Norcliffe-Brown, Vafeias, and Parisot 2018). In this work,
we focus on complex-scene image generation from scene
graphs. Although extensive works have been done in scene
graph generation from image (Xu et al. 2017; Zellers et al.
2018; Li et al. 2017; Zhang et al. 2017a) (i.e. image→scene
graph), reversely generating a complex-scene image from a
scene graph remains challenging, due to the polymorphism
nature of one-to-many mapping from a given scene graph to
multiple reasonable images with different scene layouts.

A general pipeline for scene graph based image genera-
tion usually consists of two stages (Johnson, Gupta, and Fei-
Fei 2018). The first one learns to synthesize a rough layout
prediction from the scene-graph input. Usually, the object
features are encoded with a graph module (Johnson, Gupta,
and Fei-Fei 2018; Ashual and Wolf 2019), followed by a
direct regression of bounding-box locations. At the second
stage, a position-aware feature tensor, that combines object
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features and layout generated in the first stage, is fed into an
image decoder for generating the final image. For enhancing
the object appearances in generated images, Ashual et al.
separates appearance embedding from layout embedding.

However, previous works on complex-scene generation
heavily suffer from two fundamental problems: messy lay-
out, and object distortion. 1) Messy layouts. Image gener-
ation models are expected to figure out the reasonable lay-
out from scene-graph inputs. However, there exist an infinite
number of reasonable layouts for a given scene-graph. Di-
rectly fitting a specific layout introduces huge confusion, and
limits the generalization ability. As a result, existing meth-
ods are still struggling with messy layouts in practice. 2)
Distortion in object appearance. Due to the high diversity
in object categories, layouts, and relationship dependencies,
objects are often distorted during generation. For each ob-
ject, the texture and local appearances should be inferred,
respecting both its category and allocated spatial arrange-
ment. Moreover, complex and various relations among dif-
ferent objects in the scene-graph can further increase the
diversity of shape appearances. As shown in Fig. 1, even
with the same object pairs, equipping different relationships
could lead to totally different scene layouts and appearances.

Some works (Ashual and Wolf 2019) simplify the task by
only taking a few simple spatial relationships among objects
(such as “left”, “right” or “above”) but ignoring other com-
plex relationships (such as verbs). Meanwhile, to reduce the
complexity, some works only consider one specific stage of
this task, such as layout generation from scene-graph (Jyothi
et al. 2019), image generation from layout (Zhao et al. 2018;
Sun and Wu 2019). All these works did not take account
of the semantics and complex relationships among objects,
which limits their application prospects.

In this work, we explore relationships to mitigate the
above issues. We consider both simple spatial relationships
and complex semantic relationships into consideration. We
observed that, in different realistic images, relative scale
and distance ratios between two interrelated objects from
the same “subject-relation-object” triplet usually conform to
a norm distribution with low variance, as in Fig. 2. Even
though the “human” have various poses, and the skateboard
can be oriented to different directions, the scale ratio be-
tween the two bounding boxes is naturally clustered with
very low variance. Thus, we first introduce relative scale
ratios and distance for measuring the rationality of layouts
generated from the scene graph. It means that all various
reasonable layouts relevance to one specific scene graph can
be measured under a common standard and result in very
similar results. After that, we proposed a Pair-wise Spatial
Constraint Module for assisting layout generation. Our Spa-
tial Constraint Module is influenced by object pairs and their
corresponding relation jointly. Meanwhile, the objective of
this novel module is to correct the layout by fitting the rel-
ative scale ratio and relative distance ratio between interre-
lated object pair beside the absolute position coordinates of
each object. In this way, the spatial commonsense of com-
plex scene with multiple objects can be modeled.

Moreover, for enhancing the influence of relation for ob-
ject appearance generation, we proposed a Relation-guided
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Figure 2: Distributions of relative scale and distance for
“man riding skateboard” and “man sitting on bench”.

