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Abstract

Current state-of-the-art image captioning systems usually
generated descriptions autoregressively, i.e., every forward
step conditions on the given image and previously produced
words. The sequential attribution causes a unavoidable de-
coding latency. Non-autoregressive image captioning, on the
other hand, predicts the entire sentence simultaneously and
accelerates the inference process significantly. However, it
removes the dependence in a caption and commonly suf-
fers from repetition or missing issues. To make a better
trade-off between speed and quality, we introduce a par-
tially non-autoregressive model, named PNAIC, which con-
siders a caption as a series of concatenated word groups. The
groups are generated parallelly in global while each word
in group is predicted from left to right, and thus the cap-
tioner can create multiple discontinuous words concurrently
at each time step. More importantly, by incorporating curricu-
lum learning-based training tasks of group length prediction
and invalid group deletion, our model is capable of generat-
ing accurate captions as well as preventing common incoher-
ent errors. Extensive experiments on MS COCO benchmark
demonstrate that our proposed method achieves more than
3.5× speedup while maintaining competitive performance.

1 Introduction
Describing the visual content of an image accurately and
quickly is a fundamental goal for the artificial intelligence
area, which has a wide range of applications in research and
production. Although image captioning has achieved state-
of-the-art performance under an encoder-decoder paradigm
in recent years (Vinyals et al. 2015), most captioning mod-
els still suffer from the slow decoding speed problem due
to their autoregressive property, that is, the generation of
next target word depends on the given image and all previ-
ously produced words, making the decoding process intrin-
sically nonparallelizable and the inference high latency (Gu
et al. 2018; Gao et al. 2019). It is unaffordable for real-time
industrial scenarios sometimes. Recently, a flurry of non-
autoregressive image captioning methods has been investi-
gated to mitigate the slow decoding speed problem by gen-
erating all words independently in parallel (Jason et al. 2018;
Guo et al. 2020; Fei 2019). Specifically, non-autoregressive
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Figure 1: A conceptual overview of autoregressive, partially
non-autoregressive, and non-autoregressive caption decoder.
Autoregressive decoder generates the next word conditioned
on all preceding subsentence, while non-autoregressive de-
coder outputs all words in parallel. Comparatively, paritally
non-autoregressive decoder produces a caption as a series
of word groups. The groups are generated simultaneously
while each group is generated word-by-word conditioned
on both the image feature and history of all groups, e.g.,
the word “D” in the second group is predicted based on the
words “A”,“C”, and “E”.

models take basically the same structure as the autoregres-
sive Transformer network (Vaswani et al. 2017). However,
instead of conditioning on the previously generated words
as the decoder in autoregressive models, they generate all
words in one step. Nevertheless, because of the lock of suf-
ficient dependency information about surrounding words,
these captioning models suffer from poor captioning qual-
ity compared with autoregressive counterparts.

Numerious works have been proposed to handle the above
issues and seeking a trade-off between inference time and
caption performance. Generally, previous approaches can be
divided into two categories. One kind of works focuses on
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incorporate iterative refinement framework to get out of the
independence dillemma, which takes the caption hypothe-
sis from the preceding iteration as a reference and regularly
polishes the new caption until achieving the predefined iter-
ation count or no change appears (Gao et al. 2019; Jason
et al. 2018). Nevertheless, comparable captioning perfor-
mance is based on multiple refinement times, which slows
decoding significantly sometimes. The other knid of works
tries to adjust the Transfomer structure to better capture de-
pendency and position information by leveraging extra au-
toregressive layers in the decoder (Fei 2019, 2020b), intro-
ducing latent variables to eliminate the modal gap and more
powerful probabilistic frameworks to simulate more compli-
cated distributions. Besides, (Guo et al. 2020) introduces a
multi-agent reinforcement learning-based training paradigm
to improve sentence-level consistency.

