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Abstract

Cross-entropy loss combined with softmax is one of the
most commonly used supervision components in most ex-
isting segmentation methods. The softmax loss is typically
good at optimizing the inter-class difference, but not good
at reducing the intra-class variation, which can be subopti-
mal for semantic segmentation task. In this paper, we pro-
pose a Consistent-Separable Feature Representation Network
to model the Consistent-Separable (C-S) features, which are
intra-class consistent and inter-class separable, improving the
discriminative power of the deep features. Specifically, we
develop a Consistent-Separable Feature Learning Module to
obtain C-S features through a new loss, called Class-Aware
Consistency loss. This loss function is proposed to force the
deep features to be consistent among the same class and apart
between different classes. Moreover, we design an Adaptive
feature Aggregation Module to fuse the C-S features and orig-
inal features from backbone for the better semantic predic-
tion. We show that compared with various baselines, the pro-
posed method brings consistent performance improvement.
Our proposed approach achieves state-of-the-art performance
on Cityscapes (82.6% mIoU in test set), ADE20K (46.65%
mIoU in validation set), COCO Stuff (41.3% mIoU in valida-
tion set) and PASCAL Context (55.9% mIoU in test set).

Introduction
Semantic segmentation is one of the most challenging and
fundamental problems in computer vision, which aims to as-
sign per-pixel class label for a given image. It has been ap-
plied to various challenging fields, such as autonomous driv-
ing, image editing and human parsing, etc. Benefiting from
the Fully Convolution Networks (FCN) (Long, Shelhamer,
and Darrell 2015), recent approaches achieve promising per-
formance. FCN-based methods usually adopt softmax loss
as an optimization function to learn discriminative features
for pixel-level semantic segmentation. However, the soft-
max loss typically does well in enlarging the inter-class dif-
ference (i.e. separating different classes), but not good at
shrinking the intra-class diversity (Wang et al. 2018a; Liu
et al. 2017a). This may cause inconsistent predictions of the
same category. From the view of feature discriminative abil-
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ity, the intra-class consistency and the inter-class separabil-
ity are equally important for classification.

To enhance the intra-class consistency, some works adopt
feature aggregation with self-attention mechanism, which
implicitly alleviates the intra-class diversity, enhancing the
discriminative ability of feature representations. For exam-
ple, Nonlocal (Wang et al. 2018b) introduces a self-attention
mechanism to capture pair-wise relationships and utilizes
the relationships to guide feature fusion, so that similar fea-
tures tend to be more similar, which enhances the intra-
class consistency implicitly. CPNet (Yu et al. 2020b) mod-
els the intra-class dependency through aggregating the pix-
els belonging to the same category, shrinking the intra-class
variance and achieving good segmentation performance.
ACFNet (Zhang et al. 2019a) builds class-aware context
features through adaptively combining different context ac-
cording to the category of each pixel, reducing the intra-class
variation. These previous methods adopt an implicit feature
learning scheme to enhance the similar or intra-class fea-
tures by themselves along a bottom-up direction.

In this paper, we propose a Consistent-Separable Fea-
ture Representation Network (CSFRN) to obtain discrimi-
native features for per-pixel semantic prediction. Different
from the previous works based on feature aggregation, we
adopt a top-down supervised scheme to explicitly learn the
intra-class consistent and inter-class separable features for
the per-pixel semantic prediction. Specifically, we design
a Consistent-Separable Feature Learning Module (CSFLM)
on the top of the dilated FCN. The process of this module
could be divided into three steps. First, we generate the fea-
ture embedding for each pixel from the output feature of
the dilated FCN. And we build class-wise semantic centers
by using the feature embeddings and ground truth informa-
tion. Second, we design a new loss function, namely Class-
Aware Consistency (CAC) loss, to simultaneously minimize
the distances from the feature embedding of each pixel to
its corresponding class semantic center, and maximize the
distances from the feature embedding of each pixel to other
class semantic centers. Considering the degree of intra-class
compactness of different categories should be different, in
this loss function, we introduce a class-aware margin mech-
anism to adaptively adjust the degree for different cate-
gories. With the supervision of CAC loss, we could obtain
the Consistent-Separable (C-S) features. Third, we fuse the
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Figure 1: An overview of the proposed Consistent-Separable Feature Representation Network. The dotted line denotes that it
is only used during training phase. CAP denotes Class-wise Average pooling. CSFLM denotes Consistent-Separable Feature
Learning Module. AAM denotes Adaptive feature Aggregation Module. CAC denotes Class-Aware Consistency loss. Embed-
dings (C-S feature) denotes that we name it feature embeddings in training phase and C-S feature in inference phase. A, B and
C denote features. Note that we only show the two categories of ‘car’ and ‘bus’ for brevity in CSFLM.

