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Abstract

How to properly reduce the annotation cost for panoptic seg-
mentation? How to leverage and optimize the cost-quality
trade-off for training data and model? These questions are
key challenges towards a label-efficient and scalable panoptic
segmentation system due to its expensive instance/semantic
pixel-level annotation requirements. By closely examining
different kinds of cheaper labels, we introduce a novel multi-
objective framework to automatically determine the alloca-
tion of different annotations, so as to reach a better segmenta-
tion quality with a lower annotation cost. Specifically, we de-
sign a Cost-Quality Balanced Network (CQB-Net) to gener-
ate the panoptic segmentation map, which distills the crucial
relations between various supervisions including panoptic la-
bels, image-level classification labels, bounding boxes, and
the semantic coherence information between the foreground
and background. Instead of ad-hoc allocation during training,
we formulate the optimization of cost-quality trade-off as a
Multi-Objective Optimization Problem (MOOP). We model
the marginal quality improvement of each annotation and ap-
proximate the Pareto-front to enable a label-efficient alloca-
tion ratio. Extensive experiments on COCO benchmark show
the superiority of our method, e.g. achieving a segmentation
quality of 43.4% compared to 43.0% of OCFusion while sav-
ing 2.4x annotation cost.

Introduction
Panoptic segmentation unifies foreground instance segmen-
tation (named thing) and semantic segmentation on amor-
phous background regions (named stuff ) to generate rich
and coherent masks. It poses a challenging problem on
holistic image understanding of all foreground objects and
background contents simultaneously. State-of-the-art meth-
ods (Yang et al. 2019b) are trained in a fully-supervised fash-
ion, for which per-pixel background class and foreground
instance labels are required. Due to the data-hungry na-
ture of deep networks, these approaches demand an enor-
mous number of training images with curated groundtruth
labels, which are given by hand in general. However, manual
annotation of such labels is extremely labor-intensive and
time-consuming, e.g. taking around 19 minutes for one sin-
gle image in COCO to be fully annotated (Caesar, Uijlings,
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Figure 1: Annotation Cost vs. COCO Panoptic Segmenta-
tion Quality. Our CQB-Net obtains a better allocation ra-
tio for different labels by approximating the Pareto-front
(left) and in practice achieves a better tradeoff between
two essential objectives for panoptic segmentation, which
outperforms models trained with random ratios and fully-
supervised baselines (right, on ResNet50).

and Ferrari 2018; Lin et al. 2014). Thus, developing a cus-
tomized panoptic segmentation model from a large dataset
is restricted by both the budget of recruiting annotators and
limited class diversity due to the annotation difficulty.

One possible solution to alleviate this issue is adopting
weaker labels for training. As shown in Fig.2(a), while the
panoptic label is the most expensive (1104s), cheaper labels,
such as image labels (7s) and bounding box (32s), can be
obtained more easily or even readily available by an im-
age search engine or boundary click (Papadopoulos et al.
2017). Verified by the success of weakly supervised learn-
ing (Zhang et al. 2018a; Song et al. 2019; Wan et al. 2019;
Ahn and Kwak 2018; Khoreva et al. 2017), these labels and
their mutual relationship should provide coarse but useful
information for our task. In Fig.2(b), five kinds of annota-
tions carry different semantic/spatial information which may
compensate and fill up the missing information during train-
ing. However, directly ensembling weakly supervised ap-
proaches to the thing and stuff branches in a hand-crafted
fashion, such as (Li, Arnab, and Torr 2018), cannot guaran-
tee to achieve an optimal trade-off between the segmentation
quality and the corresponding annotation cost while some-
times certain weak supervision will exert negative impacts
on others if trained in a unified framework.

Therefore, a natural question emerges: Assume we start
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Figure 2: (a) different weaker annotations and their cheaper labeling cost. (b) illustrates the relationship between possible
annotations in a Venn graph (left) while CQB-Net incorporates four modules to learn from different labels (right).

with a dataset with partial images annotated in a panop-
tic way 1, how to optimally annotate a dataset from scratch
for both a better segmentation quality and a lower annota-
tion cost? Will a curated allocation ratio for different super-
visions benefit the trade-off between these two objectives?
In this paper, we propose a Cost-Quality Balanced Network
(CQB-Net) for a possible solution. Specifically, CQB-Net
formulates this natural question as a Mulit-Objective Opti-
mization Problem (MOOP) with the two objectives to be a
high segmentation quality and low annotation cost. Math-
ematically, the trade-off among different objectives is typ-
ically captured by the Pareto front, i.e., the set of Pareto-
optimal ratios with the property that no objective can be im-
proved without harming the other objectives.