Inspired from paragraph generation (Bernardi et al. 2016),
which aims to generate multiple sentences parallelly, in
this paper, we propose a partially non-autoregressive model
named PNAIC for group-level image captioning accelera-
tion. Innovatively, our model incorporates several funda-
mental diversities with respect to all previous image caption-
ing algorithms: First, we hypothesize that a caption consists
of a series of word groups corresponding different image re-
gions, which can be generated parallelly. Second, to better
capture dependency and semantic information, the words in-
side a group are autoregressively generated conditioned not
only on the previously generated words in this group but
also on those in other groups. Figure 1 provides an illus-
tration of the different autoregressive properties for caption
generation. By conditioning on previously generated words
in other groups, the captioner can observe what feasible cap-
tion candidates have been selected by each group and adapt
accordingly, i.e., avoiding from missing and meaningless
word errors. Resultingly, our model captures more word de-
pendency such that the consistency issues can be reduced
naturally. Third, to make the captioner capable of parallel
decoding gradually, we design training curriculum of length
prediction and invalid deletion from easy to hard. Accord-
ingly, our model learns to mark a group to be deleted when
it finds the content is invalid.
Contributions. To sum up, our contributions are as follows:

• We propose a partially non-autoregressive model to accel-
erate image captioning generation, splitting each caption
into a series of word groups. The captioner keeps the au-
toregressive property in local but relieves in global. To our
knowledge, this is the first work to introduce a partially
non-autoregressive paradigm into image captioning.

• We design two curriculum learning-based training tasks:
group length prediction and invalid group deletion, which
can prevent our captioning model from resulting in inco-
herent issues with a progressive way.

• We conduct experiments on MS COCO benchmark to
evaluate the proposed method. Experimental results show
that PNAIC is able to decode over 3.5× faster than the
autoregressive counterpart while strikingly narrowing the
performance gap. The source code is publicly released on
https://github.com/feizc/PNAIC.

2 Background
2.1 Autoregressive Image Captioning
Given an image I as input and a matched target sentence
S = {w1, . . . , wT }, autoregressive image captioning (AIC)
systems construct the conditional probability as:

P (S|I) =
T∏

t=1

P (wt|w<t, I), (1)

where w<t = {w1, . . . , wt−1} denotes the captioning his-
tory. During training, ground-truth words are fed into the
caption decoder; While in inference, the preceding sentence
generated by decoding strategies, such as greedy search and
beam search, is fed into the caption decoder to guide the
generation of next word. The prominent feature of the AIC
model is that it requires historical information in the decod-
ing procedure, and the target words are produced in the one-
by-one style. Due to such a autoregressive property, the de-
coding speed is limited, which restricts the real-time appli-
cation of autoregressive image captioning sometimes.

2.2 Non-Autoregressive Image Captioning
Non-autoregressive image captioning (NAIC) (Fei 2019;
Gao et al. 2019) is proposed to accelerate the caption decod-
ing process, which can simultaneously generate words by
discarding the sequential dependencies within the sentence.
The conditional probability can be modeled as:

P (S|I) =

T∏
t=1

P (wt|I). (2)

During decoding, all words could be easily obtained with
maximum likelihood parallelly in one pass. Compared to
conventional AIC models, non-autoregressive image cap-
tioning achieve a significant speedup. However, NAIC mod-
els independently predict all words in one caption, which
results in a weakness in exploiting the words dependency
knowledge for generating accurate descriptions and thus suf-
fering from a large gap in the captioning quality.

3 Approach
In this section, we first present the basic architecture of
our PNAIC model built upon the well-known Transformer
(Vaswani et al. 2017), and then introduce two progressive
training tasks, including group length prediction and invalid
group deletion, to boost captioning performance. Finally, we
provide a discussion about theoretical complexity of differ-
ent decoding approaches as well as a unified perspective.

3.1 Transformer-based Model Structure
Provided with the region features of an image extracted
from a pre-trained CNN (Anderson et al. 2018), PNAIC
aim to generate a descriptive caption in a partially non-
autoregressive manner. Referred as (Cornia et al. 2020), our
Transformer-based captioning model composes of an image
feature encoder and caption decoder. An overview of the ar-
chitecture of our PNAIC is presented in Figure 2.
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Figure 2: An overview of partially non-autoregressive im-
age captioning system, which consists of an encoder and a
decoder. The decoder builds each group inside autoregres-
sive but mutually parallelized. As a result, our method can
produce multiple words simultaneously at each time step.

