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Abstract
Boundary information plays a significant role in 2D image
segmentation, while usually being ignored in 3D point cloud
segmentation where ambiguous features might be generated
in feature extraction, leading to misclassification in the tran-
sition area between two objects. In this paper, firstly, we pro-
pose a Boundary Prediction Module (BPM) to predict bound-
ary points. Based on the predicted boundary, a boundary-
aware Geometric Encoding Module (GEM) is designed to en-
code geometric information and aggregate features with dis-
crimination in a neighborhood, so that the local features be-
longing to different categories will not be polluted by each
other. To provide extra geometric information for boundary-
aware GEM, we also propose a light-weight Geometric Con-
volution Operation (GCO), making the extracted features
more distinguishing. Built upon the boundary-aware GEM,
we build our network and test it on benchmarks like ScanNet
v2, S3DIS. Results show our methods can significantly im-
prove the baseline and achieve state-of-the-art performance.

Introduction
Semantic segmentation of point clouds has become an in-
creasingly attended task. Because of the success of 2D im-
age recognition (Long, Shelhamer, and Darrell 2015; Chen
et al. 2017), many works tried to extend 2D convolution
network to 3D space directly (Maturana and Scherer 2015;
Zhou and Tuzel 2018). However, this kind of methods is
limited by drastic increment of computational complexity.
On the other side, PointNet (Qi et al. 2017a) utilized shared
Multi-Layer Perceptrons to directly process point clouds and
aggregates information through max-pooling, but it failed to
exploit the relationship among points in a local region. Due
to the unbalanced distribution of points and irregularity of
representation, semantic segmentation of point clouds is still
a challenging task.

The boundary plays an important role in the semantic
segmentation of point clouds, because lots of misclassifica-
tions happen nearby boundary points. In the point cloud, the
boundary refers to the transition area between two or more
objects belonging to different categories. For example, the
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junction of the sofa and the ground can be considered as the
boundary. Many works (Wang et al. 2018; Xu et al. 2018;
Wu, Qi, and Fuxin 2019) tackled the segmentation prob-
lem in point clouds without explicitly learning or using the
boundary information, hence they extracted features from
points with no differentiation between boundary and non-
boundary points. It is noteworthy that extracted features on
the boundary are usually ambiguous, because they mix fea-
tures of points belonging to different categories on different
sides of the boundary. As the network goes deeper, if other
points incorporate features of the boundary points, these am-
biguous features on the boundary will inevitably propagate
to more other points hierarchically. So, the information of
different objects will spread across the boundary, leading to
a bad contour for final semantic segmentation.

To tackle this problem, we propose a Boundary Prediction
Module (BPM) to predict boundary points in point clouds.
In this module, we give a soft prediction for boundary and
this module is skillfully supervised by the ground truth of
boundary generated on the fly. It is noteworthy that, com-
pared with semantic segmentation, boundary prediction is
easier and likely to obtain better results. So, we introduce the
light-weight BPM to predict the boundary. Then, we use the
prediction as auxiliary information to boost the performance
of segmentation. The BPM and segmentation network are
trained jointly in end-to-end manner. Fig. 1 illustrates the
predicted boundary in several scenes. Most of them are ac-
curately located between different categories, which also vi-
sually reflects the effectiveness of our BPM.

Based upon the BPM, we design a boundary-aware Ge-
ometric Encoding Module (GEM) to utilize the predicted
boundary in feature extraction. When aggregating local fea-
tures, we only allow information sharing within each object
area by preventing the propagation of features across bound-
ary. Because local features can provide more detail informa-
tion, mixing local features of different categories will defi-
nitely destroy this detail information. Then, in the following
layers of encoder where representative points are sampled
and global features are encoded, information belonging to
different categories can be transferred through boundary to
obtain the global scene information. In this way, the pre-
dicted boundary would act as a barrier to prevent the infor-
mation mixture from different categories in local feature ex-
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Figure 1: Visualization of boundary predicted by our proposed Boundary Prediction Module (BPM). Points in red represent the
predicted boundary points. Each visualized scene is selected from ScanNet v2.

traction and be ignored in global feature extraction.
To effectively exploit geometric information, we design

a light-weight Geometric Convolution Operation (GCO)
which complements geometric features for the boundary-
aware GEM. In the GCO, we focus on the angular distri-
bution of neighbors rather than the spatial distribution used
in KCNet (Shen et al. 2018) and KPConv (Thomas et al.
2019), which is sensitive to density of points and lack of
generalization. In specific, we use a simple vector set as the
trainable kernel to learn the geometric pattern. In a neighbor-
hood withm points, its geometric pattern can be represented
bym 3-D directional vectors. Therefore, our proposed train-
able geometric kernel has the same form. Then, the geomet-
ric convolution is a sum over multiplication of vectors in the
kernel and directional vectors in the neighborhood. Like the
2D convolution, the response of GCO will be large if the
local geometric pattern is similar to the learnt kernel.

