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Abstract
Hand gestures play a dominant role in the expression of
sign language. Current deep-learning based video sign lan-
guage recognition (SLR) methods usually follow a data-
driven paradigm under the supervision of the category label.
However, those methods suffer limited interpretability and
may encounter the overfitting issue due to limited sign data
sources. In this paper, we introduce the hand prior and pro-
pose a new hand-model-aware framework for isolated SLR
with the modeling hand as the intermediate representation.
We first transform the cropped hand sequence into the latent
semantic feature. Then the hand model introduces the hand
prior and provides a mapping from the semantic feature to
the compact hand pose representation. Finally, the inference
module enhances the spatio-temporal pose representation and
performs the final recognition. Due to the lack of annota-
tion on the hand pose under current sign language datasets,
we further guide its learning by utilizing multiple weakly-
supervised losses to constrain its spatial and temporal con-
sistency. To validate the effectiveness of our method, we per-
form extensive experiments on four benchmark datasets, in-
cluding NMFs-CSL, SLR500, MSASL and WLASL. Exper-
imental results demonstrate that our method achieves state-
of-the-art performance on all four popular benchmarks with
a notable margin.

Introduction
Sign language, as a natural language of the deaf community,
has a unique linguistic characteristic. It conveys semantic
meaning via hands, including hand motions, shape, orienta-
tion, etc., together with non-manual features, including fa-
cial expressions. To facilitate the communication between
the deaf and the hearing people, automatic sign language
recognition (SLR) has been widely studied and attracted in-
creasing attention. It aims at mapping the sign video into the
text word or sentence, which corresponds to two subtasks,
i.e., isolated SLR and continuous SLR. Isolated SLR is a
kind of fine-grained classification task and focuses on the
recognition at the word level, while continuous SLR tries to
recognize the signs in their presenting order. In this work,
we focus on the former task, i.e., isolated SLR.

The hand acts as a dominant role in sign language. As
shown in Figure 1, it occupies a relatively small area, ex-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1

Spa & Tem Cons.

Label

…

Walnut
Appreciate
…

Air      

Prediction

0.01
0.82

0.07

Full 
Frame

…

Inference

t + 1 t + 2 t + T

…

Mesh

Hand

3D 
Joint

…

…

Figure 1: Illustration on the challenge of the hand gestures
in sign language recognition and our idea with the modeling
hand as the intermediate representation.

hibiting highly articulated joints and similar appearance with
fewer local characteristic features, when compared with the
body or face. During the sign, it usually encounters the
motion blur and self-occlusion among joints with complex
backgrounds. Early works adopt hand-crafted features to de-
scribe hand gestures (Starner, Weaver, and Pentland 1998;
Buehler, Zisserman, and Everingham 2009). Recently, many
works have leveraged the advance of deep convolutional
neural networks (CNNs) (Huang et al. 2019; Albanie et al.
2020; Koller et al. 2018; Cui, Liu, and Zhang 2019; Zhou
et al. 2020). It is worth mentioning that some methods
highlight the importance of hands by utilizing the cropped
hands as the extra stream and achieve a notable performance
gain (Camgoz et al. 2017; Huang et al. 2018; Koller et al.
2020). These deep-learning based methods work in a data-
driven paradigm and learn feature representations adaptively
under the supervision of the video-level category label.

However, direct data-driven SLR methods suffer lim-
ited interpretability for the learned hand feature and may
overfit under limited training data. The limited sign data
sources are partially attributed to the fact that there is a
strong requirement for expert knowledge during the man-
ual annotation. Consequently, compared with current ac-
tion recognition datasets (Goyal et al. 2017; Carreira and
Zisserman 2017), sign language datasets, e.g., WLASL (Li
et al. 2020b), MSASL (Joze and Koller 2019) and NMFs-
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CSL (Hu et al. 2020), usually contain much fewer samples
per word.

To tackle this issue, we introduce the hand prior and pro-
pose a hand-model-aware framework for isolated SLR, with
visible hand meshes and poses as the intermediate represen-
tation. The framework consists of three modules, i.e., a vi-
sual encoder, a hand-model-aware decoder and an inference
module. The visual encoder transforms the hand sequence
into the latent semantic feature. Then the model-aware de-
coder provides a mapping from the latent feature to the hand
mesh, as well as a compact pose. Specifically, the decoder
is a fixed statistical mesh-based model, which stores the
knowledge learned from a large variety of high-quality hand
scans. In this way, the irrational poses can be effectively fil-
tered out based on the imported hand prior. The inference
module enhances the spatio-temporal representation of the
hand pose sequence and performs recognition.

Our approach follows a paradigm in line with the in-
sight (Clarke and Tyler 2015) on human cognition, which
reveals that the ventral visual pathway in the brain treats the
recognition process as a dynamic process of transformation
from low-level visual input to specific conceptual knowl-
edge representations. Due to the lack of hand-joint annota-
tions in current sign datasets, we further focus on the spatial
and temporal context of the pose representation, and design
several weakly-supervised losses to guide its learning.