Obtaining the full Pareto front accurately and efficiently
is challenging for panoptic segmentation which requires a
large number of network evaluations under different anno-
tation ratios. Randomly sampling allocation ratios for such
evaluation is thus a sub-optimal solution. In the CQB-Net,
we first assume the sensitivity of the panoptic segmentation
quality with respect to each supervision, including panoptic
labels, image labels, bounding boxes and the semantic co-
herence between the foreground and the background anno-
tations (i.e., how changing the ratio of a certain supervision
influences the segmentation quality) is different and inde-
pendent. Then we collect several statistics that reflect such
sensitivity and obtain an explicit function between the ratio
of each supervision and the marginal segmentation quality
improvement by regression. Given such a regression func-
tion and the cost for different annotations, we approximately
obtain the Pareto-front and pick the Pareto-dominate ratios
for training a panoptic segmentation model.

Except for the panoptic labels, we instantiate the bene-
fits of different weak supervisions by weakly-supervised ap-
proaches. For image label, we expect it to provide poten-
tially useful information for object detection in the thing
branch and the semantic segmentation in the stuff branch.
For bounding boxes, we argue they may provide coarse in-
stance segmentation cues through the box-tightness prior

1It is practical in real-world applications if researchers desire to
use a dataset for panoptic segmentation

(Hsu et al. 2019). Additionally, we introduce a new bidi-
rectional weak supervision between the stuff segmentation
masks and the thing bounding boxes by a semantic coher-
ence prior (Wu et al. 2020). For instance, if an image con-
tains foreground objects, person, fork, cup, spoon, it is more
likely to predict the nearby background to be dining hall,
house and vice versa. Thus, thing and stuff labels can be re-
garded as weak annotation for each other. Specifically, we
develop a relational reasoning network to model their se-
mantic correlation by intra and inter-modular information
propagation such that when bounding boxes are missing,
the detection head is optimized implicitly by the supervision
signal of another branch and vice versa. For simplicity, we
denote the four modules as Cls2box, Box2mask, Cls2pixel
and relation reasoning module (Fig.2).

Our contributions are summarized as follows:

• We propose a multi-objective framework for label-
efficient panoptic segmentation, which is able to predict
the Pareto-optimal allocation ratios for different supervi-
sions in order to obtain a trade-off between the segmenta-
tion quality and the annotation cost.

• We design a CQB-Net, which is able to incorporate var-
ious supervisions in a unified way that performs better
than fully-supervised baselines with much lower cost,
e.g. 42.7% PQall (on ResNet-50) compared to 42.5% by
UPS-Net and 41.3% by OCFusion.
• The Pareto-dominate ratios help the CQB-Net achieve

better segmentation results under similar annotation cost
on COCO compared to random ratios (Fig.1).

Related Works
Panoptic Segmentation is a novel task proposed by (Kir-
illov et al. 2019b). Starting from simple combination of two
branches, techniques such as shared backbone (Porzi et al.
2019; Yang et al. 2019a; Li et al. 2018), attention (Li et al.
2019), spatial ranking (Liu et al. 2019), deformable convo-
lutions (Xiong et al. 2019) and overlapping resolving (Yang
et al. 2019b) have been utilized to boost the performance.
However, few study focuses on reducing the annotation bur-
den except for (Li, Arnab, and Torr 2018; Hou et al. 2020).
Both of them only consider limited label scenarios and ig-
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Figure 3: Illustration of the CQB-Net. Based on a panoptic segmentation network, we adopt four modules to unify different
supervisions. (a) shows the Input/Output flow of the proposed modules. (b) summarizes the configurations of the four modules,
including their input in (a), label scenario and function in terms of weakly-supervised learning.

nore the cost-quality trade-off for different supervisions.
Weakly/Semi-Supervised Learning can be categorized
into three types, namely for object detection, semantic seg-
mentation and instance segmentation. For object detection,
such approaches train a detector using image labels by
Multiple Instance Learning (MIL) (Zhang et al. 2018a; Jie
et al. 2017; Tang et al. 2017, 2020). Another direction
mines pseudo labels to learn a supervised detector (Zhang
et al. 2018b; Shen et al. 2018). The others explore semi-
supervised object detection (Fang et al. 2020; Yan et al.
2017) utilizes partial boxes. They are sometimes unstable
and require heavy hyperparameter tuning.