C-S features into the original features from the backbone to
obtain final features for semantic prediction. Moreover, to
obtain the better final features, we design an Adaptive fea-
ture Aggregation Module (AAM) to fuse the C-S features
and original features. We aggregate the features in spatial
dimension for both the original features and C-S features,
and then we concatenate them in channel dimension to ob-
tain the final feature to predict the label of each pixel. Due to
CAC loss force the features among the same class keeping
consistency and pull the features of different classes staying
apart, our method could build the consistent-separable fea-
ture representation and thus can obtain more discriminative
feature representation for segmentation.

To verify the effectiveness of the proposed method, we
plug our module into recent state-of-the-arts segmentation
methods (e.g., Non-local, PSP, Deeplabv3+.), and the results
indicate that our method achieves impressive improvements
compared with these strong baselines. We further carry out
extensive experiments on four competitive datasets, includ-
ing Cityscapes dataset (Cordts et al. 2016), ADE20K dataset
(Zhou et al. 2017), COCO Stuff dataset (Caesar, Uijlings,
and Ferrari 2018), and PASCAL Context dataset (Mottaghi
et al. 2014) to evaluate the algorithm, and it achieves state-
of-the-art performance on above four datasets.

Our main contributions can be summarized as follows:

• We propose a Consistent-Separable Feature Representa-
tion Network (CSFRN) to build the discriminative fea-
tures, which are consistent among the same class and sep-
arable between the different classes.

• A Consistent-Separable Feature Learning Module (CS-
FLM) is designed to obtain Consistent-Separable (C-S)
feature with the supervision of the proposed class-aware
consistency loss. Moreover, we design an Adaptive fea-
ture Aggregation Module (AAM) for fusing the C-S fea-
tures and the original features, further improving the per-
formance.

• CSFLM provides a plug-and-play module which could be

easily employed into existing segmentation networks with
negligible cost and achieve significant improvement com-
pared to these networks. Extensive experiments demon-
strate that our method achieves state-of-the-art perfor-
mance on four competitive benchmarks.

Related Work
Semantic Segmentation Fully Convolutional Networks
(FCN) (Long, Shelhamer, and Darrell 2015) based meth-
ods have made significant progress on semantic segmenta-
tion. Some works (Lin et al. 2017; Ding et al. 2020) de-
sign the encoder-decoder network to recover the detailed
spatial information for improving segmentation quality. Re-
cent works show that exploring the context information
could obtain better segmentation performance. The meth-
ods of constructing the context information could be divided
into multi-scale-based methods and attention-based meth-
ods. For the multi-scale-based method, ParseNet (Liu, Rabi-
novich, and Berg 2015) incorporates global information into
the features for improving segmentation performance. PSP-
Net (Zhao et al. 2017) builds context features through aggre-
gating different-region-based features, which are obtained
by pyramid pooling modules. DeepLabv3 (Chen et al. 2017)
capture context features by atrous spatial pyramid pooling.
For the attention-based methods, some works introduce a
self-attention mechanism to build context features. DANet
(Fu et al. 2019a), CCNet(Huang et al. 2019) exploit rela-
tionships among the features to aggregate the features in spa-
tial/channel dimension.

Affinity Modeling Semantic segmentation could not be re-
garded as a task of independent prediction for each pixel, but
the correlation information between different pixels should
fully be considered. Several approaches employ structure in-
formation for segmentation. (Krähenbühl and Koltun 2011)
propose denseCRF to establish pairwise potentials on all
pairs of pixels for refining the segmentation results. Liu et
al. (Liu et al. 2017b) incorporate high-order relations and
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label contexts into Markov Random Field for semantic seg-
mentation. Ke et al. (Ke et al. 2018) propose adaptive affin-
ity fields to match the semantic relations between neighbor
pixels in the label space. Zhao et al. (Zhao et al. 2019) pro-
pose RMI Loss to model the dependencies among the pixels
in label space by using one pixel and its neighbor pixels to
represent these pixels.