To our best knowledge, it is the first hand-model-aware
framework for sign language recognition. Extensive ex-
periments on four benchmark datasets, i.e., NMFs-CSL,
SLR500, MSASL and WLASL, validate the effectiveness
of our method, achieving new state-of-the-art performance
on all these datasets.

Related Work
In this section, we briefly review the related topics, including
sign language recognition, hand pose estimation and hand
models used for reconstruction.

Sign Language Recognition
Sign language recognition methods can be divided into two
groups based on the input modality, i.e., RGB-based (using
the RGB video as input) and pose-based (using the skeleton
sequence as input) methods.

RGB-based methods. Early methods rely on hand-
crafted features, such as HOG, SIFT, motion trajectories, for
hand representation (Buehler, Zisserman, and Everingham
2009; Koller, Forster, and Ney 2015; Yasir et al. 2015; Evan-
gelidis, Singh, and Horaud 2014). Recently, deep convolu-
tional neural networks (CNNs) have shown a high capacity
for representation learning and been widely used in many
computer vision tasks. Many researchers have explored the
design of networks for video representation, e.g., 2D-CNNs,
3D-CNNs or mixture of them (Carreira and Zisserman 2017;
Chen et al. 2018; Qiu, Yao, and Mei 2017; Qiu et al. 2019;
Simonyan and Zisserman 2014; Wang et al. 2016; Xie et al.
2018). For the task of sign language recognition, Koller et
al. adopt 2D-CNNs for spatial representation, followed by
HMM to model temporal dependencies (Koller et al. 2018).

Some other works utilize 3D-CNNs for spatio-temporal rep-
resentation modeling (Huang et al. 2019; Joze and Koller
2019; Li et al. 2020b,a; Albanie et al. 2020).

Pose-based methods. Besides the above mentioned
RGB-based methods, many works study the pose-based
methods. Pose is a type of well-structured data, a high-level
semantic representation with a low dimension, which also
enables the computation efficiency. Recurrent neural net-
works, e.g., GRU (Cho et al. 2014) and LSTM (Hochre-
iter and Schmidhuber 1997), have been used to model the
temporal information of the keypoint sequence (Du, Wang,
and Wang 2015; Song et al. 2017; Zhu et al. 2016). Some
CNN-based works attempt to transform the input keypoint
sequence into the feature map and use the popular CNNs to
capture spatio-temporal dynamics (Li et al. 2018; Cao et al.
2018). Considering the well-structured characteristic of the
pose, more and more works adopt graph convolutional net-
works (GCNs) (Yan, Xiong, and Lin 2018; Shi et al. 2019;
Zhang et al. 2020). Yan et al. (Yan, Xiong, and Lin 2018)
make the first attempt to propose a spatial-temporal GCN
for action recognition. Specifically, it builds a graph with
nodes and edges pre-defined by human keypoints and their
physical connections, respectively. These GCN-based meth-
ods are able to process pose data more efficiently and show
promising results.

Hand Pose Estimation
There have been several works predicting hand poses from
the RGB images. The 2D hand pose estimation has been
greatly improved by multiview bootstrapping (Simon et al.
2017). Further improvement is achieved on the inference
speed (Wang, Zhang, and Peng 2019). There also exist
some works estimating 3D pose representations, e.g., esti-
mating 3D poses from 2D counterparts (Cai et al. 2019),
constraining intermediate reconstructed depth (Iqbal et al.
2018), etc. Recent works learn 3D hand shape and pose
jointly (Boukhayma, Bem, and Torr 2019; Ge et al. 2019;
Zhang et al. 2019). These methods are all trained under
the supervision of the hand-joint annotations and focus on
the precise predictions of the joint positions. Different from
them, our proposed recognition framework utilizes the hand
poses as the intermediate representation and learn them
without hand-joint annotations.

Hand Model Learning
To model the hand, many works have been proposed us-
ing various techniques, including shape primitives (Oikono-
midis, Lourakis, and Argyros 2014; Qian et al. 2014), sum-
of-Gaussians (Sridhar, Oulasvirta, and Theobalt 2013) and
a more generalized sphere-meshes method (Tkach, Pauly,
and Tagliasacchi 2016). To model the hand shape more pre-
cisely, some works (Ballan et al. 2012; Tzionas et al. 2016)
propose to adopt a triangulated mesh with Linear Blend
Skinning (LBS) (Lewis, Cordner, and Fong 2000). Da La
Gorce et al. (de La Gorce, Fleet, and Paragios 2011) fur-
ther introduce the scaling terms for each bone to change
hand shape. MANO (Romero, Tzionas, and Black 2017) is
the most popular fully-differentiable statistical model, which
learns from a large variety of hand scans. It deforms the
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Figure 2: Overview of our proposed framework. The framework consists of a visual encoder, a hand-model-aware decoder
and an inference module. Jointly with the video-level supervision, we further constrain the spatial and temporal consistency of
intermediate 3D pose representations for further performance improvement. The modules utilized in training and testing stages
are highlighted in light blue and orange, respectively.

mean mesh and factors the geometric changes into the shape
and pose. In this work, we adopt MANO hand model into
our framework to import the hand prior.