Appearance Generator and a novel Scene Graph Discrim-
inator for guiding image generation. Unlike the traditional
discriminator that only judges whether the image is fake or
not, our proposed new discriminator has two main functions.
One is to determine whether the objects in the generated im-
age are relevant to the objects described in the text scene
graph or not, and the other is to discriminate the relation pre-
dictions among objects from the generated image are corre-
spondence with the relationship described in the input scene
graph. By feeding back these strong discriminant signals,
our Scene Graph Discriminator guarantees the generated ob-
ject patches align with not only single object fine-grained in-
formation but also the relation discrepancy among objects.

The main contributions can be summarized as follows:
• A novel pair-wise spatial constraint module with super-

visions of relative scale and distance between objects for
learning relationship-aware spatial perceptions.

• A relation-guided appearance generator module followed
by a scene graph discriminator for generating reasonable
object patches respecting object fine-grained information
and relation discrepancy.

• A general framework for synthesizing scene layout and
images from scene graphs. The experimental results
on Visual Genome (Krishna et al. 2017) and human-
objects interactions dataset HICO-DET (Chao et al. 2018)
demonstrate the complex-scene images generated by our
proposed method follow the common sense.

Related Work
Image Synthesis from Sentence is a conditional image gen-
eration task whose conditional signal is natural language.
Textual descriptions are traditionally fed directly to a recur-
rent model for semantic information extractions. After that,
a generative model will produce the results conditioned on
this vectorized sentence representation. Most of these tasks
specialize in single object image generation (Reed et al.
2016; Zhang et al. 2017b; Xu et al. 2018), whose layout
is simple and the object usually centered with a large area
in the image. However, generating realistic multi-object im-
ages conditioned on text descriptions is still a difficult task,
since it addresses very complex sense layout generation and
various object appearances mapping, and both of scene lay-
out and object appearances are heavily influenced by the
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spatial and semantic relationships cross objects. Further-
more, encoding all information, including multiple object
categories and the interactions among them into one vec-
tor, usually leads to critical details lost. Meanwhile, directly
decoding images from such an encoded vector hurts the in-
terpretability of the model.

Scene Graph (Xu et al. 2017) is a directed graph that rep-
resents the structured relationships among objects in an ex-
plicit manner. Scene graphs have been widely used in many
tasks such as image retrieval (Johnson et al. 2015), image
captioning (Anderson et al. 2016), which serves as a medium
that bridges the gap between language and vision.

Image Synthesis from Scene Graph (Johnson, Gupta,
and Fei-Fei 2018) is a derivative of sentence based multiple-
object image generation. Since the conditional signals are
scene graphs, graphic models are usually applied for extract-
ing essential information from the textual scene graph. After
that, these extracted features are directly used for regressing
the scene layouts and then treated as input to an image de-
coder for generating the final image (Ashual and Wolf 2019).
Such a framework is applicable to generation image contains
multiple objects with simple spatial interactions. However, it
is still suffering from modeling the reasonable scene layouts
and appearances following commonsense due to the impli-
cation of semantic relationships in the scene graph.

In this paper, we focus on image generation from the tex-
tual scene graph. Different from previous methods, we high-
light the impact of relationships among objects for dealing
with the messy layout and various object appearance.

Method
A scene graph is denoted as G = {C,R, E}, where C =
{c1, c2, ..., cn} indicate the nodes in the graph, each ci ∈ C
denotes the category embedding of an object or instance.
Note that we use words like ”object” or ”instance” in ref-
erence to a broad range of categories from ”human”, ”tree”
to ”sky”, ”water” etc. The edges of the graph are extracted
as a relationship embedding set R. Two related objects cj
and ck associate with one relationship rjk ∈ R, which leads
to a triplet 〈cj , rjk, ck〉 in the directed edge set E .

Given a scene graph G and its corresponding image I ,
scene graph-based image generation model aims to generate
an image Î according to G by minimizing D(I, Î), where
D(I, Î) measures differences between I and Î . A standard
scene graph to image generation task can be formulated as
two separate tasks: a scene graph to layout generation task
which extracts object features with spatial constraints from
scene graphs, and an image generation task, which gener-
ates images conditioned on the predicted object features and
learned layout constraints, as shown in Fig. 3 (left).