Different from the above methods, we build a Consistent-
Separable Feature Representation Network to obtain the C-
S features, which are inter-class compactness and inter-class
separability, improving the segmentation performance.

Proposed Method
In this section, we first introduce the overview pipeline
of our network. And then, we describe the details of the
Consistent-Separable Feature Learning Module and Adap-
tive feature Aggregation Module. Finally, we describe the
training and testing process of the network.

Overview
In this paper, we propose a Consistent-Separable Feature
Representation Network to construct the discriminative fea-
ture with intra-class compactness and inter-class separability
for improving the segmentation performance.

As illustrated in Figure 1, following previous works (Chen
et al. 2018), we first utilize the dilated ResNet as the back-
bone to extract features and the output stride is 1/8. Then,
the features are fed into the Consistent-Separable Feature
Learning Module. In this module, at the training phase, we
first build the feature embeddings and margins, which could
adaptively adjust the degree of intra-class compactness and
inter-class separability for different categories. Then, we
build the semantic centers for each category and the class-
aware margins through average the values of the same cate-
gory. Last, we exploit the CAC loss to pull the feature em-
beddings of different classes staying apart and push the fea-
ture embeddings of the same class keeping close. With the
supervision of CAC loss in CSFLM, the feature embedding
will be inter-class compactness and inter-class separability.
At the inference phase, we only generate the feature em-
beddings and we directly regard the feature embeddings as
Consistent-Separable (C-S) features. After obtaining the C-
S features, the C-S features and original features are passed
through the Adaptive feature Aggregation Module to obtain
the final features via feature aggregation in spatial and chan-
nel dimensions. At last, the final features are utilized to pre-
dict the pixel-level labels of the input image.

Consistent-Separable Feature Learning Module
The softmax loss is not good at reducing the feature variation
among the same class. Recent works (Yu et al. 2020b; Hu
et al. 2020) perform the self-attention mechanism in class-
level, implicitly shrinking the intra-class diversity and thus
improving the segmentation performance. Different from
these methods, we propose a consistent-separable feature
learning module to explicitly build the consistent-separable
feature through supervision.

As shown in Figure 1 (CSFLM), given an input feature
from last stage of the ResNet A ∈ RC×H×W , where C de-
notes the channel dimension andH×W denotes spatial res-
olution. We first feed A into a 3 × 3 convolutional layer to
obtain the feature A′. Then, two 1× 1 convolutions are em-
ployed to generate the feature embeddings B ∈ RC′×H×W

and margins C ∈ R1×H×W .
To obtain consistent-separable features, we introduce the

class-aware consistency loss to supervise the feature embed-
dings B.

Class-Aware Consistency Loss For the semantic segmen-
tation task, a ground truth mask is provided for each im-
age. We can know which pixels belong to the same category.
And we could build a “semantic center” (a vector with the
same dimension as feature embeddings B) for each cate-
gory. Then, we simultaneously minimize the distances from
the feature embedding of each pixel to its corresponding se-
mantic center and maximize the distances from the feature
embedding of each pixel to other semantic centers.

Given an input image and the ground truth, we first obtain
the feature embeddings B by the way mentioned above. And
we downsample the ground truth into the same size of the
feature embeddings B by nearest neighbor downsampling,
yielding a new ground truth. The categories in the smaller
ground truth are represented as K = {1, 2, 3, · · · , k}. For
a certain category, we could find the pixels, which belong
to the category, in the feature embeddings B. Therefore, we
could compute the semantic centers S = {s0, s1, s2, · · · , sk}
for each category:

sk =
1

Nk

H∑
i=1

W∑
j=1

1k
ij(bij) (1)

where sk denotes the semantic center of category k. H,W
denotes the height and width of the feature embeddings B.
Nk denotes the total number of pixels which belong to cat-
egory k. 1k

ij is an indicator function, being 1 if the ground
truth label in position (i, j) is k and 0 otherwise. bij denotes
the feature vector of position (i, j) in feature embeddings B.