Weakly/Semi-supervised approaches for semantic seg-
mentation (Wang et al. 2018; Wei et al. 2017; Singh and
Lee 2017; Hung et al. 2018; Ouali, Hudelot, and Tami 2020;
Papandreou et al. 2015) and instance segmentation (Hu et al.
2018; Kuo et al. 2019; Khoreva et al. 2017; Hsu et al. 2019;
Ge et al. 2019) are also well investigated, which usually re-
quire multi-stage training.

In summary, all of them do not take the optimality of allo-
cation ratio for different labels into account, but are able to
serve as the weakly-supervised modules in our framework.
Optimization using Pareto-front Pareto-front based ap-
proaches are usually used to solve multi-objective optimiza-
tion, such as for Neural Architecture Search (NAS) (Chen
et al. 2020), multi-task learning (Ma, Du, and Matusik 2020)
or reinforcement learning (Moffaert and Nowé 2014). In this
paper, we solve our MOOP by selecting the annotation ra-
tios that Pareto-dominate others for achieving a trade-off be-
tween the segmentation quality and the annotation cost.

Proposed Approach
Preliminaries
Without loss of generality about min or max, given m ob-
jective functions, f1 : X → R, ..., fm : X → R, a Multi-
Objective Optimization Problem (MOOP) is formulated as:

max f1(x), . . . ,max fm(x) s.t. x ∈ X , (1)

where X is a set of samples. Under such condition, a sample
x1 ∈ X dominates another sample x2 ∈ X if fi (x1) ≥

fi (x2) , ∀i ∈ {1, . . . ,m} and if fj (x1)>fj (x2) , ∃j ∈
{1, . . . ,m}. We denote such dominance as x1 � x2. A sam-
ple x∗ that is Pareto-optimal if there is no sample x ∈ X that
satisfies x � x∗. The Pareto-front Pf is a set of the Pareto-
optimal samples. As there will hardly be solutions that si-
multaneously optimize allm objectives, in order to trade-off
between different objective functions, the primary solutions
are those which are in the Pareto-front.

Problem Formulation
Take it into the context of panoptic segmentation, the sam-
ples x are the allocation ratio ρ for different annotations. The
two objective functions f1, f2 are the segmentation quality
PQall (Panoptic Quality in both the thing and stuff region)
and the annotation cost C, respectively. Denote the annota-
tion cost of the panoptic labels P as 1, the cost for other
weak labels can be calculated as CI = 0.006 (image labels),
CB = 0.03 (bounding boxes), and CSst = 0.68 (semantic
segmentation maps in the stuff branch) following (Caesar,
Uijlings, and Ferrari 2018; Li, Arnab, and Torr 2018). For-
mally, the studied MOOP is formulated similarly as follows:

maxPQall(ρ),−max C(ρ) s.t. ρ ∈ X ,
∑

ρ = 1, (2)

where
∑
ρ = 1 means ρP + ρB + ρI + ρSst = 1. Compared

to conventional panoptic segmentation models which merely
maximize PQall(ρ) with only panoptic labels P that leads
to an expensive annotation cost C(ρ), our multi-objective
panoptic segmentation framework fully utilizes various an-
notations to trade-off between the segmentation quality and
the cost by finding the optimal allocation ratios ρ.

Overview
An overview of the proposed CQB-Net is shown in Fig.3,
which is stacked on a base panoptic segmentation network
(Panoptic FPN (Kirillov et al. 2019a)) and includes four
modules to solve this problem. When image labels I are
provided, we use Cls2Box module inspired by (Bilen and
Vedaldi 2016) to predict a confident score of proposals and
refine the RCNN head. Meanwhile, the Cls2Pixel module
improves the stuff semantic segmentation branch by CAM
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Method Backbone PQall PQth PQst Cost f2
JSIS-Net