In this paper, we extend the traditional framework by em-
phasizing the influence of relationshipR for both object lay-
outs and object appearances generation. As shown in Fig. 3
(right), three novel modules are proposed:

• Pair-wise Spatial Constraint Module: a module for con-
straining layout generation according to the semantic in-
formation extracted from E .

• Relation-guided Appearance Generator: for each ob-
ject ci, we introduce the semantic information of its con-
nected relationships {rj | 〈ci, rj , ∗〉 ∈ E} to influence the
shape and appearance of the generated image of ci.

• Scene Graph Discriminator (Dsg): a novel discrimina-
tor for strengthening the generated image Î to be relevant
to the appearances of object C, and the relationshipsR in
the edge set E .

Layout Generator
Layout generator aims to predict bounding boxes bi =
(xi, yi, wi, hi) for each object oi in given scene graph G,
where xi, yi, wi, hi specifies normalized coordinates of the
center, width and height in ground-truth image I .

In previous work, the object representations are usually
extracted from scene graph inputs, and then be passed to a
box regression network to get the bounding box predictions
b̂i = (x̂i, ŷi, ŵi, ĥi). The box regression network is trained
by maximizing the objective:

Lbox = −
n∑

i=1

‖ bi − b̂i ‖2, (1)

which penalize the L2 difference between ground-truth and
predicted boxes. n indicates the amount of objects.

Since there are various reasonable layouts existing, as pre-
viously stated, a scene graph to layout task requires address-
ing challenging one-to-many mapping. Directly regressing
layout to offsets of one specific bounding box would hurt
the generalization ability of the layout generator, and make
the layout generator to be difficult to convergence. In order
to generate reasonable layouts, we relax the constraint of
bounding box offsets regression and proposed a novel spa-
tial constraint module for ensuring the rationality of layout.

Our Pair-wise Spatial Constraint Module introduces
two novel metrics for measuring the realistic of layouts.
1. Relative Scale Invariance. The scale of an object is repre-
sented by the diagonal length of its bounding box. For any
given 〈cj , rjk, ck〉 triplet, the ratio between the scale of the
subject and the scale of the object in different images are of-
ten roughly the same, as shown in Fig 4 (Left). We formulate
the relative scale between the layout bj and bk as

sjk =
√
w2

j + h2j

/√
w2

k + h2k. (2)

2. Relative Distance Invariance. Similar to relative scale,
relative distance target at calculating the distance between
two objects in triplet normalized by the scales of two objects.
The relative distance of related object pair cj and ck in real-
istic images is also naturally clustered to one specific value,
and the distributions of relative distance for different triplets
are usually with low variance, as shown in Fig 4 (Right).
Normally, horizontal flips of images rarely alter spatial rela-
tionship distributions, we relax this constraint by using the
absolute value of the horizontal coordinate difference. Most
importantly, we normalize distance by the summed scales of
object pairs so that the zooming effect of object depth can
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Figure 3: Illustrations of standard (left) and our (right) framework for scene graph to image generation. Left: Directly generating
layout and image based on object features extracted from scene graph. Right: Our proposed framework with object pair-wise
spatial constraints and appearance supervision respecting relationships among objects.
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Figure 4: Distributions of relative scale and distance vari-
ance among top-100 triplets in VG and HICO-DET datasets.
Low diversity of relative scale and distance is observed, fol-
lowing the property of commonsense knowledge.

be canceled out. Therefore, the relative distance between the
layout bj and bk can be formulated as

~djk = [|xj − xk|, yj − yk]T
/(√

w2
j + h2j +

√
w2

k + h2k

)
.

(3)
We have keenly observed that relationship in a semantic

form comes with it an inherent spatial constraint that has
not been fully explored by others. For example, the relation-
ship “holding” implies that the object should be within arm’s
reach of the subject instead of miles away. The relationship
“walking” indicates the relative vertical arrangement be-
tween subject and object heavily, whether it’s “man walking-
on street” or “dog walking-on floor”. It means the relative
scale and relative distance between two objects heavily de-
pend on the relationship or interaction between these two
objects. Therefore, we devise a training scheme that explic-
itly leverages this constraint.