We construct a Gaussian function to compute the distance
between each feature vector in feature embeddings B and
its corresponding semantic center. This function map the
distance between the the feature vector bij and a semantic
center sk into a value ranged in [0, 1). Moreover, we intro-
duce class-aware margins M = {m0,m1m2, · · · ,mk} to
adaptively adjust the degree of intra-class compactness and
inter-class separability.

φ(bij , sk) = 1− exp

(
−‖bij − sk‖

2

2m2
k

)
(2)

where φ(bij , sk) measures the distance between the feature
vector bij and a semantic center sk. mk denotes the margin
for the category k. In practice, instead of using the standard
1

2m2
k

, we make use of exp(mk∗δ) with a fix scalar δ to adjust
the degree. δ is set to 10 by default. The computation of mk

can be formulated as follows:
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mk =
1

Nk

H∑
i=1

W∑
j=1

1k
ij(cij) (3)

where cij denotes the element of position (i, j) in margins
C. mk could be regarded as the specific margin for category
k.

To achieve intra-class consistency and inter-class sepa-
bability, if the semantic center of feature vector bij is sk,
φ(bij , sk) should be 0, otherwise 1. Therefore, the Class-
Aware Consistency loss function can be defined as follows:

Lcac =
1

K

K∑
k=1

1

N

H∑
i=1

W∑
j=1

{1k
ij(L(d, 0))+1nok

ij (L(d, 1))}

(4)
where d = φ(bij , sk), L(·, ·) denotes a binary classification
loss function. In the class-aware consistency loss, the first
term 1k

ij(L(d, 0)) means to force the feature vector in the
feature embeddings B close to its corresponding semantic
center. The second term 1nok

ij (L(d, 1)) force the feature vec-
tor to be farther away from other semantic centers. Consid-
ering that the number of pixels belonging to a certain class
in an image is much less than the number of pixels not be-
longing to this class, there will be a problem of class im-
balance. In practice, we opt for using Lovasz-hinge loss (Yu
and Blaschko 2015; Neven et al. 2019) as the binary clas-
sification function. Lovasz-hinge loss measures the overlap
between predictions and ground truths and is insensitive to
the number of foreground/background pixels, thus alleviat-
ing the class-imbalance problem.

By minimizing the loss function, we could obtain
consistent-separable features with intra-class compactness
and inter-class separability, improving the discriminative
ability of the feature representation and thus achieving better
segmentation performance.

Smooth Loss As mentioned above, we calculate a margin
for each category via Eq. (3) to adaptively adjust the de-
gree of intra-class compactness and inter-class separability
for different categories. The margins predicted by the pixels
belonging to the same category should be as consistent as
possible. Therefore we add a smooth loss as follows:

Lsmooth =
1

K

K∑
k=1

1

Nk

H∑
i=1

W∑
j=1

1k
ij(‖cij −mk‖2) (5)

Adaptive Feature Aggregation Module
To further improve the ability of feature representation, we
design an adaptive feature aggregation module to fuse the
C-S features and original features from the backbone. De-
formable convolution (Dai et al. 2017) can adaptively aggre-
gate features in spatial dimension through learnable offsets.
Since the feature of each pixel of the C-S features is close to
its corresponding semantic center, it contains accurate cat-
egory information. Thus, the C-S features could guide the
generation of the offsets for deformable convolution.

C C 

X 

Y 

C'xHxW 

CxHxW 

CxHxW 2K2xHxW E F 

Deformable 
convolutional layer 

Convolutional layer C Concatenate 

Figure 2: Details of Adaptive feature Aggregation Module.

As illustrated in Figure 2, given a C-S feature X ob-
tained by CSFLM, and an original feature Y obtained from
the backbone, we first concatenate them in channel di-
mension. After that, the concatenated features are passed
through a 3 × 3 convolutional layer to predict the offsets
E ∈ R2K2×H×W for deformable convolution operation. K
is the kernel size of the deformable convolutional layer. Af-
ter obtaining the offsets, we aggregate the feature in spatial
dimension for both C-S features X and original features Y
through a 3× 3 deformable convolutional layer.

X′ =Wa(X,E),Y′ =Wb(Y,E) (6)
where the Wa(·, ·) and Wb(·, ·) are the deformable con-
volutional layer. Then, we concatenate the spatial aggre-
gated features X′ and Y′ in channel dimension and em-
ploy a 1 × 1 convolutional layer to generate the final fea-
ture F ∈ RC×H×W . And the final feature F is employed to
predict the class of each pixel of the input image.

