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Abstract

This paper focuses on the unsupervised domain adaptation
problem for video-based crowd counting, in which we use
labeled data as source domain and unlabelled video data as
target domain. It is challenging as there is a huge gap be-
tween the source and the target domain and no annotations
of samples are available in the target domain. The key issue
is how to utilize unlabelled videos in the target domain for
knowledge learning and transferring from the source domain.
To tackle this problem, we propose a novel Error-aware Den-
sity Isomorphism REConstruction Network (EDIREC-Net)
for cross-domain crowd counting. EDIREC-Net jointly trans-
fers a pre-trained counting model to target domains using
a density isomorphism reconstruction objective and models
the reconstruction erroneousness by error reasoning. Specif-
ically, as crowd flows in videos are consecutive, the densi-
ty maps in adjacent frames turn out to be isomorphic. On
this basis, we regard the density isomorphism reconstruction
error as a self-supervised signal to transfer the pre-trained
counting models to different target domains. Moreover, we
leverage an estimation-reconstruction consistency to monitor
the density reconstruction erroneousness and suppress unre-
liable density reconstructions during training. Experimental
results on four benchmark datasets demonstrate the superior-
ity of the proposed method and ablation studies investigate
the efficiency and robustness. The source code is available at
https://github.com/GehenHe/EDIREC-Net.

1 Introduction
Counting the number of targets in crowd scenarios, i.e., the
crowd counting, has drawn remarkable attention in recent
years. It has a wide range of applications in video surveil-
lance, traffic control, crowd behavior analysis, and so forth.
Recently, benefited from the rapid development of Deep
Convolutional Neural Network (DCNN) (He et al. 2016; Ke
et al. 2020), DCNN based crowd counting methods (Zhang
et al. 2019a; Liu et al. 2019; Guo et al. 2019; Bai et al. 2020;
Ma et al. 2021) have achieved significant progresses and be-
come the main stream of this field. Accurate and efficient

∗Corresponding author
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as they are, these methods often rely on instance-level an-
notations and a massive number of training data to train the
deep convolutional network. If the training data is scarce,
these methods are easily prone to overfit the training data
and may suffer performance deterioration when applied to
other scenarios, (i.e., target domain), in which data distribu-
tions are noticeably different from the training domain (i.e.,
the source domain). This hampers their applications to real-
world scenarios.

To mitigate the gap between the source domain and target
domains, several semi- and un-supervised domain adapta-
tion methods have been proposed for crowd counting. Semi-
supervised methods (Change Loy, Gong, and Xiang 2013;
Reddy et al. 2020) transfer the source-domain pre-trained
counting model to target domains using a small number of
labeled data from the target domain. These methods require
data annotation in target domains, which are still expensive
and laborious for practical usage. To address this problem,
several unsupervised domain adaptation methods (Zhang
et al. 2015; Wang, Li, and Xue 2019; Han et al. 2020) are
proposed to transfer the pre-trained counting model to an
unlabeled target domain by adversarial learning (Wang, Li,
and Xue 2019; Han et al. 2020) or cross-domain image re-
trieval (Zhang et al. 2015). These unsupervised methods on-
ly focus on the image-level information, such as the image
similarity (Zhang et al. 2015) and the domain distinctive-
ness (Wang, Li, and Xue 2019), but neglect the consistency
information of videos sequences. As videos contain more
information than static images, it is of great importance to s-
tudy the problem of transferring pre-trained counting model
to target domains using unlabeled videos.

In this paper, we focus on the cross-domain adaptation
problem for video-based unsupervised crowd counting. The
major challenge is how to explore concealed information
in unlabeled videos for knowledge transfer from a source-
domain to an unseen target domain. To address it, we pro-
pose a density isomorphism reconstruction objective for
cross-domain knowledge transfer. As the crowd flow is s-
mooth in a video sequence, the number of objects in a short
period is consistent as well. It is thus reasonable to assume
that the target distributions between adjacent frames are iso-
morphic, i.e., mutually transformable using bijective map-
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Figure 1: Illustration of (a) target distribution isomorphism
and (b) error-aware density isomorphism reconstruction in
the proposed EDIREC-Net. (a) By regarding each target as
a point, we denote Bi ∈ {0, 1}W×H as the target distribu-
tion map of image Ii at the i-th frame. The element of Bi