Res50

26.9 29.3 23.3

1.0

Panoptic FPN 41.0 47.5 31.6
AUNet 39.6 49.1 25.2

UPS-Net 42.5 48.6 33.4
OCFusion 41.3 49.4 29.0

OANet 39.0 48.3 24.9
AdaptIS 35.9 40.3 29.3

SpatialFlow 40.9 46.8 31.9
Panoptic FPN

Res101
41.9 48.9 32.9

OANet 40.7 50.0 26.6
OCFusion 43.0 51.1 30.7
AdaptIS 37.0 41.8 29.9

SpatialFlow 42.9 49.5 33.0
CQB-Net-R4

Res50

39.5 47.6 27.3 0.496
CQB-Net-R7 41.2 48.7 31.2 0.530
CQB-Net-O1 39.2 46.6 28.2 0.182
CQB-Net-O6 42.3 49.8 31.0 0.423
CQB-Net-O7 42.7 49.5 32.3 0.664
CQB-Net-O1 Res101 40.7 48.2 29.3 0.182
CQB-Net-O6 43.4 51.8 32.3 0.423

CQB-Net
Ratio Actual Improvement Cost

ρP ρI ρB ρSst PQall f1 f2
O1 0.067 0.733 0.067 0.133 39.2 1.208 0.182
O2 0.125 0.687 0.063 0.125 39.6 1.336 0.233
O3 0.083 0.457 0.375 0.083 41.6 1.400 0.255
O4 0.120 0.440 0.360 0.080 41.9 1.509 0.285
O5 0.214 0.394 0.321 0.071 42.1 1.714 0.362
O6 0.290 0.355 0.290 0.065 42.3 1.817 0.423
O7 0.500 0.166 0.167 0.167 42.7 - 0.664
R1 0.1 0.4 0.1 0.4 36.5 1.159 0.404
R2 0.15 0.55 0.2 0.1 37.9 1.463 0.281
R3 0.2 0.15 0.45 0.2 39.0 1.527 0.472
R4 0.25 0.25 0.25 0.25 39.5 1.556 0.496
R5 0.3 0.2 0.3 0.2 40.8 1.610 0.527
R6 0.4 0.1 0.45 0.05 41.7 1.713 0.570
R7 0.3 0.24 0.23 0.23 41.2 1.735 0.530

Table 1: Left: Main results on COCO. Our CQB-Net achieves comparable performance with fully-supervised methods even us-
ing random annotation ratios (CQB-Net-R*). The CQB-Net-O6 outperforms SOTA methods with less than 50% annotation cost
on Res101. “CQB-Net-O*” indicates Pareto-optimal ratios on Pareto-front. Right: Specific ratios and performance (estimated
improvement and actual segmentation quality) of CQB-Net with ResNet50. The comparison is also shown in Fig.1.

and energy regularization (Zhang et al. 2019). Given box
labels B, the Box2Mask module helps estimate instance
masks via the box tightness prior (Hsu et al. 2019). More-
over, a relation reasoning module (Wu et al. 2020) incorpo-
rates mutual correlations between boxes B and stuff pixel la-
bels Sst, such that two supervisions complement each other.
All of these modules are used to collect the final segmen-
tation quality PQall under different allocation ratios. Al-
though there are certainly alternative approaches, we argue
that these weakly supervised approaches are simple and ef-
fective enough, which does not require iterative training and
heavy hyperparamter tuning.

We firstly introduce the key modules for weakly super-
vised learning and then explain our solution in detail.

Cost-Quality Balanced Network
In this section, we discuss four modules in CQB-Net to
handle additional weak supervisions, including image la-
bels, bounding boxes and semantic coherence between fore-
ground and background. Panoptic labels are trained only
through the base panoptic segmentation network.

Image Labels The image labels are commonly used in
weakly-supervised approaches to help object detection and
semantic segmentation. Although several works adopted im-
age labels for instance segmentation (Ge et al. 2019), the
multi-stage training and iterative refinement strategies are
contradictory with the simplicity requirement of the entire
system, let alone their mediocre performance.

For object detection, we include the strategies (Bilen and
Vedaldi 2016) in the Cls2box module by coupling a Multi-
ple Instance Detection (MID) head with the common two-
stage detector. This MID head obtains a output φMID(x) ∈
RN×Cth withN,Cth to be the number of proposals and fore-
ground classes, which denotes the probability that an image
label falls into those proposals. The final classification score

is obtained by multiplying φMID(x) with the classification
output from the common detector for training with only the
cross entropy loss LC2B .