Training & Inference
Training We jointly learn the segmentation prediction and
consistent-separable features together with the fusion mod-
ule in an end-to-end fashion. Here, the segmentation predic-
tion is supervised by standard cross-entropy loss, noted as
Lseg . Therefore, the total loss L is computed as:

L = λ1Lseg + λ2Lcac + λ3Lsmooth (7)
where λ1, λ2 and λ3 are hyper-parameters that control the
weighting among the three losses. In practice, we set λ1 = 1,
λ2 = λ3 = 0.2.
Inference During inference, we only generate the feature
embeddings and directly regard the feature embeddings as
consistent-separable features in Consistent-Separable Fea-
ture Learning Module. After obtaining the C-S features, we
utilize the adaptive feature aggregation module to fuse the
C-S features and original features to generate final features
for predicting the label of each pixel.

Experiments
To evaluate our proposed method, we carry out extensive
experiments on the Cityscapes dataset, ADE20K dataset,
COCO Stuff dataset and PASCAL Context dataset. For these
datasets, we use the mean Intersection over Union(mIoU)
as an evaluation criterion. Experimental results demonstrate

1534



Methods m
Io

U

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

PSP 78.65 98.0 84.5 92.8 59.2 60.7 64.9 71.4 79.5 92.6 66.6 94.9 82.7 64.2 95.3 73.6 87.0 80.7 68.2 77.8
+CSFLM 80.03 98.1 84.9 93.1 63.1 62.2 65.3 73.2 81.3 92.7 66.8 95.0 83.5 66.2 95.4 77.1 89.3 84.7 69.6 78.9
Nonlocal 77.64 98.0 84.3 92.7 57.0 61.3 64.8 71.3 80.1 92.6 65.0 94.8 82.0 60.8 95.1 74.7 85.9 75.7 61.3 77.8
+CSFLM 78.91 98.1 85.0 93.0 60.7 62.0 65.5 72.8 81.2 92.6 66.0 94.9 82.8 62.4 95.4 79.6 88.3 77.1 63.7 78.6
Deeplabv3+ 78.5 98.1 85.0 93.1 56.4 62.1 67.1 72.1 80.7 92.7 65.6 95.0 83.3 65.0 95.3 73.9 86.2 73.9 67.4 78.2
+CSFLM 79.87 98.2 86.0 93.2 58.6 62.8 68.0 73.5 81.8 92.8 67.3 95.1 83.8 66.0 95.5 80.6 88.1 77.5 69.6 79.3

Table 1: Category-wise results on Cityscapes validation set. Our method improves all strong baselines in Mean IoU, and improve
baselines by a significant margin in some categories, such as “truck”, “train”, “bus”, etc. The score of each category retain one
decimal place for brevity.

that our method achieves state-of-the-art performance on the
above four benchmarks. In the following section, we first
conduct ablation studies to verify the effectiveness of our
method. And then, we perform the visualization analysis. Fi-
nally, we compare our method with state-of-the-arts.

Datasets and Implementation Details
Cityscapes It contains 5000 high quality pixel-level anno-
tated images. And these annotated images are divided into
2975, 500 and 1525 images for training, validation, and test-
ing. The dataset contains 19 classes and each image is of
1024× 2048 resolution.
ADE20K There are 20K images in the training set, 2K im-
ages in the validation set, and 3K images in the testing set.
Images in this dataset are labeled as 150 classes, including
35 stuff concepts and 115 discrete objects.
COCO Stuff The COCO Stuff dataset contains 10,000 im-
ages, including 9,000 images for training and 1,000 images
for testing. Following (Li et al. 2019), we report our results
on 171 categories.
PASCAL Context There are 4998 images for training and
5105 images for testing. Following (Yuan, Chen, and Wang
2019; Yu et al. 2020b), we evaluate our method on the most
frequent 59 classes.
Implementation Details The PyTorch framework is em-
ployed to implement our network. We use the dilated ResNet
as our backbone in the following experiments, and all back-
bones are pretrained on the ImageNet dataset (Deng et al.
2009). During training phase, the initial learning rate is
set to 0.01 for the Cityscapes dataset with the momentum
of 0.9, the weight decay of 0.0001 and the batch size of
8. Following (Zhang et al. 2018), the ‘poly’ learning pol-
icy is used to decay the initial learning rate by multiplying
(1− iter