Overall, the major contributions can be summarized as
follows: (1) We propose a boundary-aware Geometric En-
coding Module (GEM) to accurately encode geometric in-
formation and prevent the propagation of information across
the boundary in local feature extraction. To our best knowl-
edge, we are the first one to take boundary information into
the 3D feature aggregation process in an explicit way. (2)
The Boundary Prediction Module (BPM), which is super-
vised with dynamically generated ground truth, is derived
to predict the boundary and provide boundary information
for the boundary-aware GEM. (3) A Geometric Convolution
Operation (GCO) with a learnable vector kernel set is also
designed to explore local geometry for each point in a light-
weight manner. Experiments on benchmark datasets show
that the cutting-edge backbone with the proposed boundary-
aware GEM can achieve the state-of-the-art performance.

Related Work
Point cloud semantic segmentation. Intuitively, voxel-
based methods (Maturana and Scherer 2015; Zhou and Tuzel
2018) voxelized point clouds and applied 3D grid convolu-
tion. Furthermore, SubSparseConv (Graham, Engelcke, and
van der Maaten 2018) proposed a convolution for sparse
point clouds. However, voxelization inevitably destroys ge-
ometric information. PointNet (Qi et al. 2017a) directly ex-

tracted features from the point cloud through shared Multi-
Layer Perceptrons. Then, PointNet++ (Qi et al. 2017b) intro-
duced a hierarchical network to aggregate information from
a local region and extract features from different scales. But
they merely used max-pooling to aggregate information, not
typically considering the spatial convolution.

To simulate the spatial convolution operation used in
image processing, PCCN (Wang et al. 2018) and Spider-
CNN (Xu et al. 2018) utilized MLPs and 3-order function,
respectively, to approximate to 3D continuous weight func-
tions w.r.t the position. To deal with the unbalanced distri-
bution of point clouds, PointConv (Wu, Qi, and Fuxin 2019)
estimated the density of every point and re-balanced the con-
tribution of each point during convolution according to the
point density. PointASNL (Yan et al. 2020) also re-weighted
the neighbors to adjust the location of sampled centering
point. Additionally, HEPIN (Jiang et al. 2019) introduced an
edge branch to exploit the relationship between neighbors
and collaborated it with the main branch for fine-grained
context information. SPH3D-GCN (Lei, Akhtar, and Mian
2020b) proposed a spherical convolutional kernel splitting
the neighborhood into multiple volumetric bins.

All these work tried to simulate the 3D convolution op-
eration aggregating information from a local region without
differentiation among points. Compared with these methods,
our method is boundary-aware to treat points differently for
feature aggregation in a local region, so as to alleviate the
propagation of indistinguishable features.

Boundary in semantic segmentation. The convolution
operation in a local region will aggregate information from
neighbors no matter which category they belong to, mak-
ing the extracted features ambiguous on the boundary, as
the neighborhood may include objects belonging to differ-
ent categories on different sides of boundary. GAC (Wang
et al. 2019a) determined the weight of every point’s fea-
ture according to the similarity, thus alleviating the am-
biguity of features introduced by aggregating features of
points with different labels. But, no boundary information
is explicitly involved, leading to a sub-optimal result. How-
ever, the boundary information is quite useful for high-
level vision task like semantic segmentation (Bertasius, Shi,
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and Torresani 2015). To enhance segmentation coherence,
BNF (Bertasius, Shi, and Torresani 2016) used a combi-
nation of feature maps to predict the boundary and de-
fined a boundary pairwise potential for energy minimization.
BSANet (Zhao et al. 2019) detected the boundary in images
and emphasized the features near the boundary at the early
stages. These methods proved the importance of boundary
for the task of semantic segmentation.