For semantic segmentation, the Cls2pixel module adopts
(Zhang et al. 2019) as the weakly-supervised approach,
which is based on CAM from an extended classification
branch to generate pseudo semantic maps for the stuff
classes. Additionally, an energy regularization term (Joy
et al. 2019) is added to ensure color and spatial coherence
on the pseudo label. The final loss for the Cls2Pixel module
is calculated as LC2P = Lpseudo + Lcls + Lenergy which
corresponds to three different tasks.

Bounding Boxes Given the bounding boxes, the
Box2mask module utilizes the box tightness prior (Hsu
et al. 2019) to approximate the instance segmentation maps,
which assumes the the box is the smallest rectangle that
encloses the whole instance so that the instance touches four
sides of the box. The region outside the box has no overlap
with instances. Then, it uses the multi-instance learning
based heuristics to constrain the instance map. Furthermore,
to avoid segmenting only discriminative regions, a regular-
ization is added to propagate the information from those
regions to their neighborhood. The module is end-to-end
trainable through the loss LB2M = LMIL + Lstructure.
where the former one is the loss to constrain the instance
map and the latter one is the structure regularization loss.

Semantic Coherence between Foreground and Back-
ground While the weakly-supervised literature overlooks
the underlying relations between foreground and back-
ground, the proposed Relation Reasoning module (Wu et al.
2020) propagates the label information between B and Sst
via a bidirectional scheme. Different from (Wu et al. 2020)
that tries to exploit the relationship between two branches in
a fully-supervised way, we adopt this module to distill bene-
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ficial information for supporting weakly-supervised learning
in a bidirectional way.

To instantiate the semantic coherence prior, we first build
two learnable image-specific graphsGth for the RCNN head
and Gst for the stuff segmentation head to enable flexible
reasoning in the instance and class level. Then we develop a
super graph G to exploit the diverse relationship between
these two branches. Afterwards, we project the diffused
graph node features back for intra-modular reasoning, which
enhances the features in both branches so that the supervi-
sion from one branch benefits the other. Therefore, the loss
for the relation reasoning module over the enhanced predic-
tions is formulated as: LRR = Lcls en+Lreg en+βLseg en,
where β is the loss weight for the stuff segmentation branch.
When stuff pixel labels are missing, the semantic segmen-
tation branch is optimized by Lcls en and Lreg en through
relation reasoning modules. Similarly, Lseg en improves the
detection performance when boxes are unavailable.

Overall End-to-End Training
We train the above four modules through corresponding
weak annotations and also the panoptic label P as Fig.3(b).
For the base panoptic network, recall that the predictions of
the regression layer in RCNN head are highly noisy since
we have limited data to train it. For progressive refinement,
we adopt a cascade structure with increasing IoU threshold
for the thing branch. Denote λi as the loss weight at the i-th
cascade stage and Lbase as the conventional loss of the base
panoptic network, our CQB-Net is end-to-end trainable via:

L = Lbase+βLC2P +
∑
i

λi(LC2B+LB2M+LRR). (3)

We empirically found training with such a multi-task loss
enables easy convergence and we can train with the default
setting of a Panoptic FPN (Kirillov et al. 2019a) and Cas-
cade RCNN (Cai and Vasconcelos 2018). More specifically,
we use three cascade heads with increasing IoU threshold to
be 0.5, 0.6, 0.7. The loss weights λi are set to 1, 0.5, 0.25,
respectively. β is set to 0.5.

MOOP by Pareto-front
One naive idea for MOOP is to regress the relationship be-
tween the value PQall and the allocation ratio ρ such that a
trade-off can be found between the cost

∑
i Ciρi and PQall

to reach Pareto-optimality. However, such approximation is
hard because of the randomness caused by different groups
of data for annotation or different trials, thus we resort to the
marginal segmentation quality improvement ∇PQallρi w.r.t.
the allocation ratio of different supervisions. Specifically, we
desire to observe how changing the ratio of a certain supervi-
sion leads to the change of PQall by ablative experiments on
each supervision. Recall that PQall = rthPQ

th + rstPQ
st

where rth, rst denotes the class ratio in the thing and stuff
branch (i.e., 80

133 and 53
133 in COCO), we further disentangle

the ∇PQallρi as:

∇PQallρi = rth∇PQthρi + rst∇PQstρi , (4)

For the panoptic labels P, we did a series of experiments
in which QCB-Net only has access to P with different ratios.