total iter )
0.9 after each iteration. For data augmentation,

random horizontal filp, random cropping (cropsize 769) and
random resizing with scales range [0.75, 2.0] are employed
in the ablation study. Besides, we train the model with Syn-
chronized Batch Normalization for 40k iterations for abla-
tion study, and 90k iterations for submission to the server.
During the testing phase, following (Zhang et al. 2018), the
sliding-window method is used for evaluation.

Ablation Study for CSFLM
In order to analyze and verify the effectiveness of CSFLM,
for the experiments in this subsection, we use ResNet50 (He
et al. 2016) as the backbone, and we directly concatenate
the C-S features obtained from CSFLM into the original fea-
tures without adaptive feature aggregation module.
Improvements upon Strong Baselines To verify the effec-
tiveness and generality of the CSFLM, we apply it to vari-
ous state-of-the-art networks, including PSPNet (Zhao et al.
2017), Non-Local (Chen et al. 2017) and Deeplabv3+ (Chen
et al. 2017). We plug CSFLM after PPM, Non-local block
and ASPP in PSP, Non-local and Deeplabv3+ respectively.
The experimental results are shown in Table 1. We report
the category-wise performance for each method. It can be
seen that our method achieves continuous improvements on
various state-of-the-art segmentation models.
Complexity Analysis We further analyze the efficiency of
our method. We measure the parameters and GFLOPs to
investigate the complexity of the network. All experiments
adopt the ResNet-50 as the backbone. As illustrated in Ta-
ble 2, our method improves the baselines by 1.27% - 3.09%
in MeanIoU, and only increase by 4.5% - 7.3% and about
2.6M in terms of GFLOPs and parameters. Thus, our method
is light-weighted and generality for segmentation networks.
The Influence of Channel Dimension In CSFLM, we in-
troduce the feature embeddings to obtain the C-S features
through optimizing the class-aware consistency loss. Here,
we conduct more experiments to explore the importance of
the feature embeddings dimensions. As shown in Table 3,
we model the feature embeddings with channels of 8, 16,
32, and 64 in CSFLM. It can be seen that the CSFLM is
not sensitive to the dimension of the feature embeddings.
Furthermore, we also report the GFOLPs to investigate the
computation complexity with different dimensions.
Effectiveness of the CAC loss For CAC loss, we simul-
taneously minimize the distances from the feature embed-
ding of each pixel to its corresponding class semantic center
and maximize the distances from the feature embedding of
each pixel to other class semantic centers. To validate the
effectiveness of this supervision manner, we use Lovasz-
Softmax (Yu and Blaschko 2015) to directly supervise the
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Method mIoU% GFLOPs Parameters(M)
FCN 71.32 149.40 37.70
+CSFLM 74.41(↑3.09) 160.28(↑7.3%) 40.36(↑2.66)
PSP 78.65 178.48 48.98
+CSFLM 80.03(↑1.38) 189.36(↑6.1%) 51.63(↑2.65)
Nonlocal 77.64 239.88 50.02
+CSFLM 78.91(↑1.27) 250.75(↑4.5%) 52.68(↑2.66)
Deeplabv3+ 78.49 176.36 43.59
+CSFLM 79.87(↑1.38) 187.24(↑6.2%) 46.25(↑2.66)

Table 2: Complexity comparison. When computing
GFLOPs, the resolution of the input image is 512× 512.

Method Channel GFLOPs mIoU%
Deeplabv3+ - 176.36 78.49
+CSFLM 8 187.14 79.57
+CSFLM 16 187.17 79.78
+CSFLM 32 187.24 79.87
+CSFLM 64 187.37 79.79

Table 3: Ablation study on channel dimensions in CSFLM.

Method Supervision Manner Loss mIoU%
Deeplabv3+ - - 78.49
+Aux Loss Mask L-Softmax 78.11
+CSFLM Distance CAC(BCE) 78.70
+CSFLM Distance CAC(LS) 79.87

Table 4: Ablation study on supervision on CSFLM.