Our Approach
In this section, we first give a brief overview of our frame-
work. Then we elaborate each component of our framework
and the optimization objective functions of the framework.

Overview
As shown in Figure 2, given a cropped RGB hand sequence,
the visual encoder first transforms it into the latent seman-
tic embedding and predicts the camera parameters. Then
the decoder works in model-aware and provides the map-
ping from the latent semantic feature to the refined 3D hand
mesh and pose. The compact 3D pose representation is fed
into the lightweight inference module. It enhances the rep-
resentation of each joint and performs the final classifica-
tion. The framework is optimized with a video-level cross-
entropy loss, together with several weakly-supervised loss
terms based on the spatial and temporal relationships of the
intermediate poses.

Framework Design
The framework contains three key modules, i.e., a visual en-
coder, a hand-model-aware decoder and an inference mod-
ule. We will discuss these modules in the following.

Visual encoder. Given a RGB hand sequence V =
{vt}Tt=1 with T frames from a sign video, the visual encoder
E(·) transforms the RGB hand sequence into the latent se-
mantic feature describing the hand status and the camera pa-
rameters, which is formulated as follows,

Fla = {θ,β, cr, co, cs}Tt=1 = E(V), (1)

where θ ∈ R6 and β ∈ R10 are the pose and shape embed-
ding for the following decoder, while cr ∈ R3×3, co ∈ R2,

and cs ∈ R are the camera parameters, indicating the rota-
tion, translation and scale, respectively. In our implementa-
tion, the encoder contains a ResNet34 (without the classi-
fier) (He et al. 2016) to generate the high-dimensional fea-
ture, followed by a fully-connected layer to derive the low-
dimensional semantic feature.

Hand-model-aware decoder. This module attempts to
derive a compact pose representation from the latent seman-
tic embeddings with a hand-model-aware method. With the
encoded hand prior, the decoder constrains the distribution
of possible poses and implicitly filters out the irrational pre-
dicted poses during its mapping. Finally, it produces a more
compact and reliable hand pose, which will alleviate the op-
timization difficulty of the following inference module.

In this work, we utilize the fully differentiable MANO
hand model (Romero, Tzionas, and Black 2017) as the de-
coder. MANO is a statistical model similar to the SMPL
model (Loper et al. 2015), which is learned from a large va-
riety of high-quality registered hand scans. In this way, the
hand prior is encoded and a compact mapping can be estab-
lished to describe the hand, i.e., from the low-dimensional
semantic embedding to the triangulated hand mesh M ∈
RN×3 of N=778 vertices and 1538 faces. More precisely,
to generate a physically plausible mesh, the input pose and
shape represent the coefficients of PCA components calcu-
lated from the collected hand scan data. The model is for-
mulated as follows,

M(β,θ) = W (T (β,θ), J(β),θ,W), (2)

T (β,θ) = T̄ +BS(β) +BP (θ), (3)
where BS(·) and BP (·) are blend functions, and W is a set
of blend weights. The hand template T̄ is posed and skinned
with the pose and shape corrective blend shapes, i.e., BP (θ)
and BS(β). Further, the final mesh is generated by rotating
each part around joints J(β) using the linear skinning func-
tion W (·) (Kavan and Žára 2005).
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With the hand model, the 3D joint locations J̃3D, as a
more compact representation, can also be derived by the lin-
ear interpolation of relevant vertices in the mesh. It is no-
table that the original MANO model only provides 16 hand
keypoints. To keep consistent with the 2D keypoints directly
detected in the image plane, we select 5 extra vertices from
the mesh with the index of 734, 333, 443, 555, 678 and add
them as the fingertips. As a result, the hand is represented
with 21 3D joints.

Inference module. The predicted pose sequence from the
decoder may contain some unsatisfactory results. The in-
ference module is utilized to refine its spatio-temporal rep-
resentation. With the further calculation of adaptive atten-
tion, the inference module captures informative cues and
performs the video-level classification.

The hand pose sequence is a well-structured data with the
physical connections between joints, which makes it nat-
urally to be organized as a spatio-temporal graph. In this
work, we adopt a popular GCN (Yan, Xiong, and Lin 2018),
which has proven effective to process pose data. Given a
hand pose sequence J̃3D representing 3D locations (x, y,
z coordinates) of each joint in each frame, an undirected
spatio-temporal graph G(V,E) is first defined by V and E
as the node and edge set, respectively. The node set V con-
tains all the corresponding hand joints, while the edge set E
includes the intra-frame and inter-frame set, i.e., the phys-
ical connection of hand joints and connection of the same
joint along the time, respectively. The adjacency matrix Ã
derived from the defined edge set will be adopted in GCN
with the identity matrix I. The graph convolution is formu-
lated as follows,

Z =
∑
k

D
− 1

2

k (Ak ◦M)D
1
2

k J̃3DWk, (4)

where Z is the output feature, k is the index of neighbour
types (for each node, its neighbouring nodes are divided
into several types), Wk is the convolution weight, Ã + I

is dismantled into k sub-matrices, i.e., Ã + I =
∑
kAk,

Tk = Ak ◦M and Dii
k =

∑
j T

ij
k . The message is trans-

ferred among edges to enhance the representation of each
joint. Further, the Hadamard product is performed between
the learnable attention weight M initialized as all-one ma-
trix and Ak to capture the discriminative cues. With several
stacked GCN layers, a global pooling is adopted to merge
the information contained in the enhanced node features,
which is followed by a fully-connected layer to perform the
final recognition.