indicates whether a target occurs at the corresponding loca-
tion. Supposing the counting number in adjacent frames Ii
and Ij are the same, Bi and Bj are isomorphic, i.e., there
is a mapping f ij from Bi to Bj , which can be reversed by
an inverse mapping f ji . (b) A density map Di is estimat-
ed at time i, and D′i is a reconstructed density map using
Di−d and Di+d. In the proposed EDIREC-Net, the differ-
ence between D′i and Di is minimized by considering the
estimation-reconstruction consistency.

ping, as illustrated in Figure 1(a). This allows us to recon-
struct density maps in the target domain by leveraging the
connections between adjacent frames and regard the recon-
struction error as a self-supervised signal to transfer the pre-
trained counting model to the target domain.

However, it is still problematic to directly minimize the
isomorphism reconstruction error, as both the estimated and
reconstructed density maps may contain numerous errors.
To reduce the impact of inaccurate density reconstruction
in training, we propose to evaluate and monitor the density
reconstruction erroneousness by estimation-reconstruction
consistency. The intuition behind is that only one truth pre-
vails. Specifically, if both the reconstruction and estimation
are accurate and reliable, their outputs should be the same
or close to equal; By contrary, if the differences between the
outputs of reconstruction and estimation are non-negligible,
their results are likely to be erroneous and thus unreliable.
This inspires us to maximize the estimation-reconstruction
consistency and monitor the erroneousness of density iso-
morphism reconstruction without annotations.

On this basis, we propose a novel end-to-end Error-aware
Density Isomorphism REConstruction Network (EDIREC-
Net) for unsupervised domain adaptation as illustrated in

Figure 1 (b). EDIREC-Net simultaneously minimizes the
density isomorphism reconstruction error and maximizes the
estimation-reconstruction consistency. Experimental results
compared with state-of-the-art methods on four benchmark
datasets demonstrate the superiority of the EDIREC-Net and
the ablation studies investigate the efficiency and robustness
of the proposed method.

In summary, the main contributions of this paper include:

• We propose a novel end-to-end Error-aware Density I-
somorphism Reconstruction Network for unsupervised
cross-domain crowd counting in videos.

• We propose an error-aware density isomorphism recon-
struction objective to transfer the pre-trained counting
model to target domains.

• We develop a reconstruction erroneousness modeling
mechanism to monitor the erroneousness of density re-
construction.

2 Related Work
2.1 Crowd Counting
In recent years, density map estimation based methods sig-
nificantly improve the crowd counting performance (Lem-
pitsky and Zisserman 2010; Zhang et al. 2019c; Wan and
Chan 2019; Zhang et al. 2019b; Tan et al. 2019; ?; Liu
et al. 2020a; Liu, Yang, and Ding 2020; Ma et al. 2020).
This kind of methods first estimate a density map for the
input image and then calculate the count number by sum-
ming over the estimated density map. The method (Lem-
pitsky and Zisserman 2010) first converts the target annota-
tions (one labeled pixel for each target) into a ground-truth
density map using Gaussian kernels, and then trains a densi-
ty map estimator using a Maximum Excess over SubArrays
(MESA) loss function. Ma et al. (Ma et al. 2019) propose a
Bayesian Loss (BL) to construct a density distribution from
the point annotations and adopt a count expectation super-
vision at each annotated point to train their density map es-
timator. The methods (Sindagi and Patel 2019; Chen, Su,
and Wang 2020; Zhang et al. 2019a; Liu et al. 2019; Zhang
et al. 2019b; Guo et al. 2019) integrate attention mechanis-
m to crowd counting, which reduce the background noise
by re-weighting target densities with attention mechanisms.
Research studies (Cao et al. 2018; Shen et al. 2018; Idrees
et al. 2013; Jiang et al. 2020; Chen et al. 2020) handle s-
cale variation in crowd counting by generating multipolar
normalized density maps (Xu et al. 2019), using a scale-
aware pyramid network (Chen et al. 2020) or a scale aggre-
gation network (Cao et al. 2018). Image-based crowd count-
ing has been developed rapidly and video-based counting is
also gaining attentions recently.