In this work, the scene graph G is first converted to object
feature vectors C and relation embeddings R, and then fed
into a Graph Convolutional Network (GCN). The GCN out-
puts updated object level feature vector oi = T (ci, Ci,Ri)
aggregated with relation information, where T is the graph
convolutional operation, Ci is the set of object embeddings
relevant to ci, Ri is the set of embeddings for relations
among ci and Ci. It means the output vector oi for an ob-
ject ci should depend on representations of relationships and
all objects connected via graph edged jointly. After that, we
apply the updated object representations for generating the
layout for object ci by b̂i = B(oi), where B is an bounding
box offset regression network. We construct a scale-distance
objective for our proposed spatial constraint module to assist

the training progress of B:

Lscm=−
∑

0<j,k<n
〈cj ,rjk,ck〉∈E

‖ sjk− ŝjk ‖2+‖ ~djk−
~̂
djk ‖2, (4)

where ŝjk and ~̂
djk is the relative scale and relative distance

between generated layouts for related object pair cj and ck
respectively. Lscm is only computed on the connected object
pairs in scene graph, since the relative scale and distance of
two objects depend on the relationship between them, as we
shown in Fig. 1.

With the supervision of relative scale and distance, the
box regression network learns to arrange object boxes prop-
erly for reasonable layout generation.

Image Generator
Starting from the original object representations C ∈ Rn×d1

and initial relation embeddings R ∈ Rm×d2 , we can com-
pute a combined “object-relation” vector vi for each object
ci in scene graph:

vi =
(
ci ++

1

|Ei|
∑

〈ci,rj ,∗〉∈Ei

rj

)
+ zi, (5)

where ++ indicates a vector concatenation operation, Ei ∈
E is the collection of all triplet relevant to object ci, zi
is a d1 + d2 dimensional noise vector randomly sampled
from a Gaussian distribution, which aims to generate non-
deterministic object features. The object and averaged rela-
tion embeddings are eventually be concatenated as inputs of
our Relation-guided Appearance Generator, which con-
sists of an object mask predictor gm, an object appearnce
feature predictor go and a full image generator.

The combined vector {vi}ni=1 will be sent simultaneously
to gm and go, both of which are four-layer conv nets normal-
ized with spectral normalization techniques (Miyato et al.
2018). Through an STN block (Jaderberg et al. 2015), the
two outputs for different objects will first be filled into their
respective bounding box layouts. Then we obtain a set of
object shape tensor and appearance tensor. By multiplying
these two tensor, we can generate the final relation-guided
appearance feature tensor for all objects in scene graph as

a(G) = {S(̂bi, gm(vi)) ◦ S(̂bi, go(vi))}ni=1, (6)

where S is the STN block.
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After that, our full image generator generate the image
conditioned on all object appearance feature tensors a(G)
and an additional noise vector zI . In detail, our image gen-
erator utilizes the ResNet architecture (He et al. 2016) con-
sists of six ResBlocks as backbone. Consider generating
a 256×256 image for scene graph, a randomly generated
global latent vector zI is a vector sampled from normal
distribution. The vector is then mapped and reshaped to a
1024×4×4 (channels, width, and height) tensor through a
fully-connected layer. Then, the tensor will be sent to the
first ResBlock. Each of the six ResBlocks will upsample
it’s inputs bilinearly with a ratio of two. In the meantime,
the channel number drops by a factor of 2 except for the
third block. Block by block, we fuse object appearance ten-
sor {fi = Gobj(vi)}ni=1 with the outputs of each ResBlock
(global appearance tensor) using the ISLA-Norm method
proposed by (Sun and Wu 2019). The final generated image
Î = Ît comes from the outputs of the last ResBlock,

Ît = Rt(Ît−1, a(G))
Î1 = R1(zI , a(G))

(7)

where R indicate a ResBlock equipped with ISLA-Norm
module, t is the amount of ResBlocks in our image genera-
tor, Îi is output of the i-th ResBlock.