Objective Function & Inference
Since current sign language datasets have no annotation on
the hand pose, besides the cross-entropy classification loss
Lcla, we elaborately design several loss terms to guide the
learning of intermediate pose representations.

Spatial consistency loss. First, we utilize the consistency
between our predicted 3D and pre-extracted 2D joints from
OpenPose (Cao et al. 2019; Simon et al. 2017). Specifically,
we first project the predicted 3D joints to its 2D counterparts

based on the weak-perspective camera model. The projec-
tion process can be formulated as follows,

J̃2D = cs
∏

(crJ̃3D) + co, (5)

where
∏

(·) denotes the orthographic projection. Then we
utilize the pre-extracted 2D hand joints J2D as the pseudo
label, and constrain the consistency between our projected
one J̃2D and J2D. The spatial consistency loss is then calcu-
lated as follows,

Lspa =
T∑
t=1

21∑
j=1

1(c(t, j) >= ε)
∥∥∥J̃2D(t, j)− J2D(t, j)

∥∥∥
1
,

(6)
where 1(·) denotes the indicator function, and c(t, j) de-
notes the confidence of the pre-extracted J2D with the joint
j at time t. To align the 2D hand joints predicted by different
methods, we utilize the root-relative representation for these
joints, i.e., the root joint (palm) is set as the origin. It is no-
table that the joints in J2D with the confidence c(t, j) lower
than the threshold ε will be ignored.

Temporal consistency loss. To avoid the jittering predic-
tions, we further enforce the temporal consistency on the 3D
hand pose. Different hand joints usually have different mov-
ing speeds during the sign, e.g., joints closer to the palm usu-
ally have a lower speed. Thus we manually divide the hand
joints into three groups, {Si|i = 0, 1, 2}, i.e., palm, middle
and terminal joints, respectively. The temporal consistency
loss is implemented by a derivative regularization, which is
formulated as follows,

Ltem =
∑
i

∑
j∈Si

T∑
t=2

αi

∥∥∥J̃3D(t, j)− J̃3D(t− 1, j)
∥∥∥2
2
, (7)

where αi denotes the pre-defined weight for Si and we pe-
nalize more for the group having the lower speed.

Regularization loss. To ensure the hand model work in a
proper way and generate the hand mesh plausibly, the regu-
larization loss is added by constraining the magnitude of the
partially latent feature, which is defined as follows,

Lreg = ‖θ‖22 + wβ‖β‖22, (8)

where wβ denotes the weighting factor.
The final objective loss function is defined as follows,

L = Lcla + λspaLspa + λtemLtem + λregLreg, (9)

where λspa, λtem and λreg denote the weighting factor for
spatial, temporal consistency loss and regularization loss, re-
spectively. During training, the above loss function is uti-
lized to optimize the full framework. Notably, both hands
are involved and fused for the final recognition.

Inference. Considering only the cropped hands are insuf-
ficient to convey the full meaning of sign language, it is nec-
essary to fuse recognition results based on hands with that on
the full frame, which can be represented by either full key-
points or full RGB data. To this end, we use the results based
on hand modeling, full keypoints and full RGB data. Those
results can be assembled with late fusion by directly sum-
ming their prediction results (Karpathy et al. 2014). Specif-
ically, for the recognition with the full keypoints, we utilize
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ST-GCN as the backbone and all the 137 2D joints as in-
put, while for the full RGB input, we sample a fixed num-
ber of frames and use a common CNN, e.g., 3D-ResNet50,
as the classifier. In the following, we refer our method with
only hands, fusion of hands and the full keypoints, fusion
of hands and the full RGB as Ours (Hand), Ours (Hand +
Pose) and Ours (Hand + RGB), respectively.

Experiments
Datasets and Evaluation
Datasets. We evaluate our proposed method on four pub-
licly available datasets, including NMFs-CSL (Hu et al.
2020), SLR500 (Huang et al. 2019), MSASL (Joze and
Koller 2019) and WLASL (Li et al. 2020b).

NMFs-CSL is the most challenging Chinese sign lan-
guage (CSL) dataset due to a large variety of confusing
words caused by fine-grained cues. It contains a total of
1,067 words with 610 confusing words and 457 normal
words. This dataset is recorded by a RGB camera at 30 FPS
with a resolution of 1280 × 720. Specifically, 25,608 and
6,402 samples are used for training and testing, respectively.

SLR500 is another CSL dataset, which contains 500 daily
words with 12,5000 recording samples performed by 50
signers. It is recorded by Kinect and provides RGB and
depth modalities. There are 90,000 and 35,000 samples for
training and testing, respectively.