Method Backbone mIoU%
Deeplabv3+ ResNet50 78.49
+CSFLM w/o margins ResNet50 79.33
+CSFLM w/ margins ResNet50 79.87

Table 5: Ablation study on class-aware margins in CSFLM.

category mask (Like adding an auxiliary supervisor) instead
of using CAC loss to supervise distance. As shown in Ta-
ble 4, we use deeplabv3+ with resnet50 as our baseline.
CAC (BCE) denotes that we use binary cross-entropy loss
as the binary classification loss in Eq. (4). CAC (LS) de-
notes that we use Lovasz-hinge loss in Eq. (4) to alleviate the
problem of foreground/background imbalance. Our method
could achieve a better result. It indicates that our supervision
manner is effective for segmentation performance.

Effectiveness of the Class-aware Margins As shown in Ta-
ble 5, we verify the effectiveness of the class-aware margins
in CSFLM. It can be seen that building the class-aware mar-
gins could achieve a better result.

Ablation Study for AAM
Effectiveness of AAM To verify the effectiveness of AAM,
we apply the AAM on the network after CSFLM. As illus-
trated in Table 6, We use the deeplabv3+ as the baseline,
which achieves 78.49% in mean IoU. After applying the CS-
FLM, we achieve 79.87% in Mean IoU. Further, we add the
AAM after the CSFLM, our method achieves 80.18% and
improves by a large margin over the baseline.

Method Backbone mIoU%
Deeplabv3+ ResNet50 78.49
+CSFLM ResNet50 79.87
+CSFLM&AAM ResNet50 80.18
+CSFLM&AAM ResNet101 81.21
+CSFLM&AAM&MG ResNet101 81.46
+CSFLM&AAM&MG&OHEM ResNet101 81.80
+CSFLM&AAM&MG&OHEM&MS ResNet101 82.91

Table 6: Ablation study on roles of each components.

Improvements Strategies As illustrated in Table 6, our
method could achieve 81.21% in MeanIoU with resnet101.
Moreover, following (Fu et al. 2019a; Chen et al. 2018),
we adopt some strategies for improving the performance.
(1) Multi-grid(MG) (Chen et al. 2017): The multi-dilations
with different sizes {4,8,16} are employed in last ResNet
block. With MG, our method obtain 81.46% in Mean IoU.
(2) OHEM, we use OHEM (Yuan and Wang 2018) in Lseg ,
which improves the performance to 81.80%. (3) Multi-
scale(MS): We adopt 6 image scales {0.25, 0.5, 1, 1.25,
1.5, 1.75}. Our method achieves 82.91% in mIoU on the
Cityscapes val set with multi-scale inference.

Visual Analysis
Visualization on C-S features To verify whether the
learned C-S features are intra-class compactness and inter-
class separability, we visualize the C-S features. As shown
in Figure 3, we randomly select three query points in input
images (a), which are marked by red, blue and green cir-
cles. And, we calculate the distance between the feature of
the query point and all other points though Eq. (2). Figure 3
(b) is the distance map with red circle as the query point.
The category of this point is “road” in the first row of Fig-
ure 3 . It can be seen that features of points belonging to
the “road” category are relatively consistent and relatively
far away from the features of other categories. Figure 3 (c)
and (d) use green and blue circle points as query points, re-
spectively. From Figure 3 (c) and (d), it also can be seen that
features of the same category are relatively consistent, while
features of different categories are far apart.

Comparison of Visualization Results As illustrated in Fig-
ure 4, we visualize the prediction results of our method over
strong baselines. And we use the red box to highlight the
region of improvement through our method. It can be seen
that some misclassified categories are now correctly classi-
fied, such as “wall”, “truck”, etc.

Comparison with State-of-the-Arts
To prove the generality of our proposed method, we perform
more experiments on four datasets. Our model is based on
DeepLabv3+ and adopt ResNet101 as the backbone.

Results on Cityscapes Dataset We compare our method
with state-of-the-arts on the Cityscapes testing set. For fair
comparision, we train our method with ResNet101 on fine
annotated data. Experimental results are shown in Table 7.
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Figure 3: Distance map visualization. (a) input image, and
we mark three points with red, blue and green circles. (b)
distance map with red circle as the query point. (c) distance
map with green circle as the query point. (d) distance map
with blue circle as the query point. (e) ground truth.