For instance, for two ratios ρ1P, ρ
2
P (ρ2P ≥ ρ1P), we regress

such two functions:
∇PQstρP = PQstρ2P

− PQstρ1P = fstP (ρ1P),

∇PQthρP = PQthρ2P
− PQthρ1P = f thP (ρ1P),

(5)

where we assume the segmentation quality improvement is a
function of ρ1P. Note that ρ1P and ρ2P can be used interchange-
ably. The empirical results used for regression are shown in
the next section (Tab.2).

For other weak supervisions, we approximate the function
in a different way from Eqn.5 since training the CQB-Net
with only one weak supervision will lead to highly noisy
segmentation results, which cannot be stably used to cap-
ture the relationship between the PQall improvement and
the allocation ratio. Instead, we accompany each weak su-
pervision with partial panoptic labels so that the CQB-Net
is trained with a hybrid supervision. For instance, when re-
gressing ∇PQthρB , we conduct two groups of experiments,
the first one is baseline experiment when the CQB-Net is
trained with ρP panoptic labels and ρB = 1 − ρP box labels
without the help of weak supervision (i.e. the Box2mask
module), whose segmentation quality is PQth

ρ1B
. Then we

did another experiment with the same annotation ratio but
with the weakly-supervised loss from the Box2mask module
and obtain a segmentation quality PQth

ρ2B
(These two exper-

iments correspond to the “Baseline” and “Box2Mask Mod-
ule” block in Tab.2). Then we regress such a function:

∇2PQthρB =
PQth

ρ2B

PQth
ρ1B

− 1 = f thB (ρB), (6)

which can be regarded as the second derivative of the seg-
mentation quality w.r.t. the ratio of bounding boxes. For
∇2PQstρB , the regression procedure is similar which also re-
quires two groups of experiments, but the weak supervision
comes from the relation reasoning module. Afterwards, we
obtain the relationship between the segmentation quality im-
provement and the annotation ratio through integration:

∇PQkρB(ρ
j
B) =

∫ ρjB

0

fkB (ρB)dρB, k ∈ [th, st], (7)

where ρjB is a random ratio with which we want to cal-
culate the segmentation quality improvement. Similarly, this
approximation procedure can be applied to other weak su-
pervisions. The regressed functions are shown as follows:
∇PQthρP = 0.3101− 1.407ρP + 2.420ρ

2
P − 1.439ρ

3
P ,

∇PQthρI = 0.0043 + 0.0422ρI − 0.2969ρ
2
I + 0.5146ρ

3
I ,

∇PQthρB = 0.0047 + 0.0910ρB − 0.4602ρ
2
B + 0.8664ρ

3
B,

∇PQthρSst
= 0.0096− 0.1837ρSst + 0.7641ρ

2
Sst − 0.7982ρ

3
Sst ,

∇PQstρP = 0.3324− 1.592ρP + 2.927ρ
2
P − 1.850ρ

3
P ,

∇PQstρI = −0.0089 + 0.0439ρI + 0.19ρ
2
I − 3.148ρ

3
I ,

∇PQstρB = 0.024− 0.1548ρB + 0.4131ρ
2
B − 0.3491ρ

3
B,

(8)

where we do not include ∇PQstρSst since using stuff seman-
tic pixel labels to help the background semantic segmen-
tation is not a valid weak supervision. Then, one objective
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Figure 4: Panoptic segmentation results. The first row shows the original images. The second row shows the CQB-Net seg-
mentation results with ρP = 0.290, ρI = 0.355, ρB = 0.290, ρSst = 0.065 on ResNet-50. The third shows the ground truth.
Additional visualization results are attached in the appendix. The corresponding annotation cost is approximately 0.423 for the
second row while obtaining the groundtruth requires a cost of 1.0.

function in the Pareto-optimal problem is the absolute seg-
mentation quality improvement value:

f1(ρ) =
∏

(1 +∇PQkρi), i ∈ [P, I,B, Sst], k ∈ [st, th], (9)

while the other objective function is the annotation cost
f2(ρ) =

∑
i ρiCi. With such approximated functions,

we randomly sample 7500 different allocation ratios with∑
i ρi = 1 and obtain their Pareto-front ratios for training

the CQB-Net, which is expected to achieve a better trade-off
between the annotation cost and the segmentation quality.
The sampled ratios and the approximated Pareto-front are
shown on the left of Fig.1.