MSASL is an American sign language dataset (ASL) with
a vocabulary size of 1,000. It is collected from Web videos.
It contains 25,513 samples in total with 16,054, 5,287 and
4,172 for training, validation and testing, respectively. Be-
sides, in this dataset, the top-100 and top-200 most frequent
words are selected as two subsets for training and testing,
referred to as MSASL100 and MSASL200.

WLASL is an ASL dataset similar to MSASL, which is
also collected from the Web. The size of the vocabulary is
2,000, and there are 21,083 samples divided into the train-
ing, validation and testing splits. MSASL and WLASL both
bring new challenges due to the unconstrained recording
conditions and limited samples for each word.

Notably, all these datasets adopt the signer-independent
setting, i.e., signers in the training set will not occur during
testing. Besides, all the benchmark datasets only have cate-
gory labels without any annotations on hand poses.

Evaluation. We evaluate the datasets using the accuracy
metrics, including the per-instance and per-class metrics, de-
noting the average accuracy over each instance and each
class, respectively. Since NMFs-CSL and SLR500 datasets
have the same number of samples for each class, we only
report the per-instance accuracy. Following the original set-
tings in their corresponding works (Hu et al. 2020; Huang
et al. 2019), we report top-1, top-2, top-5 accuracy for
NMFs-CSL, and top-1 accuracy for SLR500. For MSASL
and WLASL, we report the top-1 and top-5 accuracy under
both per-instance and per-class metrics.

Implementation Details
In our experiment, all the models are implemented in Py-
Torch (Paszke et al. 2019) platform and trained on NVIDIA

Cla. Reg. Spa. Tem. Top-1 Top-2 Top-5
X 61.5 80.3 90.8
X X 62.0 78.8 88.9
X X X 64.0 81.6 90.7
X X X X 64.7 81.8 91.0

Table 1: Ablation studies on the effect of each loss term
on NMFs-CSL dataset. Cla., Reg., Spa. and Tem. denote
the classification, regularization, spatial and temporal con-
sistency loss, respectively.

Hand Full frame Accuracy
OP Ours Keypoints RGB Top-1 Top-2 Top-5
X 54.6 72.2 85.2

X 64.7 81.8 91.0
X 59.9 71.3 83.7

X X 67.3 83.0 93.0
X X 71.7 88.6 95.7

X 62.1 73.2 83.7
X X 71.7 84.3 92.3

X X 75.6 88.4 95.3

Table 2: Experimental results based on the hand model-
ing, full keypoints and full RGB data. For the hand-based
method, we compare the results between our generated 3D
hand pose and the 2D OpenPose-detected one (OP), which
is utilized as the pseudo label in our framework.

RTX-TITAN. Temporally, we extract 32 frames using ran-
dom and center sampling during training and testing, re-
spectively. During training, the input frames are randomly
cropped to 256× 256 at the same spatial position. Then the
frames are randomly horizontally flipped with a probability
of 0.5. During testing, the input video is center cropped to
256× 256 and fed into the model. The model is trained with
Stochastic Gradient Descent (SGD) optimizer. The weight
decay and momentum are set to 1e-4 and 0.9, respectively.
We set the initial learning rate as 5e-3 and reduce it by a fac-
tor of 0.1 when the validation loss is saturated. In all exper-
iments, the hyper parameters ε, wβ , λspa, λtem, λreg , α0,
α1 and α2 is set to 0.4, 10, 0.1, 0.1, 0.1, 1, 2.5 and 4, re-
spectively. We use OpenPose (Cao et al. 2019; Simon et al.
2017) to extract the full keypoints, i.e., the 137 2D joints
of body, face and hands. The extracted hand and shoulder
keypoints are further utilized to crop the hand from the full
frame. Besides, for the training of the RGB and pose base-
line, we follow the original settings in their works (Carreira
and Zisserman 2017; Yan, Xiong, and Lin 2018).

Ablation Study
We perform ablation studies on the effectiveness of loss
terms and the complementary effect of our method.

Effectiveness of loss terms. From Table 1, it can be ob-
served that the top-1 accuracy is improved gradually by
adding each loss term. Although the regularization loss
brings relatively less improvement, it is crucial for the hand
model to generate plausible meshes. It is notable that con-
sistency losses contribute a lot to boosting the performance.
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Figure 3: Visualization of the intermediate mesh representation. From the first to the third row, we present the RGB hand,
2D joint detected by OpenPose and the 3D mesh generated by our method. We visualize one sample in the test set for each
benchmark dataset, including NMFs-CSL, SLR500, MSASL ans WLASL. For each sample, we visualize two key frames.