Image Ground truth DeepLabv3+ Ours 

Figure 4: Visualization results compared to Deeplabv3+.

Method Backbone mIoU%
DFN (Yu et al. 2018) ResNet101 79.3
DANet (Fu et al. 2019a) ResNet101 81.5
ANNet (Zhu et al. 2019) ResNet101 81.3
BFP (Ding et al. 2019a) ResNet101 81.4
ACF (Zhang et al. 2019a) ResNet101 81.9
CPNet (Yu et al. 2020b) ResNet101 81.3
SPNet (Hou et al. 2020) ResNet101 82.0
Ours ResNet101 82.6

Table 7: Segmentation results on Cityscapes testing set.

Our method achieves 82.6% mIoU, which outperforms re-
cent existing models. Compared with recent SPNet (Hou
et al. 2020), we achieve better performance.

Results on ADE20K Dataset We further carry out exper-
iments on the ADE20K dataset to verify the generality of
our method. Following (Zhang et al. 2018; Fu et al. 2019a),
we adopt data augmentation with random scaling in train-
ing phase and multi-scale in inference phase. Results are
shown in Table 8. Our CSFRN achieves state-of-the-art per-
formance 46.65% in MeanIoU on the validation set.

Results on COCO Stuff Dataset We also conduct the ex-
periments on the COCO Stuff dataset to further evaluate the
performance of our method. We adopt the same training and

Method Backbone mIoU%
EncNet (Zhang et al. 2018) ResNet101 44.65
APCNet (He et al. 2019) ResNet101 45.38
CFNet (Zhang et al. 2019b) ResNet101 44.89
ANNet (Zhu et al. 2019) ResNet101 45.24
SPNet (Hou et al. 2020) ResNet101 45.60
RGNet (Yu et al. 2020a) ResNet101 45.80
DRANet (Fu et al. 2020) ResNet101 46.18
Ours ResNet101 46.65

Table 8: Segmentation results on ADE20K validation set.

Method Backbone mIoU%
RefineNet (Lin et al. 2017) ResNet101 33.6
DANet (Fu et al. 2019a) ResNet101 39.7
SVCNet (Ding et al. 2019b) ResNet101 39.6
EMANet (Li et al. 2019) ResNet101 39.9
ACNet (Fu et al. 2019b) ResNet101 40.1
SpyGR (Li et al. 2020) ResNet101 39.9
Ours ResNet101 41.3

Table 9: Segmentation results on COCO Stuff testing set.

Method Backbone mIoU%
PSPNet (Zhao et al. 2017) ResNet101 47.8
BFP (Ding et al. 2019a) ResNet101 53.6
DANet (Fu et al. 2019a) ResNet101 52.6
HRNet (Sun et al. 2019) HRNetV2-W48 54.0
SpyGR (Li et al. 2020) ResNet101 52.8
CPNet (Yu et al. 2020b) ResNet101 53.9
SPNet (Hou et al. 2020) ResNet101 54.5
Ours ResNet101 55.9

Table 10: Segmentation results on Pascal Context testing set.

testing strategy as the ADE20K dataset. The comparison is
shown in Table 9. Our method obtains 41.3% in Mean IoU,
which outperforms previous methods by a large margin.

Results on PASCAL Context Dataset We further compare
our method with existing methods on the PASCAL Con-
text dataset. Following (Fu et al. 2019a; Yu et al. 2020b),
we adopt data augmentation with random scaling and multi-
testing in the training and testing phase. Quantitative results
are shown in Table 10. Our CSFRN achieves 55.9% in Mean
IoU, which outperforms previous state-of-the-art methods.

Conclusion
In this paper, we have presented a Consistent-Separable
Feature Representation Network (CSFRN) to obtain the
discriminative features for per-pixel semantic prediction.
Specifically, we designed a Consistent-Separable Feature
Learning Module to obtain the Consistent-Separable (C-S)
features via the proposed Class-Aware Consistency Loss.
Moreover, we developed an Adaptive feature Aggrega-
tion Module to fuse the original features and C-S features
for better performance. Extensive experimental results on
Cityscapes, ADE20K, COCO Stuff and PASCAL Context
have demonstrated that our method achieves state-of-the-art
performance on these challenging datasets.
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