Crowd counting in videos. There are several approach-
es attempt to count the number of targets in video se-
quences (Xiong, Shi, and Yeung 2017; Fang et al. 2019; Li-
u et al. 2020b; Liu, Salzmann, and Fua 2019b). Xiong et
al. (Xiong, Shi, and Yeung 2017) exploit a convolutional L-
STM to capture both the spatial and temporal information-
s, and extend the ConvLSTM with a bidirectional LSTM
to process the long-term information in crowd flows. The
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method (Fang et al. 2019) proposes a locality-constrained
spatial transformer network to exploit the spatial-temporal
consistency in videos. Zhou et al. (Zou et al. 2019) introduce
a deep trainable network to exploit the temporal dependen-
cies in adjacent frames. Liu et al. (Liu, Salzmann, and Fua
2019b) exploit the consistency of people flows (PFlow) be-
tween adjacent images to improve the performance of crowd
counting, and they use the optical flow to model the tem-
poral correlation between consecutive image frames. Nev-
ertheless, annotation in video is expensive and it’s still un-
solved how to transfer pre-trained counting model to unla-
beled video sequences.

2.2 Domain Adaptation

When the training dataset is scarce, the performance of a
pre-trained model may deteriorate dramatically when the
target domain is different from the source domain. In the past
decades, Domain Adaptation (DA) methods have been pro-
posed to transfer the pre-trained model to target domains and
improve the performance of the pre-trained model (Kang
et al. 2019; Wang and Breckon 2019; Zhang and Davison
2019). According to whether requiring the annotating of tar-
get domain or not, these methods are further divided into two
subcategories: Semi-supervised Domain Adaptation (SDA)
and Unsupervised Domain Adaptation (UDA). SDA meth-
ods (Change Loy, Gong, and Xiang 2013; Reddy et al. 2020)
transfer the pre-trained counting model to target domains by
exploiting a small number of labeled data in the target do-
main. Change et al. (Change Loy, Gong, and Xiang 2013)
develop a Semi-Supervised Regression (SSR) framework to
exploit labeled data in the target domain to compensate the
lacking of training data. Reddy et al. (Reddy et al. 2020) for-
mulate the domain adaptation as a Few-Shot Scene Adap-
tation (FSSA) problem and propose a meta-learning based
method to solve the problem.

Unsupervised domain adaptation for crowd counting.
To get rid of the annotating of target domains, there are UDA
crowd counting methods (Zhang et al. 2015; Wang, Li, and
Xue 2019; Han et al. 2020) transferring a pre-trained model
to target domains using unlabeled data. Zhang et al. (Zhang
et al. 2015) propose a Crowd-Scene Crowd Counting (CSC-
C) method, which first retrievals images in the source do-
main that similar to the target domain and then fine-tunes
the pre-trained counting model with these collected samples.
Wang et al. (Wang, Li, and Xue 2019) propose a Count Ob-
jects via scale-aware adversarial Density Adaptation (CO-
DA) algorithm for crowd counting, which introduces an ad-
versarial training approach to adapt the target domain. Dur-
ing training, they take both the labeled source domain da-
ta and unlabeled target domain data as input, and introduce
a discriminator for distinguishing whether the density map
is generated from the source or the target domain. Han et
al. (Han et al. 2020) propose a Semantic Consistency Pre-
dictor (SCP) to estimate crowd masks, which eliminates the
background clutter and train the counting model using an ad-
versarial learning framework. However, the consistency in-
formation of videos sequences is neglected.

3 Methodology
In this section, we first overview the framework of the pro-
posed method and then provide detailed descriptions of our
key techniques.