In this work, we also propose the Boundary Prediction
Module (BPM) to predict the boundary for point clouds
and adjust the feature propagation of boundary points. Com-
pared with BSANet (Zhao et al. 2019), we (1) suppress the
propagation of point features on the boundary and (2) predict
the boundary for the input point clouds and sample boundary
points for other scales.

Geometric features in point clouds. Compared with 2D
image, point clouds provide more geometric information.
ShapeNet (Chang et al. 2015) provided the normal vector
along with xyz for every point. PPF-FoldNet (Deng, Birdal,
and Ilic 2018) designed geometric features based on the an-
gles between relative positions and normal vectors, but the
features themselves were not learnable. KCNet (Shen et al.
2018) proposed to use a learnable point-set kernel to repre-
sent the geometric pattern. Specifically, they utilized Gaus-
sian kernel with the distances between kernel points and an-
chor points as the input to obtain the similarity between the
point-set kernel and neighbors distribution.

Similary to KCNet, our kernel is also a set of vectors.
However, to extract geometric features, our proposed Ge-
ometry Convolution Operation (GCO) focuses on the direc-
tion rather than the position in the kernel, thus less sensitive
to sampling density of points. Besides, our GCO is light-
weight and extracts features hierarchically to learn effective
geometric patterns, rather than using a heavy-weight module
to extract the geometric features just in one layer.

Methods
First, we will introduce the overall architecture. Second, we
will show how we detect the boundary and describe the pro-
posed boundary-aware geometric encoding in detail. Finally,
the geometric convolution, which is simply designed but ex-
tracts the geometric information efficiently, will be intro-
duced in detail.

Network Overview
In this paper, we fully consider the geometric characteristics
of scenes. Overall, as shown in Fig. 2 (a), we propose an
encoder-decoder network composed of a Boundary Predic-
tion Module (BPM) and boundary-aware Geometric Encod-
ing Module (GEM). The BPM is a small and concise neural
network to predict the boundary points, so as to provide the
boundary cues for boundary-aware GEM to adjust the fea-
ture propagation in local regions.

Meanwhile, the boundary-aware GEM also encodes the
geometric information of the local region with the help of
new derived Geometric Convolution Operation (GCO), that
will be described later. It is noteworthy that boundary is only
involved when the number of points is large (i.e., the early

stage of encoder and the later stage of decoder). In other
layers, all points are treated as the non-boundary points and
we only focus on the geometric context.

Boundary-Aware Geometric Encoding
To implement the boundary-aware GEM, we first introduce a
Boundary Prediction Module to predict the boundary points
given the point cloud. This module is regularized by the tar-
get boundary generated on the fly based on semantic labels.
Later, the predicted boundary information is used to impede
the propagation of information across the boundary for local
feature extraction. By contract, global and abstract features
can cross over the boundary to have a better recognition of
the global scene.

Boundary Prediction Module. First, we automatically
annotate each point in training samples as its indicator of the
boundary g, which is defined in accordance with the label of
every point as below. In the target boundary, gi is 0 if the
ith point is on the boundary, otherwise equal to 1. For every
point p, whether it is located on the boundary is determined
by its local neighborhood. That is, given fixed number of
neighboring points for p, if there are more than a predefined
ratio (detailed description is in experiments) of points that
do not belong to the same category as p, then p is assumed
to be the point on the boundary, otherwise it is not.

The boundary prediction task is a slightly different from
semantic segmentation, as boundary prediction should be
aware of the difference of semantic information in a local
region. To this end, as shown in Fig. 2. (b), we collect fea-
tures of k nearest neighbors in the local region for each point
and take the variance of collected features as the input of the
following part of BPM. Then, like PointNet (Qi et al. 2017a),
we utilize several shared MLPs to predict the boundary an-
notation ĝ for the whole input point cloud. Compared with
a carefully designed network, our BPM is compact and easy
to train. Specifically, its training loss is following:

LBPM = −
n∑

i=1

(w1·gi log ĝi+w2·(1−gi) log(1−ĝi)), (1)

where w1 and w2 are used to balance the huge difference be-
tween the numbers of two categories. We also utilize cross-
entropy loss to regularize the final semantic segmentation
output, and the total loss is a simple addition of boundary
prediction loss and semantic segmentation loss.