Method Total Confusing Normal
Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

ST-GCN (Yan, Xiong, and Lin 2018) 59.9 74.7 86.8 42.2 62.3 79.4 83.4 91.3 96.7
3D-R50 (Qiu, Yao, and Mei 2017) 62.1 73.2 82.9 43.1 57.9 72.4 87.4 93.4 97.0
DNF (Cui, Liu, and Zhang 2019) 55.8 69.5 82.4 33.1 51.9 71.4 86.3 93.1 97.0
I3D (Carreira and Zisserman 2017) 64.4 77.9 88.0 47.3 65.7 81.8 87.1 94.3 97.3
TSM (Lin, Gan, and Han 2019) 64.5 79.5 88.7 42.9 66.0 81.0 93.3 97.5 99.0
Slowfast (Feichtenhofer et al. 2019) 66.3 77.8 86.6 47.0 63.7 77.4 92.0 96.7 98.9
GLE-Net (Hu et al. 2020) 69.0 79.9 88.1 50.6 66.7 79.6 93.6 97.6 99.3
Ours (Hand) 64.7 81.8 91.0 42.3 69.4 84.8 94.6 98.4 99.3
Ours (Hand + Pose) 71.7 88.6 95.7 54.2 81.2 92.8 95.0 98.5 99.5
Ours (Hand + RGB) 75.6 88.4 95.3 59.7 80.2 91.8 96.9 99.4 99.9

Table 3: Accuracy comparison on NMFs-CSL dataset.

The spatial consistency loss brings the largest accuracy gain,
i.e., from 62.0% to 64.0% top-1 accuracy. With the tempo-
ral consistency loss further added, the top-1 accuracy is im-
proved to 64.7%. All the above results demonstrate the ef-
fectiveness of the proposed loss terms.

Complementarity between hand and full frame. The
first part in Table 2 shows the classification results using
hand keypoints as input based on the ST-GCN backbone.
The first row denotes using the 2D hand keypoints detected
by OpenPose, while the second row denotes our generated
3D ones. It can be observed that the accuracy using 3D hand
keypoints as input largely outperforms that using 2D ones.

As indicated in Table 2, the top-1 accuracy increases from
59.9% to 71.7% when fusing recognition results of our hand
joints and full keypoints. In contrast, when combined with
the full-RGB based method, the accuracy improvement is
13.5%, which is larger than that combined with the full-
keypoints based method.

Further, we also perform the qualitative visualization on
the reconstructed hand mesh in Figure 3. The mesh also im-
proves the interpretability of the whole framework. It can be
observed that the video samples from different datasets vary

a lot in their backgrounds and signer’s clothing. The detec-
tion of 2D hand joints usually fails when the motion blur
or self-occlusion occurs. In contrast, with the hand prior en-
coded, the generated mesh has more stability with all the
fingers occurring and mostly reproduces the hand motion. It
somewhat deals with some hard situations, e.g., motion blur,
mutually occurring of the hand and face, and self-occlusion.

Comparison with State-of-the-art Methods
We perform extensive experiments and compare with state-
of-the-art methods on four benchmark datasets, i.e., NMFs-
CSL, SLR500, MSASL and WLASL.

Evaluation on NMFs-CSL. As shown in Table 3, the
first two rows represent the baseline methods. DNF (Cui,
Liu, and Zhang 2019) is a state-of-the-art method in con-
tinuous SLR and we utilize its visual encoder followed by
a fully-connected layer as the backbone for comparison.
GLE-Net (Hu et al. 2020) enhances discriminative cues from
global and local views and achieves state-of-the-art perfor-
mance. Compared with these competitors, our method (only
cropped hands) achieves comparable performance with a
majority of them. Our method ((Hand + Pose), (Hand +
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Method
MSASL100 MSASL200 MSASL1000

Per-instance Per-class Per-instance Per-class Per-instance Per-class
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

(Yan, Xiong, and Lin 2018) 59.84 82.03 60.79 82.96 52.91 76.67 54.20 77.62 36.03 59.92 32.32 57.15
(Joze and Koller 2019)1 - - 81.76 95.16 - - 81.97 93.79 - - 57.69 81.05
(Li et al. 2020a) 83.04 93.46 83.91 93.52 80.31 91.82 81.14 92.24 - - - -
(Albanie et al. 2020) - - - - - - - - 64.71 85.59 61.55 84.43
Ours (Hand) 73.45 89.70 74.59 89.70 66.30 84.03 67.47 84.03 49.16 69.75 46.27 68.60
Ours (Hand + Pose) 78.57 91.41 79.48 91.62 72.19 88.15 73.52 88.46 56.02 76.51 52.98 74.90
Ours (Hand + RGB) 87.45 96.30 88.14 96.53 85.21 94.41 86.09 94.42 69.39 87.42 66.54 86.56
1 (Joze and Koller 2019) denotes the RGB baseline.

Table 4: Accuracy comparison on MSASL dataset.

Method Accuracy
STIP (Laptev 2005) 61.8
GMM-HMM (Tang et al. 2015) 56.3
C3D (Tran et al. 2015) 74.7
Atten (Huang et al. 2019) 88.7
ST-GCN (Yan, Xiong, and Lin 2018) 90.0
3D-R50 (Qiu, Yao, and Mei 2017) 95.1
GLE-Net (Hu et al. 2020) 96.8
Ours (Hand) 95.9
Ours (Hand + Pose) 97.5
Ours (Hand + RGB) 98.3

Table 5: Accuracy comparison on SLR500 dataset.

RGB)) outperforms the most challenging competitor GLE-
Net, i.e., 2.7% and 6.6% top-1 accuracy gain, respectively.