Image Feature Encoder The encoder, which takes the im-
age features as inputs and generates the weighted visual rep-
resentation, is composed of a stack of L identical layers,
and each layer has two sublayers: (1) a multi-head attention
layer, and (2) a position-wise feed-forward layer. Both of the
sublayers are followed by a residual connection operation
and a layer normalization operation. Specifically, multi-head
attention adopts dot-product operation which processes a set
of queries (Q), keys (K), and values (V ) simultaneously as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V, (3)

where dk is the dimension of the key. Multi-head attention
first computes h different queries, keys, and values with lin-
ear projections and computes scaled dot-product attention,
then concatenates the results and projects with another lin-
ear projection:

Hi = Attention(QWQ
i ,KWK

i , V WV
i ), (4)

MultiHead(Q,K, V ) = Concat(H1, . . . ,Hh), (5)

where WQ
i ,WK

i ∈ Rdmodel×dk and W v
i ∈ Rdmodel×dv are

corresponding parameter matrice. Note that the parameters
are different each time queries, keys and values undergo a
linear transformation. The self-attention in the decoder per-
forms attention over itself, that is, Q = K = V . After
a multi-head attention sublayer, the feed-forward network
(FFN) is applied to further adjust the representations.

FFN(x) = max(0, xW1 + b1)W2 + b2, (6)

where W1 ∈ Rdmodl×dff , W2 ∈ Rdff×dmodel , b1 ∈ Rdff

and b2 ∈ Rdmodel denote learnable parameters.

Caption Decoder The decoder is also composed of a stack
of L identical layers. For each layer, besides the multi-
head sublayer and FFN sublayer, a third sublayer is in-
serted, called cross-attention layer. The cross-attention sub-
layer performs multi-head attention over visual context with
the multi-head sublayer’s output in the same layer as the
query. Residual connection and layer normalization are also
applied after each sublayer. In addition, unlike the image
feature encoder, a mask matrix is applied to ensure that the
prediction for position t can depend only on the known out-
puts less than t at each group.

Position Encoding Since the length of each group is dy-
namically determined, the positions of the word in the cap-
tion can not be represented directly following (Vaswani et al.
2017). To solve this problem, we introduce a two-stage posi-
tion encoding: (1) an identical method to independently en-
code the position in the corresponding group of each word
and (2) an absolute group embedding method, which uses
a distinct trainable vector to represent the position of each
group. Formally, the input embedding of the decoder for the
t-th target word w of the i-th group is computed as:

Ew = Eword
w + Egroup

i + PEt, (7)

where Eword
v is the word embedding vector, Egroup

i is the
group embedding vector and PEt denotes the classical si-
nusoidal positional embedding vector, respetively.

3.2 Partially Non-Autoregressive Decoding
Overall, our PNAIC model creates caption autoregressively
in local and non-autoregressively in global. As illustrated
in the Figure 2, the captioner simultaneously generates all
groups “tulips EOS”, “in DEL” and “in a vase EOS”. While
at each time step, captioner generates a word for each incom-
plete group. The special word DEL denotes the group should
be deleted, and EOS denotes the end of a word group. Comb-
ing all the groups sequentially, we obtain the final caption
“tulips in a vase”. More broadly, assuming a target sentence
S is generated as K groups including {G1, G2, . . . , GK} ,
where Gi is i-th sentence subsequence. For convenience, we
assume that all the groups hold the same length. PNAIC pre-
dicts a word for each group conditioned on the visual context
IF and all previously generated words at each step. Hence,
the probabilty can be computed as:

P (S|I) =

Lg∏
t=1

K∏
i=1

P (wi
t|G1

<t, . . . , G
K
<t; IF ), (8)

where wi
t reprersents the t-th word in the i-th group, Gi

<t =
{wi

1, . . . , w
i
t−1} denotes the captioning history in the i-th

group, and Lg is the group length.
However, there remain two problems for such a decod-

ing process: (1) how to determine the length of group? and
(2) how to confirm a group is invalid? We make the PNAIC
cover these two problems in a progressive way. Formally, we
denote the original word vocabulary is V , we extend it with
two extra word EOS and DEL. Then for group Gi, the most
probable word ŵi

t at time step t is determined according to:

ŵi
t = max

wi
t∈V ∪{EOS,DEL}

P (wi
t|G1

<t, . . . , G
K
<t; IF ), (9)
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which leads to three conditions: (1) ŵi
t ∈ V : the decod-

ing process of group Gi needs to continue; (2) ŵi
t = EOS:

group Gi is complete and the decoding process should stop;
(3) ŵi

t = DEL: the content of group Gi is invalid. The de-
coding process should be also stopped and Gi should final be
deleted. In summary, the entire decoding process stops when
all the groups meet EOS/DEL or reach the maximum word
number. Please note that we do not immediately delete a
group when DEL is encountered but do it via post-processing
after the total caption is completed.

Since there is limited dependency information available in
the early stage of the decoding process, error occurrence is
inevitable. In this work, to make the captioner capble of par-
allel decoding sufficiently and gradually, we introduce two
training tasks to guide our captioner from easy to difficult.

Group Length Prediction Instead of predicting the group
length before decoding, our captioner determines the group
lengths by generating the EOS automatically. This strategy
helps our model removing repetitive and missing errors to
some degree. As shown in Equation 8, a word is generated
conditioned on the enhanced image features and all the pre-
viously produced words in all the groups. Accordingly, the
decoder has more abundant dependency information to de-
tect and avoid such errors similar to autoregressive methods,
which seldomly suffering these issues.

However, it is unfeasible to train the captioner to hold
fast decoding capability while maintaining a comparable
speedup. On the one hand, to accelerate the caption decod-
ing, the training samples are supposed to split into uniform
word groups to assit the captioner learn to generate as equal-
length groups as possible. On the other hand, the captioner
should be exposed to different training conditions to en-
hance its ability to detect and removing the common errors,
which suggests that the target sentences of training instances
should be divided randomly and uncertainly. To solve this
problem, we propose an annealing dividing strategy with
curriculum learning (Bengio et al. 2009). To be specific,
we randomly decide whether to divide a sentence equally
or randomly at each training step and gradually anneal to
the equally-dividing method at the end of the training. For-
mally, given the target sentence S and the group number K,
we define the group dividing indice set r as follows:

f(m) = min(1,

√
m

1− c20
M

+ c20), (10)

s ∼ Bernoulli(f(m)), (11)

r =

{
Uniform(T,K − 1) s = 1

Rand(T,K − 1) s = 0
, (12)

where f(m) is the progressing function (Platanios et al.
2019), c0 > 0 is set to 0.01, m denotes the training
step, Bernoulli(·) is the Bernoulli distribution with param-
eter f(m), Uniform(x, y) represents that dividing the se-
quence with length x into y parts on average, and Rand(x, y)
samples y non-duplicate indices from [1, x]. Intuitively, a
smaller value of f(m) leads to better error detection ability
while a larger one encourages the model to generate groups
with similar lengths, in other words, better speedup. In this

Model Complexity Acceleration

Autoregressive N(D + Υ) + E 1
Non-autoregressive D + Υ + E ≈ N
PNAIC N

K (D + Υ) + E ≈ K

Table 1: Complexity and acceleration of different methods.

gard, f(m) gradually increases from 0 to 1 automatically
during training, which results in a better performance.

Invalid Group Deletion Previous curriculum learning-
based length prediction helps the captioner deal with in-
corhent word errors as well as accelerate the decoding effec-
tively, however, the captioner still suffers from errors where
incorrect words have already generated. In prior experiment,
we observe that most of incoherent errors happen at the
early word of each group creates, since it cannot receive
enough dependency information. Under this situation, in-
valid word groups will be easily produced. Toward that end,
we prensent a group-wise deletion strategy, which projects
a special symbol DEL to manifest the current word group is
invalid and should be deleted in the final version. To be spe-
cific, we integrate extra pseudo repetitive word groups into
the training instances to mimic such incorhent cases.