3.1 General Framework
Given an unlabeled image sequence I = {I1, I2, ..., IT } of
length T collected from the target domain. Let ϕ(·; Θ) be a
density map estimator with parameter set Θ. For each input
image I ∈ RWI×HI , the ϕ(·; Θ) estimates a density map
D ∈ RWD×HD

≥0 for the input image:

D = ϕ(I; Θ), (1)

where WI and HI (WD and HD) are the width and height
of the image frame (density map), respectively, and each el-
ement D(u, v) in D denotes the number of targets at posi-
tion (u, v). We denote ϕs(·; Θs) as the pre-trained counting
model and ϕt(·; Θt) the target-domain counting model.

The objective of EDIREC-Net is to transfer the prior
knowledge of ϕs(·; Θs) to the target domain, and train a
target-domain model ϕt(·; Θt) using I that achieves more
accurate counting results on the target domain. As illustrated
in Figure 2, the proposed EDIREC-Net contains three major
modules: 1) density and erroneousness inference module, 2)
isomorphism reconstruction module and 3) reconstruction
erroneousness modeling module. During training, Module 1
takes an image tuple Idi = {Ii−d, Ii, Ii+d} as input (d is a
time interval) and infers a density map Dj ∈ RWD×HD

≥0 and
a reconstruction erroneousness matrix Ej ∈ RWD×HD

≥0 for
each image Ij ∈ Idi using the density map header ΦD and
reconstruction erroneousness header ΦE , respectively. Mod-
ule 2 takes the estimated density maps as input and recon-
structs the density map of image Ii using Di−d and Di+d by
isomorphism reconstruction. It then uses an error-aware den-
sity isomorphism reconstruction objective Liso to optimize
the network parameter, which simultaneously minimizes the
density reconstruction error and suppresses unreliable den-
sity reconstruction during training. Module 3 further con-
strains the erroneousness of isomorphism reconstruction us-
ing a regularization term Lmod.

Based on the above descriptions, the objective function of
the EDIREC-Net can be written as:

min
T∑

i=1

[
Liso(Idi ) + Lmod(Idi )

]
, (2)

where Liso(·) is the proposed error-aware density isomor-
phism reconstruction objective and Lmod(·) is a regulariza-
tion term to models the reconstruction erroneousness.

It is worth mentioning that, to avoid the training of
ϕt(·; Θt) being stuck into trivial solutions (such as all-zero
outputs), we employ an “anchor” counting model ϕt(·; Θa)
to infer the density map and erroneousness matrix of the Ii
in Idi . The network architecture and parameter initialization
of ϕt(·; Θa) are identical to the ones of ϕt(:,Θt) while the
parameter set Θa is updated using an exponential moving
average (Tarvainen and Valpola 2017). More implementa-
tion details are provided in Section 4.2.
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Figure 2: Framework overview of the EDIREC-Net. The input to the framework is an unlabeled image sequence I collected
from the target domain. The proposed method contains three major modules: (a) the density and erroneousness inference
module, (b) the isomorphism reconstruction module and (c) the reconstruction erroneousness modeling module.

3.2 Density Isomorphism Reconstruction
Given the estimated density maps Di−d, Di and Di+d of
an image tuple Idi = {Ii−d, Ii, Ii+d}, respectively. We aim
to reconstruct the density map of image Ii using Di−d
and Di+d and regard the reconstruction error as a self-
supervised signal to transfer the pre-trained model.

The key of the density isomorphism reconstruction is how
to find a mapping correspondence between each pair of den-
sity maps. A straightforward solution is to minimizing an
earth mover’s distance (EMD) (Levina and Bickel 2001) and
transporting a density map to an another one by calculating a
density transportation correspondence. However, as the esti-
mated density maps are inaccurate and contain errors, these
mapping correspondences are defectives and could be dele-
terious to the training of target-domain model.