Experiments and Results
Dataset and Implementation Details
We conduct experiments on MS-COCO 2017 (Lin et al.
2014). It has 80 thing categories and 53 stuff categories,
which is divided into train set (118K images), val set (5K
images) and test set (20K unannotated images). We train our
model on the train set and evaluate on the val set. Panoptic
FPN (Kirillov et al. 2019a) with ResNet-50/101 (He et al.
2016) pretrained on ImageNet is regarded as our base panop-
tic network. We implement our model using MMDetection
(Chen et al. 2019) and train with 8 GPUs. We train for 24
epochs with a batch size of 16, weight decay of 1e-4, learn-
ing rate of 0.02 with step decay at epoch 18 and 23 by
0.1. We use SGD optimizer with momentum of 0.9. We use
multi-scale training between 1333×400 and 1333×900 pix-
els with random flipping. The test image scale is 1333×800.
We use 2 inter-graph reasoning layers and the dimension of
f̃ , fenth and fenst are 128. we average the extra box classifica-
tion and semantic segmentation outputs in the relation rea-
soning module with those from the base panoptic network as
in Fig.3. All the other hyperparameters are kept the same as
the original papers. We run 50 ablative experiments for each
supervision to approximate Eqn.8.

Comparison with Non Pareto-optimal Ratios
In Tab.1 right, we report Panoptic Quality on both thing
branch PQth, stuff branch PQst and PQall of the model

trained with the Pareto-optimal ratios. For simplicity, we se-
lect 7 ratios from them. Also, we randomly select 7 other
ratios with similar annotation cost and compare the segmen-
tation quality with our CQB-Net. As can be seen, our CQB-
Net trained with the Pareto-optimal ratios on the ResNet-
50 achieves a better segmentation quality compared to ran-
domly sampled ratios (i.e. 42.3% PQall of O6 vs. 41.2%
of R6), which is also shown in Fig.1 and aligns well with
our statistical findings in the MOOP. The qualitative re-
sults are shown in Fig.4, where CQB-Net can segment tiny
and overlapping objects with comparable visual quality to
ground truth. With the ResNet-50 as backbone, the inference
time (on V100) for CQB-Net is 283ms/image while that of
Panoptic FPN (3 cascade stages) is 256ms. The increased
FLOPs are 14.02G in CQB-Net.

Comparison with Fully Supervised Approaches
In order to further demonstrate the effectiveness of the
CQB-Net, we compare its segmentation quality with fully-
supervised panoptic segmentation baselines in Tab.1. As can
be seen, the CQB-Net trained with the Pareto-optimal ra-
tio O7 is better than UPS-Net (Xiong et al. 2019) with less
than half of annotation cost (i.e. 42.7% PQall vs. 42.5%).
With ResNet-101 as backbone, the performance is boosted
by around 1% for all the metrics. In addition, we note that
even the CQB-Net trained with the random allocation ra-
tio R6 can outperform fully-supervised segmentation mod-
els (i.e. 41.2% PQall of R6 vs. 41.0% of Panoptic FPN).

Ablation Study for Pareto-front Approximation
To approximate the relationship between the marginal
segmentation quality improvement and the ratio of each
weak supervision, each time we run the panoptic segmen-
tation experiments on CQB-Net with ρP fully-annotated
data and 1 − ρP data with only one type of weak an-
notation. With the backbone of ResNet-50, we report the
panoptic metrics, i.e. PQth, SQth, RQth for Cls2Box mod-
ule, Box2Mask module and Relation Reasoning module
(st→th). PQst, SQst, RQst are reported for the Cls2Pixel
module and Relation Reasoning module (th→st) (Tab.2).

For each module, we compare with a baseline model and
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ρP Baseline Cost Cls2Box Cost Upper bound Cost
0.1 40.1 79.1 0.10 44.0 79.4 0.10 47.3 79.9 0.13
0.3 47.7 81.4 0.30 49.2 82.3 0.30 50.7 82.7 0.32
0.5 50.4 82.1 0.50 51.4 82.5 0.50 51.7 82.6 0.51
ρP Baseline Cost Box2Mask Cost Upper bound Cost
0.1 47.3 79.9 0.13 48.8 80.0 0.13 49.4 81.6 0.38
0.3 50.7 81.7 0.32 51.0 81.9 0.32 51.2 82.2 0.52
0.5 51.7 82.6 0.51 52.0 82.6 0.51 52.1 82.6 0.66
ρP Baseline Cost GR st→th Cost Upper bound Cost
0.1 39.1 76.6 0.71 39.7 77.3 0.71 47.5 80.0 0.74
0.3 47.6 81.0 0.78 48.3 81.3 0.78 50.6 82.5 0.80
0.5 49.9 81.3 0.84 50.6 81.5 0.84 51.8 82.5 0.86