For example, given the description “tulips in a vase”, we
first divide it into three word groups “tulips” “in” and “a
vase”. Then the second group is copied and appended with
the special symbol DEL to the end to construct a invalid
repetitive group “in DEL”. Finally, we insert the repetitive
group to the right of the chosen group, which resulting in
4 groups for instance training. More broadly, provided with
the group number K and the sentence S, we first divide sen-
tence S into K − 1 groups, denoted as {G1, . . . , GK−1},
and then build a pseudo invalid group Gi

r by copying the
first u words of a randomly chosen Gi and appending spe-
cial symbol DEL to the group end, u is uniformly sampled
from [1, |Gi|]. Finally, Gi

r is inserted at the right side of Gi to
formulate the final training sample G. It is worthy note that
inserting such pseudo invalid groups to all training instances
will mislead the captioner into a action that always generat-
ing then deleting a invalid group, which is not what we want.
In this end, we adopt a balancing probability p to determine
if construct a invalid group into the training instance.

3.3 Disscusion
Complexity Analysis Here, we first provide a theoretical
analysis of time complexity and acceleration of different au-
toregressive properties. As presented in Table 1, where D
denotes the time consumed on the decoder network, i.e.,
calculating a distribution over the target vocabulary at each
time step and Υ denotes the time consumed on searching for
top scores, E is the time consumed on image feature encod-
ing, N denotes the average length of caption, and K cor-
responds to the group number. In practice, (1) D is usually
much larger than Υ since the network is deep, and (2) the
proportion of E in the total time procedure is pretty small
since image feature encoding can be highly parallelized. As
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Models BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE Latency SpeedUp

Autoregressive models

NIC-v2 (Vinyals et al. 2015) - 32.1 25.7 - 99.8 - - -
Up-Down (Anderson et al. 2018) 79.8 36.3 27.7 56.9 120.1 21.4 - -
AoANet† (Huang et al. 2019) 80.2 38.9 29.2 58.8 129.8 22.4 - -
M2-T†(Cornia et al. 2020) 80.8 39.1 29.2 58.6 131.2 22.6 - -
AIC† 80.1 38.6 28.9 57.8 128.5 22.1 174ms 1.00×
Non-autoregressive models

MNIC† (Gao et al. 2019) 75.4 30.9 27.5 55.6 108.1 21.0 - 2.80×
FNIC† (Fei 2019) - 36.2 27.1 55.3 115.7 20.2 - 8.15×
MIR† (Jason et al. 2018) - 32.5 27.2 55.4 109.5 20.6 - 1.56×
CMAL† (Guo et al. 2020) 80.3 37.3 28.1 58.0 124.0 21.8 - 13.90×
Partially Non-autoregressive models

PNAIC† (K = 2) 80.4 38.3 29.0 58.4 129.4 22.2 81ms 2.17×
PNAIC† (K = 5) 80.3 38.1 28.7 58.3 128.5 22.0 49ms 3.59×
PNAIC† (K = 10) 79.9 37.5 28.2 58.0 125.2 21.8 32ms 5.43×

Table 2: Performance comparisons with different evaluation metrics on the MS COCO test set. All values except Latency
and SPEED-UP are reported as a percentage (%). “†” denotes the model is based on Transformer architecture. AIC is our
implementation of the Transformer-based autoregressive model, which has the same structure as PNAIC and is served as the
teacher model for distillation. The SpeedUp values of NAIC models are from the corresponding paper.

mentioned above, we can find that the speed bottleneck of
image captioning model performance lies in its autoregres-
sive decoding process.