Feature Aggregation with Boundary. As mentioned
above, in the proposed boundary-aware GEM (Fig. 2 (c)),
we attempt to block the propagation of local features from
points on the boundary in the early stage of encoding pro-
cess. Therefore, according to the predicted boundary, we uti-
lize the boundary information as a mask/filter to assign dif-
ferent weights to different points during feature aggregation.
Before that, we also utilize the GCO (detailed description
will be given later) to provide extra geometric features. The
main difference between boundary-aware GEM decoder and
encoder is that, we do not use the GCO in decoder as the out-
put features of corresponding encoder which have already
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Figure 2: Overall architecture of our network consisting of the Boundary Prediction Module and the boundary-aware Geometric
Encoding Module for each layer. (a) illustrates the overall architecture. (b) depicts the architecture of Boundary Prediction
Module. (c) describes the boundary-aware Geometric Encoding Module in details.

contained the geometry information will be concatenated to
the input of the decoder.

Given the predicted boundary points (the red points in Fig.
2. (c)), during feature aggregation for a grey point, it will
collect features in a neighborhood but ignore those points
on the boundary. Therefore, the local feature aggregation for
point pi can be expressed as follows:

fen l = σ(A({φ(rij) ·M(ĝj · fpj
)})), ∀pj ∈ N (pi), (2)

where fpj represents the feature of neighboring pj contain-
ing both original features and geometric features, and ĝj
works as a mask to assign weight to fpj

. In this formula,
N (pi) is the neighborhood of pi, and M means shared
MLPs to combine the original features and extracted ge-
ometric features at this scale. Referring to Fig. 2 (c), we
can know φ learns weight from the relative position rij for
neighbor pj through another few MLPs. Additionally, A is
the aggregation function that is done through matrix prod-
uct and σ represents the activation function. It is noteworthy
that ĝj is 0 if pj is on the boundary and this boundary point
would not contribute to the aggregated feature.

In this way, we prevent the features of points on the
boundary to be fused into the extracted local features, thus
information is less likely to cross over the boundary to pol-
lute features belonging to other categories (shown in Fig.
2. (c)). We only need to predict the boundary of point
clouds for the input layer, while in the later encoding stages,
points and predicted boundary labels are down-sampled at
the same time. Unlike local features in the first few layers,
the global features can propagate among different objects

through boundary points. Therefore, in the latter stage, we
extract global features as follows:

fen h = σ(A({φ(rij) · M(fpj
)})), ∀pj ∈ N (pi). (3)

In the decoding stage, the feature extraction procedure
is symmetrical. Specifically, when the number of points re-
mains small, global features propagate without impeding to
better recognize the global context. While in the later stage
of the decoder, we prevent the propagation of features across
the boundary again to obtain distinguishing local features.

Geometric Convolution
To provide extra geometric information for boundary-aware
GEM, we propose a light-weight Geometric Convolution
Operation (GCO) with a learnable kernel to extract geomet-
ric information at different scales, see the bounding box on
the left lower corner in Fig. 2 (c).

Geometric Kernel. In our method, we propose a
geometric kernel Kgeo with three directional vectors
{v1, v2, v3|vi ∈ R3}. Each vector represents a direction
in the 3D space, thus the kernel itself can describe a dis-
tribution of points over directions, so as to tell where the
points is located (e.g., on a plane or curved surface). Unlike
(Shen et al. 2018; Thomas et al. 2019) which employ a large
amount of kernel points, only three 3-D directional vectors
are adopted in our method. Even though the proposed oper-
ation has a much simpler structure, the performance is com-
parable with some sophisticated operators, that is proved in
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Figure 3: Heat maps for the response of different learnt ker-
nels. The left-most column shows the kernels and the right
columns shows the response of some examples (the redder,
the larger). These two kernels separately learn the pattern of
a horizontal plane and a vertical line.

ablation study. Because, tetrahedron is the simplest polyhe-
dron and these three directional vectors along with the origin
can represent a tetrahedron. Furthermore, more complex ge-
ometry pattern can be recognized through hierarchical geo-
metric feature extraction. Fig. 3 illustrates learnt kernels and
heat maps for different objects to show effectiveness.

Geometric Convolution Operation. For a point in the
point cloud, the local pattern is represented by the relative
positions from this point to its neighbors. Similar to 2D con-
volution, if the geometric pattern of the neighborhood is very
similar to the learnt GCO kernel, the response will be large,
thus geometric pattern is recognized.