Our image generator takes the object appearance features
with relational information and global random noise as con-
dition, adapts scene composition, and finally generates the
realistic image Î for scene graph S.

Image Discriminator
Similar to the image generator, we adapt ResNet with down-
sampling blocks for image discriminator. The ResNet back-
bone consists of a different number of downsampling Res-
Blocks with respect to the input image sizes. The image
downsampled by ResBlocks goes through a linear layer, and
the outputs of the linear layer are further summed channel-
wise to form a scalar output as the global discriminator score
Dimg to measure whether the input image is real or not,
which is similar to traditional GAN based methods.

Since different relationships result in diverse appearance
in the same object, we argue that the learned object fea-
ture representation reflects not just class-related object styles
but also the relationship-aware appearances. Thus, we pro-
posed a novel Scene Graph Discriminator Dsg to measure
whether the scene graph extracted from the generated image
is associated with the given textual scene graph or not. In
detail, we first extract object-level feature patches {pi}ni=1
rerouted from the second layer of ResNet backbone, then
resize these feature patches to the same size by an RoI align
layer (He et al. 2017). Then we introduce an object classifier
Fobj , which attempts to classify the feature patches into cat-
egories. By pairing object feature tensors according to the
edges of the scene graph, we send the paired object feature
pj and pk to the relationship classifier Frel, which aims to
predict the type of relationship of given object feature pair.
Our proposed Dsg aims to encourage the image generator to
be aware of the object categories and relationships exists in

the scene graph:

Dsg(I)=
1

n

n∑
i=0

Fobj(ci|pi)+
1

|E|
∑

0<j,k<n
〈cj ,rjk,ck〉∈E

Frel(rjk|pj , pk).

(8)
Moreover, we introduce an object discriminator Dobj to
measure whether each object in image appears realistic
based on {pi}ni=1.

The overall objective function for training layout genera-
tor, image generator and discriminators is defined as:

L = λ1Lbox + λ2Lscm + λ3Lobj + λ4Lsg + λ5Limg, (9)

whereLimg is image adversarial loss fromDimg ,Lobj is ob-
ject adversarial loss from Dobj , Lsg is scene graph relevant
loss from Dsg . In our experiments, we set the loss weight
parameters λ1, λ2, λ3, λ4 = 1, λ5 = 0.1.

Experimental Results
We evaluate our proposed method for generating images at
three different resolutions 64×64, 128×128, and 256×256
in below two datasets:
Visual Genome (Krishna et al. 2017) was constructed with
cognitive tasks that provide crowd-sourced dense annota-
tions of both scene graphs and images. Following the set-
tings of (Johnson, Gupta, and Fei-Fei 2018), we experiment
on Visual Genome version 1.4. We keep 178 objects and 45
relations in the dataset by removing images with object and
relationship categories less than 2000 and 500, respectively.
HICO-DET (Chao et al. 2018) was built for modeling
humans-object interactions. Compared with Visual Genome,
the scene graphs provided in the dataset are human-centered.
We keep images that have object categories higher than 1000
and discard images with interaction types that repeat less
than 250 times, leaving 19 objects and 22 relationship types
in total. Images with Object size below 32×32 and images
with objects less than 2 or more than 10 are ignored. Finally,
we get 15963 train images and 4034 test images.

The COCO dataset (Caesar, Uijlings, and Ferrari 2018)
is not used in this paper because the relationship types in
COCO are too simple, consisting mainly of naive spatial ar-
rangement relations. We trained models using Adam with an
initial lr=10−4 and batch size of 32 for 200 epochs.