To tackle this problem, instead of calculating mapping
correspondence using density maps directly, we first calcu-
late an image mapping correspondence using image frames
and then convert the image-level correspondence to a density
one by matrix transformation. Let Mj

i ∈ RWI×HI×2 be an
image mapping matrix from Ij to Ii and Gj

i ∈ RWD×HD×2

be a density mapping matrix from Dj to Di. Given images
Ii and Ij , we compute a mapping matrix Mj

i from Ij to Ii
by minimizing an image reconstruction error:

Mj
i

∗
= argmin

Mj
i

‖Ii − ρ(Ij ,M
j
i )‖

2, (3)

where ρ(·, ·) is a warping function. In this paper, as Ii−d,
Ii and Ii+d are consecutive, each pixel Ii(u, v) in Ii can be
approximated by quadratic polynomials of neighbor pixels
of Ii−d(u, v) and Ii+d(u, v), respectively. Thus, the image
mapping matrix Mj

i can be efficiently computed using the
Gunner-Farneback algorithm (Farneback 2003). We denote
by Mi−d

i and Mi+d
i the computed image mapping matrix

from Ii−d and Ii+d to Ii, respectively.

As a density map Di (or Dj) can yet be regarded as a
downsampled target distribution of Ii (or Ij) (Lempitsky and
Zisserman 2010), the mapping correspondence from Dj to
Di and the one from Ij to Ii are linearly correlated. So that
the density mapping matrix Gj

i can be obtained from Mj
i by

linear sampling and scaling, and the density mapping ma-
trices Gi−d

i and Gi+d
i from Di−d and Di+d to Di can be

obtained by:

Gi−d
i (u, v) = Mi−d

i

(
WI

WD
u, HI

HD
v
)
·
√

W 2
D+H2

D

W 2
I +H2

I
, (4)

Gi+d
i (u, v) = Mi+d

i

(
WI

WD
u, HI

HD
v
)
·
√

W 2
D+H2

D

W 2
I +H2

I
. (5)

On this basis, we can reconstruct the density map of image
Ii using Di−d and Di+d:

Di−d
i

′
(x, y) = Di−d(u, v), ∀(x, y) = Gi−d

i (u, v), (6)

Di+d
i

′
(x, y) = Di+d(u, v), ∀(x, y) = Gi+d

i (u, v), (7)

where Di−d
i

′
and Di+d

i

′
denotes the reconstructed density

map of image Ii using Di−d and Di+d, respectively.

3.3 Reconstruction Erroneousness Modeling
To monitor the erroneousness of density reconstruction and
suppress inaccurate density reconstructions during training,
we leverage the estimation-reconstruction consistency to
model the reconstruction erroneousness.

Let Ei ∈ RWD×HD

≥0 be a reconstruction erroneousness
matrix of Di. The larger the reconstruction erroneousness
of Di(u, v) is, the higher Ei(u, v) should be assigned, and
vice versa. As there are no “ground truth” density maps pro-
vided in Idi , evaluating the correctness of the density recon-
struction is difficult. To settle this problem, we propose to
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evaluate the erroneousness of density reconstruction accord-
ing to the estimation-reconstruction consistency. Specifical-
ly, let D′i be a reconstructed density map of Ii. When the re-
constructed density map D′i and the estimated density map
Di are consistent at (u, v), i.e., |Di(u, v)−D′i(u, v)| → 0,
it is very likely that both Di(u, v) and D′i(u, v) are correc-
t. By contrary, if D′i and Di are inconsistent at (u, v), i.e.,
|Di(u, v) − D′i(u, v)| � 0, Di(u, v) and/or D′i(u, v) are
very likely to be erroneous and thus unreliable. Therefore,
the larger |Di(u, v)−D′i(u, v)| is, the larger reconstruction
erroneousness Ei(u, v) should be assigned.

Embedding this objective to the training of the EDIREC-
Net, we derive an error-aware density isomorphism recon-
struction objective, which can be formulated as:

Liso(Idi ) =

∥∥∥∥∣∣Di −Di−d
i

′∣∣
e
�Ei−d

∥∥∥∥2+∥∥∥∥∣∣Di −Di+d
i

′∣∣
e
�Ei+d

∥∥∥∥2,
(8)

where Di−d
i

′
and Di+d

i

′
are the reconstructed density maps

using Eqs.(6) and (7), | · |e outputs the element-wise L2-
norm of the input matrix and� denotes element-wise matrix
division. Nevertheless, solely minimizing Liso may lead to
trivial solutions and the erroneousness matrices Ei±d could
be extraordinary large. To solve this problem, we develop a
regularization term Lmod(·) to constrain the values of Ei±d:

Lmod(Idi ) = log(Ei−d) + log(Ei+d), (9)

where log(·) outputs the logarithmic sum of the input matrix.
On this basis, for each image tuple Idi , the objective func-

tion of the proposed method can be written as:

L(Idi ) = Liso(Idi ) + Lmod(Idi ), (10)

where Liso encourages the network minimizing the differ-
ence between Di and Di±d

i

′
, and Liso and Lmod jointly

models the erroneousness matrices Ei±d to suppress the im-
pact of unreliable density reconstructions during training.

4 Experiment
4.1 Dataset
To investigate the effectiveness of the proposed method in
cross-domain crowd counting, we conduct domain adapta-
tion experiments from the source domain datasets (i.e., the
UCF-QNRF (Idrees et al. 2018) dataset) to different tar-
get domain datasets (i.e., UCSD, MALL, VENICE, FDST),
where the target domain datasets are video sequences col-
lected from real-world scenarios. A brief description of these
datasets is provided as the following:

UCF-QNRF (Idrees et al. 2018). The dataset is a large-
scale dataset containing 1535 images with 1,251,642 point
annotations, where each image includes about 800 targets in
average. The dataset has 1,201 images for training and the
remaining 334 images are used for testing.

UCSD (Chan, Liang, and Vasconcelos 2008). It contains
2,000 frames captured from a surveillance camera. The res-
olution of images frames is 238 × 158 and the frame rate

is 10 fps. Following the experiment setting in (Chan, Liang,
and Vasconcelos 2008), we use the frames from 601 to 1400
for training and the remaining 1200 frames for testing.

MALL (Chen et al. 2012). This dataset contains 2,000
frames captured from a mall with a fixed resolution 640 ×
480. The video frame rate is about 2 fps and there are about
30 targets in each frame. Following the settings in (Chen
et al. 2012), we use the first 800 frames for training and keep
the remaining 1,200 frames for testing.

VENICE (Liu, Salzmann, and Fua 2019a). It contains
167 annotated frames from 4 different scenarios. The image
resolution is 1280 × 720 and there are about 250 targets in
each frame. Following (Liu, Salzmann, and Fua 2019a), we
use 80 images from a single scenario for training and keep
the rest images from the other 3 scenarios for testing.

FDST (Fang et al. 2019). This dataset captures 100 video
sequences from 13 different scenes with 150,000 image
frames and 394,081 annotated head points. There are 60
video sequences re used for training and the rest are used
for testing. The videos are captured at 30 fps with a resolu-
tion of 1920× 1080.

4.2 Implementation Details
Network Architecture. We use the VGG-19 architec-
ture (Simonyan and Zisserman 2014) as the backbone of our
density map estimator, where the fully-connected layers are
removed. We then feed the output feature map to a density
estimation header (ΦD) and a reconstruction erroneousness
prediction header (ΦE), respectively, which both consist of
two 3× 3 and one 1× 1 convolutional layers.

Training Details. The source-domain density map esti-
mator ϕs(·; Θs) is pre-trained on the UCF-QNRF dataset
using the Bayesian Loss (BL) (Ma et al. 2019).

The backbone and the density map header of ϕt(·; Θt)
are initialized using Θs and the erroneousness estimation
header is randomly initialized. The “anchor” counting mod-
el ϕt(·; Θa) is identical to ϕt(·; Θt) (including the network
architecture and parameter initialization) except the param-
eter updating method. During training, Θt is updated using
an Adam optimizer (Kingma and Ba 2014) with a learning
rate of 10−5, while Θa is updated using an exponential mov-
ing average (Tarvainen and Valpola 2017): Θa = αΘa +Θt,
where α is the parameter of moving step. In this paper, we
fix α = 0.999, which means Θa is about the weight aver-
age of the latest 1/(1 − α) = 1000 iterations of Θt. The
time interval parameter d is fix to d = 3 according to the
experimental results in Section 4.5.