Our geometric convolution focuses more on the angular
distributions of neighbors rather than their relative displace-
ment like KCNet (Shen et al. 2018). For every point pi, rel-
ative positions of three neighbors, that are used to represent
the local pattern, are represented by {~dij | j ∈ [1, 2, 3]}. Con-
volving with Kgeo, the output could be expressed as

Oi = max
Pi

σ(b+
∑
j

~dij · ~vPi(j)), (4)

where b is the bias and σ is the activation function. Pi(·) :
{1, 2, 3} 7→ {1, 2, 3} represents a mapping function which
finds the matching vector in the kernel for ~dij . It is note-
worthy that because the point cloud is unordered, it is hard
to use a fixed mapping. Additionally, if Kgeo describes the
same pattern as the neighborhood, each pair of ~dij and the
matching ~vPi(j) would be in the same direction making the
dot production maximum. Therefore, in our proposed convo-
lution procedure, we dynamically choose the mapping func-
tion that makes the output maximum. Obviously, our geo-
metric convolution is more sensitive to the angle between
two vectors cos〈~dij , ~vPi(j)〉 rather than the displacement be-
tween vectors in the neighborhood and kernel |~dij −~vPi(j)|,
which is more easily be influenced by scales and density of
point clouds.

After extracting geometric features, they are concatenated
to the original features of points for further boundary-aware
geometric encoding (Fig. 2 (c)), making points with different
geometry more distinguishable. In the encoder, geometric
patterns can be learnt from different scales, thus complex
geometric pattern can be represented by the combination of
geometrical features of different scales.

Experiments
The experiments can be divided into two parts. We demon-
strate the performance of our method and compare it with
other state-of-the-art methods on ScanNet v2 (Dai et al.
2017) and S3DIS Area-5 (Armeni et al. 2016) for scene se-
mantic segmentation task, respectively. Then, intensive ab-
lation studies are conducted. We take the mean intersection-
over-union (mIoU) over categories as our metric like many
previous works (Wu, Qi, and Fuxin 2019). Code is available
at https://github.com/JchenXu/BoundaryAwareGEM.

Scene Semantic Segmentation
Dataset. In scene semantic segmentation task, we evaluate
our method on ScanNet v2 (Dai et al. 2017) and S3DIS (Ar-
meni et al. 2016). In ScanNet v2, there are totally 1, 201
scanned scenes for training and 312 scenes for validation.
Additionally, another 100 scenes are provided as the test-
ing samples, and there are 20 different categories. Fol-
lowing (Wu, Qi, and Fuxin 2019), we randomly sample
3m× 1.5m× 1.5m cubes from rooms with 8,192 points as
the training samples, and test over the entire scan. In S3DIS,
there are six indoor areas including 271 rooms from three
different buildings. Each point is annotated with a corre-
sponding label from 13 categories. We split points by room
and sample all rooms into 0.5m× 0.5m blocks with 0.25m
padding. Like experiment setting used in previous works (Qi
et al. 2017a; Li et al. 2018), we split Area 5 as the test set
and use others for training. In the training areas, 4,096 points
are sampled for each block and all points in the testing areas
are used for testing block-wisely.

Implementation. In our method, we take an efficient way
to implement the weight computation and feature aggrega-
tion using matrix multiplication like PointConv (Wu, Qi, and
Fuxin 2019). Therefore, we take PointConv as our baseline,
but we do not use density information during feature extrac-
tion because it have limited improvement in performance.

In the BPM, to automatically annotate the target bound-
ary points for each input point cloud, points with more than
40% of 32 neighbors not belonging to the same category
are assumed to be boundary points. Then, because bound-
ary points are predicted based on neighborhood information,
and color information is highly related to boundary predic-
tion, we take the variance of color features of 32 neighbors
as the aggregated feature for each point and further predict
the boundary points. After predicting boundary points, we
build an encoder-decoder network based on the boundary-
aware GEM and take both the color and coordinate informa-
tion as its input. Our model is trained by Adam optimizer
with batch size 8 for ScanNet and batch size 12 for S3DIS
on a GTX 1080Ti GPU. Also, we analyze the number of the
ground truth of boundary and non-boundary points in dif-
ferent scenes. Accordingly, for ScanNet, w1 and w2 used in
LBPM are 1 and 10, and for S3DIS, w1 and w2 are 1 and 2.