Several previous works target at multi-object image gen-
eration. Most of these works are about image synthesis from
the ground-truth layout or pixel-level instance segmentation
annotation (Sun and Wu 2019; Hong et al. 2018; Li et al.
2019). The work of Ashual and Wolf aims to generated im-
ages from an input scene graph. However, the scene graph
used in their work is simplified by only equipping six spa-
tial relationships (right-of, left-of, above, below, surround-
ing and inside). Moreover, location attributes are assisted by
additional information for each node in scene graph. More-
over, location attributes are assisted by additional informa-
tion for each node in scene graph. Luo et al. only focus on
spatial relationships instead of semantic relationships. Be-
sides, objects used in their paper are mostly rigid bodies. Our
paper learns from not just spatial relationships, but seman-
tic relationships (e.g. looking at) as well. We use datasets
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Resolution Method Visual Genome HICO-DET
IS FID IS FID

64×64

I 13.9 ± 1 0.0 9.8 ± 0.5 0.0
sg2im† 6.3 ± 0.2 47.6 4.4 ± 0.1 99.9

LostGAN† 6.9±0.1 38.7 4.5±0.3 86.4
Ours† 7.5 ± 0.4 29.0 5.5 ± 0.1 41.7
sg2im 5.5 ± 0.1 47.5 4.4 ± 0.1 94.3

PasteGAN 6.9±0.2 58.5 - -
Ours 7.0 ± 0.2 37.7 5.3 ± 0.7 47.4

128×128

I 22.5 ± 1.9 0.0 13.7 ± 0.7 0.0
sg2im† 6.3 ± 0.2 83.9 4.6 ± 0.1 83.7

LostGAN† 7.4±0.3 53.4 4.8±0.1 79.9
Ours† 9.4 ± 0.4 41.0 6.5 ± 0.1 60.6
sg2im 6.2 ± 0.2 83.8 4.6 ± 0.1 123.0
Ours 9.2 ± 0.8 53.0 5.0 ± 0.3 61.4

256×256
I 30.1 ± 2.3 0.0 16.3 ± 0.5 0.0

Ours† 12.6 ± 0.5 68.3 7.5 ± 0.1 78.3
Ours 10.8 ± 0.9 85.7 6.9 ± 0.3 80.5

Table 1: The comparison of IS and FID among different
methods. On each dataset, the test set samples are randomly
split into 5 groups. The mean and standard deviation across
splits are reported in the above table. † indicates that the im-
ages are generated based on the ground-truth layouts instead
of the generated layouts. I denotes the real image.

that involve a large number of non-rigid objects that have
various shapes and appearances and be sensitive to their rel-
evant semantic relationships, which drastically increase the
difficulty of our task. PasteGAN (Yikang et al. 2019) applies
both of the scene graph and ground-truth image crops as
the inputs for complex-scence image generation. According
to our best knowledge, sg2im (Johnson, Gupta, and Fei-Fei
2018) is the only related work about complex-scene image
generation images from scene graphs that contain semantic
and complex relationships among objects.
Compared Methods In this paper, we compare our pro-
posed method with sg2im and PasteGAN for complex-
scene image generation. Moreover, to demonstrate the ef-
fectiveness of our relation-guided appearance generator and
scene graph discriminator, we also compare our method with
LostGAN (Sun and Wu 2019) which is designed for gener-
ating images by given ground-truth layout.

Quantitative Results
We adopt two metrics to evaluate the generated images.
Inception Score (IS) (Salimans et al. 2016) measures the di-
versity of generated images and their quality. A pre-trained
InceptionV3 model is adapted to predict the class probabili-
ties for given image. Larger inception scores are better.
Fréchet Inception Distance (FID) (Heusel et al. 2017)1

measures the Fréchet distance between the multivariate
Gaussian distribution of real images and generated ones.
Lower FID scores are better.
These two metrics are widely used evaluation metrics for
generative models. IS aims to evaluate the reality of a single
object, while FID is more suitable to reflect the quality of
the generated image contains multiple objects.

1https://github.com/mseitzer/pytorch-fid

Method IS FID
Ours 9.2 ± 0.8 53.0

w/o Pair-wise Spatial Constrain Module (Lscm) 8.6 ± 1.2 59.8
w/o Relation-guided Appearance Generator 8.7 ± 0.9 57.4

w/o Scene Graph Discriminator (Lsg) 7.4 ± 0.2 73.3

Table 2: Ablation studies conducted on our proposed
method. The experimental results are reported on 128×128
resolution image generation task in Visual Genome.