4.3 Evaluation Metrics
We adopt two widely used crowd counting metrics to evalu-
ate the proposed method: Mean Absolute Error (MAE) and
Mean Squared Error (MSE), which are defined as:

MAE =
1

N

N∑
i=1

|Cgt
i − Ci|, (11)

MSE =
1

N

√√√√ N∑
i=1

|Cgt
i − Ci|2, (12)
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Supervision Method Venice UCSD MALL FDST
MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

— Baseline 33.95 39.44 7.96 8.54 4.27 5.94 4.77 8.33

Supervised PFlow 15.00 19.60 0.81 1.07 — — 2.84 3.57
BL 9.99 14.24 0.84 1.08 1.54 2.00 1.42 1.88

Semi-supervised SSR 19.84 31.13 1.68 2.07 2.69 3.38 5.41 6.13
FSSA 17.83 25.24 1.45 1.85 2.32 2.97 2.96 3.86

Unsupervised

CSCC 18.05 22.34 8.89 9.87 4.01 4.99 5.15 7.84
CODA 31.39 37.17 5.25 6.07 3.37 4.43 4.74 8.27
SCP 22.79 26.52 4.55 5.71 3.03 4.04 4.28 6.74
Ours-w/o mod 14.66 17.48 2.22 2.71 3.17 4.03 3.97 4.76
Ours 11.23 15.16 1.79 2.47 2.36 3.12 3.25 3.94

Table 1: Performance Evaluation on Four Benchmark Datasets.

where N is the number of testing images, Cgt
t and Ct are

the ground-truth and the estimated count number of the t-th
frame, respectively.

4.4 Experimental Evaluations
In Table 1, we compare the proposed method with both
semi- and un-supervised domain adaptation methods for
crowd counting (described in Section 2). Moreover, we al-
so compare the proposed method with representative super-
vised methods, i.e., PFlow (Liu, Salzmann, and Fua 2019b)
and BL (Ma et al. 2019). The best results of the super-
vised, semi-supervised and unsupervised methods are de-
noted by italics, underline and bold, respectively. The Base-
line method outputs the results of the pre-trained model. The
Ours method outputs the counting results of the proposed
method and the Ours-w/o mod outputs the results without
the reconstruction erroneousness modeling. For fair compar-
ison, all the methods we compared use the pre-trained model
as the proposed method. From Table 1, we make the follow-
ing important observations:

• The performance of the pre-trained (i.e., the Baseline) is
inferior on target domains due to the domain gap between
targets domains and the source domain.

• Without requiring any additional annotations, the pro-
posed method significantly improves the performance of
the Baseline method on the target domain datasets (by re-
ducing 67%, 77%, 42%, 28% MAE error on the Venice,
UCSD, MALL, FDST datasets, respectively).

• Compared with Ours-w/o mod, the Ours method steadi-
ly improves the counting performance (around 20% im-
provement on the four benchmark datasets) by modeling
the reconstruction erroneousness.

• The proposed method outperforms all the unsupervised
cross domain counting methods and achieves highly
competitive results with state-of-the-art semi-supervised
methods.

• The proposed method achieves comparable results
with the representative fully-supervised methods (upper
bounds of the domain adaptation methods).

The key to achieve such results is that, the EDIREC-Net
regards the density isomorphism reconstruction error as a

Figure 3: Influence of different d values.

self-supervised signal, which is efficient to transfer the pre-
trained counting models to different target domains. Be-
sides, the erroneousness modeling mechanism provides an
opportunity to monitor the reliability of isomorphism re-
construction, which can further improve the counting per-
formance. To get more insights, we illustrate counting ex-
amples of different methods on the four target datasets in
Figure 4. We can see that: 1) the pre-trained counting mod-
el (Baseline) produces inaccurate counting results such as
missing counting (the yellow circles) and redundant count-
ing (the red circles) in target domains. 2) the Ours-w/o mod
transfers the pre-trained model to target domains and signifi-
cantly improves the counting performance. 3) By exploiting
the reconstruction erroneousness modeling mechanism, the
Ours achieves more accurate counting results.