Results. For ScanNet v2, we report the mean IoU (mIoU)
over categories in Table 1, where we have achieved mIoU of
63.5%. It shows our method has outperformed lots of state-
of-the-art competitors. Fig. 4 visualizes scene semantic seg-
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Method mIoU

PointNet++ (Qi et al. 2017b) 33.9
PointCNN (Li et al. 2018) 45.8
3DMV (Dai and Nießner 2018) 48.4
PointConv (Wu, Qi, and Fuxin 2019) 55.6
TextureNet (Huang et al. 2019) 56.6
HPEIN (Jiang et al. 2019) 61.8
SegGCN (Lei, Akhtar, and Mian 2020a) 58.9
SPH3D-GCN (Lei, Akhtar, and Mian 2020b) 61.0
FusionAwareConv (Zhang et al. 2020) 63.0

Ours 63.5

Table 1: Semantic segmentation results on ScanNet v2.

Method mIoU

PointNet (Qi et al. 2017a) 41.09
PointCNN (Li et al. 2018) 57.26
SPGraph (Landrieu and Simonovsky 2018) 58.04
PCCN (Wang et al. 2018) 58.27
ASIS (Wang et al. 2019b) 53.40
ELGS (Wang, He, and Ma 2019) 60.06
PAT (Yang et al. 2019) 60.07
SPH3D-GCN (Lei, Akhtar, and Mian 2020b) 59.5
GridGCN (Xu et al. 2020) 57.75
JSNet (Zhao and Tao 2020) 54.50

Ours 61.43

Table 2: Semantic segmentation results on S3DIS evaluated
on Area 5 (Fold #1).

mentation result of PointConv and our method. Misclassifi-
cation is easy to appear in the transition area of two adjacent
objects. For example, in the second row third column, points
of “wall” category are predicted as the “picture” that is ad-
jacent to the wall, leading to the poor contour of the picture.
By contrast, benefiting from the boundary awareness, our
network perform well in this transition area.

For S3DIS, we report the mIoU over categories in Table 2.
We achieve 61.43% in mIoU on this benchmark which has
better performance than many state-of-the-art competitors.
Also, we visualize our segmentation results in Fig. 4. As
can be seen in this figure, the segmentation results obtained
by our method have better contour thanks to the Boundary-
aware GEM for local feature extraction.

Ablation Study
In this section, we conduct more ablation studies to support
our contributions. Because we can only submit one final re-
sult to the testing benchmark server of ScanNet, more abla-
tion studies are conducted on the validation set of ScanNet.

Effectiveness of boundary-aware GEM and GCO. To
show the effectiveness of boundary-aware GEM and the
GCO, we conduct more ablative experiments. First, we only
use MLPs to simulate the 3D convolution kernel like Point-

Figure 4: Visualization results of scene semantic segmenta-
tion on ScanNet v2. The images from left to right are sepa-
rately the input scene, ground truth of segmentation, results
predicted by PointConv and our method.

Figure 5: Visualization results of scene semantic segmenta-
tion on S3DIS (Area #5). The images from left to right are
separately the input scene, ground truth of segmentation, re-
sults predicted by PointConv and our method.

Conv (Wu, Qi, and Fuxin 2019) and treat it as our base-
line. Next, we simply introduce GCO into the baseline to
validate the effectiveness of GCO. Then, we use boundary-
aware GEM without GCO to build the network and prove the
effectiveness of boundary-aware strategy. Finally, we report
the result of our method on validation dataset. The results
are shown in Table 3, in which we can see both of them can
improve the performance on semantic segmentation task.

Strategy on Boundary Utilization. In our method, we
attempt to prevent the propagation of features for points
on the boundary for local feature extraction. Meanwhile,
BSANet (Zhao et al. 2019) proposed to emphasize the fea-
tures near boundary. So we try to enhance the influence of
points on the boundary during local feature aggregation by:

fen l = σ(A({φ(rij) · M((2− ĝj) · fpj
)})), (5)

where xj ∈ N (pi) and other settings are the same as our
proposed method. Recall the Eq. (2), ĝj is 0 if pj is on the
boundary. Given the Eq. (5), more emphasis is imposed on
boundary points. The result is shown in Table 3 (“Bound-
ary Augmented”), achieving 61.8% in mIoU, which is better
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Method mIoU

Baseline 58.9

Baseline w/ GCO 60.4
BAGEM w/o GCO 60.9

Boundary Augmented 61.8

Proposed method 63.4

Table 3: Results on the ablation study of boundary-aware
GEM. BAGEM represents boundary-aware GEM, Boundary
Augmented means to use a strategy to augment the contri-
bution of boundary point in feature aggregation.