Evaluation on SLR500. As illustrated in Table 5,
STIP (Laptev 2005) and GMM-HMM (Tang et al. 2015)
denote the methods based on the hand-crafted features. At-
ten (Huang et al. 2019) utilizes multiple data modalities as
input, including RGB, optical flow, depth, etc. The afore-
mentioned GLE-Net (Hu et al. 2020) still achieves the best
performance on this dataset. Even compared with GLE-Net,
our method still achieves comparable performance. For our
method ((Hand + Pose), (Hand + RGB)), the top-1 accuracy
reaches 97.5% and 98.3%, which is new state-of-the-art per-
formance on this dataset.

Evaluation on MSASL. MSASL contains limited sam-
ples for each word. The samples vary a lot in the resolu-
tion and unconstrained backgrounds, which makes MSASL
more challenging. As shown in Table 4, we also release ST-
GCN method as the pose baseline (Yan, Xiong, and Lin
2018). Compared with the RGB baseline, it shows infe-
rior performance under both per-instance and per-class ac-
curacy metrics. It may be caused by the failure of the pose
detection, due to the partially occluded upper body of the
signer, low-quality video, and noisy backgrounds. Albanie
et al. (Albanie et al. 2020) and Li et al. (Li et al. 2020a)
both use external sign videos to boost the performance and
achieve state-of-the-art performance on MSASL or its sub-
set, respectively. It is worth mentioning that our method
outperforms the most challenging competitor by a notable
margin, i.e., 4.41%, 4.90% and 4.68% per-instance top-

Method Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

(Yan, Xiong, and Lin 2018) 34.40 66.57 32.53 65.45
(Li et al. 2020b)1 32.48 57.31 - -
(Albanie et al. 2020) 46.82 79.36 44.72 78.47
Ours (Hand) 37.91 71.26 35.90 70.00
Ours (Hand + Pose) 46.32 81.90 44.09 81.08
Ours (Hand + RGB) 51.39 86.34 48.75 85.74
1 (Li et al. 2020b) denotes the RGB baseline.

Table 6: Accuracy comparison on WLASL dataset.

1 accuracy improvement on MSASL100, MSASL200 and
MSASL1000 dataset, respectively. Besides, the complemen-
tary effects of our method are also validated on this dataset.

Evaluation on WLASL. Compared with MSASL
dataset, WLASL has a vocabulary with doubled size but
fewer samples. As shown in Table 6, when fused with
the RGB baseline, our method achieves 51.39% top-1 per-
instance accuracy, which brings 18.91% top-1 per-instance
accuracy improvement over the RGB baseline. It also val-
idates the effectiveness of our model-aware method under
the dataset with limited samples. Compared with the most
challenging competitor (Albanie et al. 2020), our method
outperforms it by 4.57% and 4.03% top-1 per-instance and
per-class accuracy improvement.

Conclusion
In this work, we introduce the hand prior and present the
first hand-model-aware end-to-end framework for isolated
sign language recognition. Our framework consists of three
components, i.e., a visual encoder, a hand-model-aware de-
coder and an inference module. The hand sequence is first
transformed to the latent semantic feature, which is then pro-
cessed by the hand-model-aware decoder to derive compact
pose representations. Then the inference module refines the
pose representations and performs recognition. Besides the
video-level supervision, we guide the learning of the inter-
mediate pose representation on its spatial and temporal con-
sistency in a weakly-supervised way. Extensive experiments
demonstrate the superiority of our method, achieving new
state-of-the-art performance on all four benchmark datasets.
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Kavan, L.; and Žára, J. 2005. Spherical blend skinning: a real-time
deformation of articulated models. In ACM I3D, 9–16.

Koller, O.; Camgoz, C.; Ney, H.; and Bowden, R. 2020. Weakly
supervised learning with multi-stream CNN-LSTM-HMMs to dis-
cover sequential parallelism in sign language videos. TPAMI 42(9):
2306–2320.

Koller, O.; Forster, J.; and Ney, H. 2015. Continuous sign language
recognition: Towards large vocabulary statistical recognition sys-
tems handling multiple signers. CVIU 141: 108–125.

Koller, O.; Zargaran, S.; Ney, H.; and Bowden, R. 2018. Deep
sign: Enabling robust statistical continuous sign language recogni-
tion via hybrid CNN-HMMs. IJCV 126(12): 1311–1325.

Laptev, I. 2005. On space-time interest points. IJCV 64(2-3): 107–
123.

Lewis, J. P.; Cordner, M.; and Fong, N. 2000. Pose space deforma-
tion: A unified approach to shape interpolation and skeleton-driven
deformation. In SIGGRAPH, 165–172.

Li, C.; Zhong, Q.; Xie, D.; and Pu, S. 2018. Co-occurrence feature
learning from skeleton data for action recognition and detection
with hierarchical aggregation. In IJCAI, 786–792.

Li, D.; Rodriguez, C.; Yu, X.; and Li, H. 2020a. Transferring cross-
domain knowledge for video sign language recognition. In CVPR,
6205–6214.