4.5 Ablation Studies
Influence of d To study the influence of d, we conduc-
t experiments on the validations sets (100 images randomly
sampled from the training set) of the MALL dataset. The
meta-parameter d affects the collection of the image tuple
Idi = {Ii−d, Ii, Ii+d}. It can be seen from Figure 3 that,
when d is smaller than 5, the accuracy keeps steady and the
best performance is achieved at d = 3. When d exceeds 5,
the counting performance start to decrease. This is mainly
because when d is too large, the number of targets in Idi are
different and the isomorphism of density maps are collapsed.

Robustness to Different Pre-trained Models. To study
the robustness of the proposed method to different base-
line methods and source domain datasets, we adopt the
MESA (Lempitsky and Zisserman 2010) as an addition-
al baseline method and the ShanghaiTech-A (Zhang et al.
2016) dataset as an additional source domain dataset. The
ShanghaiTech-A includes 300 training images and 182 test-
ing images with about 500 targets per image. We denote by
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Figure 4: Counting examples of the (b) Ground-Truth, (c) Baseline, (d) Our-w/o mod and (e) Ours methods. The warmer color
denotes the higher density. The number upon each density map denotes the predicted count number, and the yellow and red
circles mark the missing and redundant counting of the Baseline methods, respectively.

Source Method Venice UCSD MALL FDST
MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

ShanghaiTech-A

Baseline-MESA 51.57 53.68 16.80 17.81 15.67 16.75 12.80 25.59
Ours 17.83 22.19 5.13 5.83 5.57 6.54 6.27 7.64
Baseline-BL 40.13 51.54 15.36 16.18 12.48 12.99 5.01 8.09
Ours 14.10 19.13 4.22 5.01 4.77 5.93 3.96 5.12

UCF-QNRF

Baseline-MESA 43.16 57.88 9.04 9.77 5.71 6.67 6.12 7.57
Ours 13.05 15.72 2.64 3.60 4.65 6.01 4.95 6.10
Baseline-BL 33.95 39.44 7.96 8.54 4.27 5.94 4.77 8.33
Ours 11.23 15.16 1.79 2.47 2.36 3.12 3.25 3.94

Table 2: Robustness to Different Pre-trained Models.

Figure 5: |Ei| and MAE curves during training.

Baseline-BL and Baseline-MESA the pre-trained model us-
ing the Bayesian Loss (Ma et al. 2019) and the MESA Loss,
respectively. From Table 2, we can see that: 1) as the size of
UCF-QNRF is much larger than the one of ShanghaiTech-A
(1535 v.s. 300), the UCF-QNRF pre-trained model is more
accurate and robust than the ShanghaiTech-A one. 2) Even
the pre-trained model is not very accurate, the proposed
method can steadily and significantly improve the perfor-
mance (more than 30% MAE improvement) and achieves
favorable counting results on all the four datasets.

Reconstruction Erroneousness Analysis To analysis the
reconstruction erroneousness modeling, we draw the curves
of |Ei| and MAE error on the validation set of UCSD dataset

in Figure 5. We can see that, at the beginning of train-
ing, the estimated density maps are not very accurate and
the density reconstruction erroneousness |Ei| is high. By
transferring the pre-trained counting model to the target do-
main, the reconstruction erroneousness |Ei| decreases sig-
nificantly. Meanwhile, the counting performance improves
steadily when the reconstruction erroneousness decreasing.
This demonstrates the erroneousness modeling mechanis-
m can efficiently suppress the reconstruction erroneousness
and improve the counting performance.

5 Conclusion

In this paper, we propose an Error-aware Density Isomor-
phism REConstruction Network (EDIREC-Net) to transfer
the source-domain prior knowledge to target domains us-
ing unlabeled video sequences. We transfer the pre-trained
counting model to target domains using the density isomor-
phism reconstruction objective and develop a reconstruc-
tion erroneousness modeling mechanism to monitor the er-
roneousness of density reconstructions. Experimental result-
s on four benchmark datasets demonstrate the superiority of
the proposed method.
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