Geo. Encoding mIoU FLOPs

KC 60.8 26.93G

KC (H) 61.0 3.87G

GCO (2) 61.1 3.65G
GCO (6) 61.7 4.20G

Proposed method 63.4 3.73G

Table 4: Results on the ablation study of geometry encoding.
KC means replacing GCO with Kernel Correlation (Shen
et al. 2018). KC (H) means use a light-weight version of KC
hierarchically. The number after GCO means the number of
vectors in the kernel.

than not using boundary information. However, compared
with our proposed method, it decreases the mIoU by 1.6%,
that means preventing the propagation of features on the
boundary is more effective than emphasizing the features
near boundary.

Performance of GCO compared with KCNet. Both KC-
Net and GCO utilize a vector-set kernel to represent localge-
ometric pattern. Compared with KCNet (Shen et al. 2018),
our geometric features are more sensitive to direction rather
than position, thus less sensitive to density of points. Addi-
tionally, we take a strategy to extract geometric features hier-
archically with light-weight geometric convolution to learn
complex pattern rather than a heavy-weight module to ex-
tract geometric features within one layer.

To show our advantages and give fair comparisons, we
first replace GCO with Kernel Correlation (KC) proposed in
KCNet with the settings same as KCNet (corresponding to
the first row in Table 4). More specifically, the KC is only
employed in the first layer with 16 learnable kernel vectors.
Moreover, following the settings of our proposed method,
we use a light-weight version of KC, that reduces the learn-
able kernel vectors from 16 to 3, to extract geometric infor-
mation hierarchically (denoted by KC (H) in Table 4). Also,
the extra computational cost is illustrated for these geometry
encoding methods in terms of FLOPs. Comparing the row
2 vs. row 1 in Table 4, it is shown that using light-weight
version of KC to extract geometric features hierarchically
obtains better performance than using heavy-weight KC in

Method mIoU

No boundary information 60.4

Random flip 62.4
Exchange neighboring pair 61.8

No perturbation 63.4

Table 5: The result of perturbing the predicted boundary
point, which shows the robustness of our method.

one layer like KCNet. In addition, using light-weight ver-
sion of KC decreases the computation drastically. More im-
portantly, keeping other settings the same and using GCO
can further increase the mIoU by 2.4%. Compared with the
light-weight version of KC, GCO has a much simpler form
and require less computation resource.

Number of vectors in geometric kernel. In our imple-
mentation, we utilize a kernel unit with a set of only three
3-D vectors. To check whether a kernel with more or less
vectors can learn geometric pattern better, we separately take
a kernel with six and two 3-D vectors and other settings are
the same. The results are shown in Table 4, where taking six
3-D vectors as kernel achieves 61.7% in mIoU which may
be caused by overfitting. It also proves our claim that a ker-
nel with three vectors are enough to learn 3D geometry in a
hierarchical way and a kernel with less than three vectors is
not able to learn 3D geometry, thus has worse performance.

Robustness to boundary prediction error. Furthermore,
we also conduct ablation study to show the robustness to
prediction error introduced by BPM. First, we randomly flip
3% points on prediction results. We report the results on Ta-
ble 5 and 62.4% mIoU is achieved on the validation set of
ScanNet. We think that 3% is enough because the number of
randomly flipped points is comparable to the number of tar-
get boundary points. Second, we select 5% of the predicted
boundary points and exchange the label of each point with its
nearest neighbor, making the boundary points shifted by one
point and 61.8% mIoU was achieved. Both outperform the
network without predicted boundary, showing the robustness
to errors in boundary prediction.

Conclusion
In this paper, we propose a boundary-geometry aware seg-
mentation method including a Boundary Prediction Module
(BPM) and boundary-aware Geometric Encoding Module
(boundary-aware GEM) with Geometric Convolution Oper-
ation (GCO). The BPM supervised by the dynamically gen-
erated target boundary can predict the boundary points in
the point cloud. In the boundary-aware GEM, the predicted
boundary will guide the feature aggregation by ignoring the
contribution of boundary points when collecting features of
neighboring points. To exploit the geometry information, we
propose the GCO to recognize geometry patterns at differ-
ent scales and provide extra geometry information. Our pro-
posed method achieves state-of-the-art performance on both
ScanNet and S3DIS dataset for 3D semantic segmentation.
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