User study sg2im Same Ours
Image is more realistic 9% 26% 65%
Image has reasonable object arrangement 12% 27% 61%
Image reflects relationships in scene graph 9% 19% 72%
Layout is more reasonable 11% 30% 59%

Table 3: We performed a user study to compare the quality of
generated layouts and images of our method against sg2im.

Table 1 summarizes the performances on the two afore-
mentioned datasets in terms of Inception Score and FID
score. Our model outperforms sg2im on both VG and HICO-
DET datasets. Moreover, even without the external informa-
tion like image crops, our method can still achieve better re-
sults reported in PasteGAN. In addition, we conduct exper-
iments of GT Layout versions using ground-truth bounding
boxes during both training and testing. This method gives an
upper bound to the model’s performance in the case of per-
fect layout construction. As shown in Table 1, our method
has more potential than sg2im and LostGAN.

We also conducted ablation studies in Table 2. The rela-
tive importance of the Pair-wise Spatial Constraint Module,
and Scene Graph Discriminator are measured by removing
Lscm and Lsg from the overall objective function respec-
tively. The ablation studies of Relation-guided Appearance
Generator is measured by erasing relation embeddings dur-
ing computing object shape and texture features. It can be
found that the layout constraint module predicts reasonable
spatial layout arrangements that improve the generated im-
age qualities. The relation-guided generator introduces more
reasonable appearance information. The scene graph dis-
criminator can advance the correspondence between textual
scene graph inputs and generated images.

Qualitative Results
Fig. 5 shows the capability of our method compared with
that of sg2im on VG and HICO-DET. In the 1st column,
sg2im predicts the human layout is above the motorcycle,
which is not a normal position arrangement. Similarly, in
the 5th column, sg2im predicts that “pant” is not vertically
in line with the “shirt”. Moreover, in the last column sg2im
predicts that the scale of “sky” is too small. It leads to the
chaotic color fill in the generated image. Similarly, in the
7th column sg2im predicts the scale of “snow” is much big-
ger than “mountain”, which conflicts with the triplet “snow
on mountain”. These displacements occur when the training
process is not enhanced with relative distance and scales.

Fig. 6 shows the generated images conditioned on ground
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Figure 6: Generated samples from ground truth layouts on
Visual Genome by sg2im, LostGAN and our method.

truth layouts. We compared our model grounded on the same
position layouts compared with sg2im and LostGAN. It can
be found that our method is more likely to generate realistic
images from rich layouts and with natural objects.
User Study We also conduct a user study to measure hu-

man preference between images generated by out method
and sg2im in Table 3. We choose the 128×128 resolution
models for both cases. Our user study involves 40 students
having a background in computer science. We generate 500
test cases from the VG test set for user study. A majority of
users preferred the generated layouts and images from our
method in 65% of image pairs.

Conclusion
The relationship between objects significantly rectifies the
localization of objects and even their appearances. Prior lit-
erature mainly focuses on fitting the single object appear-
ance. Semantic interactions among objects were overlooked,
which may result in inconsistent and chaotic results. In this
paper, we proposed a new framework to generate complex-
scene images by exploring the importance of relationships
among multiple objects in complex-scene image genera-
tion. Quantitative results, qualitative results, and user studies
show our method’s ability for reasonable layout generation
and object interactions alignment.
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Ethical Impact
Images are tiny visual samples of the grand physical world.
The elementary particles that comprise our world first evolve
and cluster into objects. Then appearance of objects are
gradually shaped by the interactions between their counter-
parts. To model the natural clustering and interaction, we
construct a generative model that strictly and structurally
mimic the graph-like natural arrangement of our world. Our
model builds a projection from symbolic graph space to the
pixel space and we demonstrate how a small alternation in
the object relationship can greatly affect the appearance of
surrounding objects. In the future, we should research more
on the neural design that can easily fit the data structure of
pixels and encode more in the model visually commonsen-
sical (relational) patterns. Overall, this paper has a positive
impact on both industry and academia and enhance people’s
understanding of visual thinking.
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