Unified Perspective By incorporating a group-level paral-
lel generation strategy, we successfully extend the conven-
tional Transformer-based autoregressive captioning model
to a partially non-autoregressive captioning model. PNAIC
contains a hyperparameter K, and each K value defines a
caption decoding process with different degrees of paral-
lelism. In concrete, PNAIC covers AIC and NAIC as its spe-
cial cases: it reduce to NAIC when K = 1 and to NAIC when
K = N . In brief, PNAIC is a more general form. A model
with a smaller K value is easier to train, achieves higher ac-
curacy, and keep high latency; while that with larger K is
harder to train and results in worse accuracy.

4 Experiments
4.1 Experimental Settings

Dataset MS COCO (Chen et al. 2015) is a standard bench-
mark for the image captioning task. We use the Karpathy
split (Karpathy and Fei-Fei 2015) that have been employed
extensively for reporting results in prior works. This split
contains 113,287 training images equipped with five sen-
tences each, and 5,000 images for validation and test splits,
respectively. Following (Huang et al. 2019), all the sentences
are converted to lower case, and we omit words which occur
less than five times. The vocabulary size is 10,369 words.
To be consistent with previous works, we pre-extract image
features for all the images following (Anderson et al. 2018).

Implementation Details For model hyperparameters, we
follow most of settings in (Vaswani et al. 2017). Specifically,
utilizing a base Transformer model (dmodel = 512, dh = 512,
nlayer = 6, nhead = 8, pdropout = 0.1) and linearly anneal
the learning rate from 3×10−4 to 10−5. The AIC model is
trained first with XE loss and then with SCST (Rennie et al.
2017). For PNAIC, we utilize the sequence-level distillation
(Kim and Rush 2016; Zhou, Neubig, and Gu 2019), which
replaces the target sentences in the training dataset with sen-
tences generated by the AIC model, and set the beam size
of the technique to 3. In order to accelerate convergence,
the encoder of the corresponding AIC model is adopted to
initialize the encoder of PNAIC while others are initialized
randomly. In addition to accelerating convergence, we find
this method also slightly improves the captioning quality.
For performance evaluation, we use standard automatic met-
rics to evaluate the quality of captions, including BLEU-
1/4 (Papineni et al. 2002), METEOR (Lavie and Agarwal
2007), ROUGE (Lin 2004), SPICE (Anderson et al. 2016),
and CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015).
Besides, Latency represents the time to decode a single im-
age averaged over the whole test split, and is tested on a
GeForce GTX 1080 Ti GPU.

4.2 Results and Analysis
General Comparisons Table 2 reports the evaluation re-
sults of our PNAIC and baselines on image captioning tasks.
The compared baselines include both non-autoregressive
models and autoregressive models. Among the autoregres-
sive models, AoANet, M2-T, and AIC are based on Trans-
former architecture as ours, while others are based on
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Up-Down∗ 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
AoANet∗ 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
M2-T∗ 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
CMAL 79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2

PNAIC (K = 5) 80.1 94.4 64.0 88.1 49.2 78.5 36.9 68.2 27.8 36.4 57.6 72.2 121.6 122.0

Table 3: Leaderboard of various methods on the online MS COCO test server. ∗ denotes the ensemble model.

f(m) B4 M R C S Step

0 38.0 28.6 58.1 128.3 21.9 4.3
0.5 37.9 28.3 58.0 127.9 21.8 3.2
1 37.2 27.8 57.8 124.3 21.2 2.4
Linear 38.1 28.6 58.2 128.2 22.0 3.0
Curriculum 38.1 28.7 58.3 128.5 22.0 2.6

Table 4: Effect of learning to predict the group length eval-
uated on MS COCO validation set with group number K =
5. f(m) is the ratio parameter in Equation 10. The first three
rows indicate that the value of f(m) is constant, while “Lin-
ear” denotes annealing f(m) from 0 to 1 linearly. “Step”
corresponds to the average number of decoding steps.