Li, D.; Rodriguez, C.; Yu, X.; and Li, H. 2020b. Word-level deep
sign language recognition from video: A new large-scale dataset
and methods comparison. In WACV, 1459–1469.

Lin, J.; Gan, C.; and Han, S. 2019. TSM: Temporal shift module
for efficient video understanding. In ICCV, 7083–7093.

1565



Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; and Black,
M. J. 2015. SMPL: A skinned multi-person linear model. ToG
34(6): 1–16.

Oikonomidis, I.; Lourakis, M. I.; and Argyros, A. A. 2014. Evo-
lutionary quasi-random search for hand articulations tracking. In
CVPR, 3422–3429.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,
G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. 2019.
PyTorch: An imperative style, high-performance deep learning li-
brary. In NeurIPS, 8026–8037.

Qian, C.; Sun, X.; Wei, Y.; Tang, X.; and Sun, J. 2014. Realtime
and robust hand tracking from depth. In CVPR, 1106–1113.

Qiu, Z.; Yao, T.; and Mei, T. 2017. Learning spatio-temporal repre-
sentation with pseudo-3D residual networks. In ICCV, 5533–5541.

Qiu, Z.; Yao, T.; Ngo, C.-W.; Tian, X.; and Mei, T. 2019. Learning
spatio-temporal representation with local and global diffusion. In
CVPR, 12056–12065.

Romero, J.; Tzionas, D.; and Black, M. J. 2017. Embodied hands:
Modeling and capturing hands and bodies together. ToG 36(6):
245.

Shi, L.; Zhang, Y.; Cheng, J.; and Lu, H. 2019. Two-stream adap-
tive graph convolutional networks for skeleton-based action recog-
nition. In CVPR, 12026–12035.

Simon, T.; Joo, H.; Matthews, I.; and Sheikh, Y. 2017. Hand key-
point detection in single images using multiview bootstrapping. In
CVPR, 1145–1153.

Simonyan, K.; and Zisserman, A. 2014. Two-stream convolutional
networks for action recognition in videos. In NeurIPS, 568–576.

Song, S.; Lan, C.; Xing, J.; Zeng, W.; and Liu, J. 2017. An end-to-
end spatio-temporal attention model for human action recognition
from skeleton data. In AAAI, 4263–4270.

Sridhar, S.; Oulasvirta, A.; and Theobalt, C. 2013. Interactive
markerless articulated hand motion tracking using RGB and depth
data. In ICCV, 2456–2463.

Starner, T.; Weaver, J.; and Pentland, A. 1998. Real-time American
sign language recognition using desk and wearable computer based
video. TPAMI 20(12): 1371–1375.

Tang, A.; Lu, K.; Wang, Y.; Huang, J.; and Li, H. 2015. A real-time
hand posture recognition system using deep neural networks. ACM
TIST 6(2): 1–23.

Tkach, A.; Pauly, M.; and Tagliasacchi, A. 2016. Sphere-meshes
for real-time hand modeling and tracking. ToG 35(6): 1–11.

Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri, M.
2015. Learning spatio-temporal features with 3D convolutional
networks. In ICCV, 4489–4497.

Tzionas, D.; Ballan, L.; Srikantha, A.; Aponte, P.; Pollefeys, M.;
and Gall, J. 2016. Capturing hands in action using discriminative
salient points and physics simulation. IJCV 118(2): 172–193.

Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; and
Van Gool, L. 2016. Temporal segment networks: Towards good
practices for deep action recognition. In ECCV, 20–36.

Wang, Y.; Zhang, B.; and Peng, C. 2019. SRhandnet: Real-time 2D
hand pose estimation with simultaneous region localization. TIP
29: 2977–2986.

Xie, S.; Sun, C.; Huang, J.; Tu, Z.; and Murphy, K. 2018. Rethink-
ing spatio-temporal feature learning: Speed-accuracy trade-offs in
video classification. In ECCV, 305–321.

Yan, S.; Xiong, Y.; and Lin, D. 2018. Spatial temporal graph convo-
lutional networks for skeleton-based action recognition. In AAAI,
7444–7452.

Yasir, F.; Prasad, P. C.; Alsadoon, A.; and Elchouemi, A. 2015.
SIFT-based approach on Bangla sign language recognition. In IC-
CIA, 35–39.

Zhang, P.; Lan, C.; Zeng, W.; Xing, J.; Xue, J.; and Zheng, N. 2020.
Semantics-guided neural networks for efficient skeleton-based hu-
man action recognition. In CVPR, 1112–1121.

Zhang, X.; Li, Q.; Mo, H.; Zhang, W.; and Zheng, W. 2019. End-to-
end hand mesh recovery from a monocular RGB image. In ICCV,
2354–2364.

Zhou, H.; Zhou, W.; Zhou, Y.; and Li, H. 2020. Spatial-Temporal
Multi-Cue Network for Continuous Sign Language Recognition.
In AAAI, 13009–13016.

Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; and Xie,
X. 2016. Co-occurrence feature learning for skeleton based ac-
tion recognition using regularized deep LSTM networks. In AAAI,
3697–3703.

1566