LSTM. For NAIC models, MNIC and MIR adopts an it-
erative refinement strategy, FNIC orders words detected in
the image with an RNN, and CMAL optimzes captions with
sentence-level reward. Overall, we can see that our proposed
model outperforms all the strong NAIC baselines except
CMAL in metric BLEU-1 when K = 10. However, the per-
formance gap is negligible (only about 0.4). Note that our
group-based model is one-shot, which is superior in speed
to some multi-step refinement method. In particular, not only
NAIC, but also we are superised to find that PNAIC surpass
the Transformer-based AIC baseline trained from scratch.
we attribute it to: 1) PNAIC is fine-tuned on a well-trained
AIC model. 2) Combining AIC and NAIC has a better regu-
larization effect. Moreover, we also present the results of the
online MS COCO evaluation in Table 3.

Effect of Group Number We test the group size K from
{2, 5, 10}, and the results are listed in the bottom of Table
2. Obviously, we can find that: 1) A larger K has more sig-
nificant acceleration because fewer autoregressive step are
required. 2) As K increase, the performance of PNAIC drops
moderately. For example, the CIDEr score drops less than
0.9 when K grows from 2 to 5, and drop no more than 3.3
when K grows further to 10. It indicates that our model has
a good trade-off between speed and accuracy.

Effect of Group Length Prediction The curriculum
learning-based group length determination is adopted to as-
sist the PNAIC to learn to predict the group length dynami-
cally conditioned on visual context and previously generated

p B4 M R C S Step

0 37.0 27.5 57.3 122.5 21.0 2.0
0.1 37.8 28.3 57.9 126.8 21.7 2.4
0.3 37.9 28.4 58.0 127.6 21.8 2.6
0.5 38.1 28.7 58.3 128.5 22.0 2.6
0.7 38.0 28.5 58.1 127.9 22.0 2.7
0.9 37.5 28.1 57.8 125.5 21.6 2.8
1.0 37.2 27.8 57.7 124.8 21.3 2.7

Table 5: Effect of learning to delete the invalid group. Re-
sults are evaluated on MS COCO validation set with group
number K = 5. p denotes the probability of injecting pseudo
repetitive groups to each training instance.

words from easy to difficult. Here, we conduct an extensive
analysis of the effect of this training task, and the results are
presented in Table 4. We can discover that: 1) by incorpo-
rating the dynamic length prediction, that is, f(m) > 0, all
of the evaluation scores are increased, indicating the effec-
tiveness of our training task; 2) As f(m) grows smaller, the
average number of decoding step (“Step”) increase signifi-
cantly. The reason is that more training sentences are divided
into groups equally with larger f(m) during training, and
the model is biased to generate groups with similar lengths.
However, if the model is not exposed to randomly divided
groups (f(m) = 1), it fails to learn to discriminate incoherent
errors, and the CIDEr score drops dramatically. 3) Through
utilizing a competence-aware curriculum learning strategy,
we achieve a good balance between decoding speed and in-
coherent issues correction. Thus, we adopt it as the default
setting in other experiments.

Effect of Invalid Group Deletion We also investigate the
effect of the invalid group deletion, and the performance on
various metrics are shown in Table 5, where p represents the
probability of integrating pseudo repetitive groups to each
training instance. According to the evaluation results, we can
observe that: Overall, when p = 0.5, our captioning model
achieves the best performance. As p goes from 0.5 to 0 or
goes up from 0.5 to 1, the performance drops gradually. In
particular, when p = 0, that is, without integrating the group
deletion training task, the model obtain lowest CIDEr score,
indicating that this deletion task is effective for avoiding
from repetitive word errors. On the other hand, the perfor-
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Figure 3: Examples of the generated captions from AIC,
NAIC, and PNAIC models with the same architecture. GT
represents a human-annotated ground-truth caption.

mance also drops drastically when p > 0.7, we attribute it
to: the model is misled that to generate, then delete a repeti-
tive group is expected, meantime, when the pseudo repetitive
groups are constructed randomly and universally, it falls into
a tight spot to learn the underlying mapping. It can also be
proved from the fact that the average number of decoding
steps (“Step”) increases steadily with p grows.

Qualitative Analysis For more intuitive, we present sev-
eral examples of generated image captions from AIC, NAIC,
and our PNAIC(K = 5), which hold the same model archi-
tectures, coupled with human-annotated ground truth sen-
tences (GT) in Figure 3. Compared with As we can be seen,
in general, all models hold the capability to reflect the con-
tent of the given image accurately, while our model contains
more rich attribute information. The incoherent problem, in-
cluding repeated words and incomplete content, is severe in
the sentence generated by pure NAIC, while it can be effec-
tively alleviated by PNAIC, i.e., “bike” in the second sam-
ple. This confirms that our proposed training tasks, including
the group length prediction and invalid group deletion, can
leverage the captioning model to reduce word errors. Other
examples also show similar results.

Human Evaluation Since the automatic evaluation met-
rics do not necessarily correlate with human perception, re-
ferring to (Huang et al. 2019), we additionally conducted a
human evaluation to compare our PNAIC (K = 5) against
two baselines of the same structure, i.e., AIC and NAIC.
Specifically, eight humans are invited, and 200 images are
selected randomly from the testing set. We show the eval-
uators each image with three auto-generated sentences plus
three human-annotated captions and ask the evaluators: Do
the systems produce human-like sentences? Based on the
feedback, we calculate the metrics: percentage of captions
that are as well as or even better than human annotation.
The result scores of PNAIC, AIC, NAIC are 76.3%, 75.8%
and 40.2%, respectively. Apparently, our PNAIC is capable
of creating high-quality captions.

5 Realted Work
Almost all state-of-the-art image captioning models are au-
toregressive (Bai and An 2018; Fei 2020a), meaning that the
model generates captions word by word from left to right
and is not friendly to modern hardware optimized for paral-
lel execution. The pioneering work about parallel generation
is (Zheng, Li, and Wang 2019), which generates the selected
object words first, and the rests are filled with a two-pass
process. Several recent works attempt to accelerate genera-
tion by introducing a non-autoregressive image captioning
(NAIC) model (Gu et al. 2018; Wei et al. 2019), which pro-
duces the entire sentences simultaneously. Although acceler-
ating the decoding process significantly, NAIC models suf-
fer from several repetitive and missing problems. Therefore,
more efforts have been devoted to mitigating issues in im-
age captioning. (Fei 2019) reorders words detected in the
image with a light RNN to form better latent variables be-
fore later decoding. (Jason et al. 2018) introduces an itera-
tive mask refinement strategy to learn the position matching
information. (Guo et al. 2020) addresses the inconsistency
problem in NAIC with a multi-agent learning paradigm and
sentence-level optimization. As far as we are concerned, this
is the first work to incorporate partially non-autoregressive
solution for the image captioning task and provide a unified
perspective about previous AIC and NAIC works.

Most relevant to our proposed method is (Wang, Zhang,
and Chen 2018; Ran et al. 2020; Chai and Wan 2020). What
we have in common is that both methods have not entirely
abandoned autoregressive, but rather shortened the autore-
gressive path. The difference lies that our decoder is cros-
modality, this means that decoding is conditioned on both
image and prior txt. Besides, we introduce well-designed
curriculums for gradual learning. Other similar works are
(Gu, Wang, and Zhao 2019; Stern et al. 2019), which intro-
duce the operations of insertion and deletion to generate an
amenable sequence in parallel based on Transformer struc-
ture. Different from these work, our model changes one-step
non-autoregressive generation to a partial form, which main-
tains considerable speedup and enables the model to view
the local history and future to avoid errors.

6 Conclusion
In this paper, we introduce a novel paradigm, referred to
as partially non-autoregressive, for fast and accurate im-
age captioning. Technically, our captioning model gener-
ates group-level subsentences non-autoregressively and pre-
dicts each word in the group autoregressively. By learning
to determine group length and delete invalid groups evo-
lutionarily, the captioning system is capable of eliminating
incoherent issues effectively. For an in-depth understand-
ing, we also provide a complexity analysis as well as a
unified perspective for various decoding strategies. Exper-
iments on widely-used MS COCO dataset show that the
proposed method maintains an advanced performance with
more than 3.5× decoding speedup compared with state-of-
the-art autoregressive captioning models and obtain a sub-
stantial improvement in descriptive quality compared with
strong non-autoregressive image captioning models.
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