ρP Baseline Cost Cls2Pixel Cost Upper bound Cost
0.1 25.3 70.9 0.10 26.5 72.4 0.10 31.6 75.8 0.71
0.3 30.3 73.5 0.30 31.5 74.3 0.30 33.2 75.0 0.78
0.5 32.0 77.3 0.50 32.5 77.7 0.50 33.3 78.3 0.84
ρP Baseline Cost GR th→st Cost Upper bound Cost
0.1 24.4 66.6 0.13 26.1 68.0 0.13 30.8 73.2 0.74
0.3 29.9 72.3 0.32 31.3 75.9 0.32 33.4 75.8 0.80
0.5 31.3 76.3 0.51 32.8 79.9 0.51 32.7 78.0 0.86

Table 2: Ablation study results on different weakly-supervised modules with different allocation ratios ρ. These statistics
are used for Pareto-front approximation. The baseline model has available weak labels but is trained without related mod-
ule while upper bound model accepts fine-grained annotation. Results are reported in the fashion of PQthSQth|f2(ρ) (left)
and PQstSQst|f2(ρ) (right). For simplicity, three experiments for each scenario are reported where we conduct 50 experiments
per label to approximate Eqn.8.
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Figure 5: Comparative results on three sub-tasks with weakly/semi-supervised baselines under different annotation costs. We
report the metrics on baselines with the same backbone. GR refers to the graph relation reasoning module.

an upper bound model. The former one is trained with the
same weak labels but not with the related weakly-supervised
module. The latter one accepts fine-grained annotations,
which is regarded as the upper bound. For instance, for
the Cls2Box module, the baseline model is trained with ρP
panoptic labels and 1 − ρP image labels. And the upper
bound model is trained with the same ρP panoptic labels but
1− ρP bounding boxes. As can be seen, all of the four mod-
ules are able to lift the panoptic segmentation quality from
the baseline model with a considerable margin. Using such
statistics, we then approximate Eqn.8 for obtaining the opti-
mal allocation ratios in the Pareto-front.

Comparison on Sub-tasks
With the same setting above, we report mAP over Cls2Box
module and Relation Reasoning module (st→th) for object
detection and over Box2Mask module for instance segmen-
tation. mIoU is reported for Cls2Pixel and Relation Reason-
ing module (th→st) for semantic segmentation (Fig.5). We
compare our Cls2Box module and relation reasoning mod-
ule (st→th) with weakly-supervised approaches, namely,
EHSOD (Fang et al. 2020), PGTM (Zhang et al. 2020),
MELM (Wan et al. 2019), WSDDN (Bilen and Vedaldi
2016) trained with the same ratio of box and image labels.
The Cls2Pixel and the relation reasoning module (th→st)

are compared with CAM (Zhou et al. 2016), MDC (Wei
et al. 2018), FCN-MIL (Pathak et al. 2015), AdvSeg (Hung
et al. 2018) trained with the same ratio of stuff pixel labels
and image labels. Besides, the Box2Mask module is com-
pared to ShapeMask (Kuo et al. 2019), MaskXRCNN (Hu
et al. 2018), GrabCut-FasterRCNN (Rother, Kolmogorov,
and Blake 2004), GrabCut-MaskRCNN (Hu et al. 2018),
PRM (Laradji, Vázquez, and Schmidt 2019). Our four mod-
ules show outperforming results in all three tasks, e.g. 30.3%
mAP for object detection compared to 24.1% on EHSOD
given only 10% bounding boxes and 90% image labels.
More comparative results are in the appendix.

Conclusion
We propose a multi-objective framework for panoptic seg-
mentation where a CQB-Net is designed to fully utilize the
available cheaper annotations in a dataset. In order to trade-
off between the segmentation quality and the annotation cost
instead of ad-hoc ensembling different weakly-supervised
approaches, we formulate a Multi-Objective Optimization
Problem and select the allocation ratio for different supervi-
sions from the approximated Pareto-front. These allocation
ratios empirically enable CQB-Net to perform better than
models trained with random ratios and even outperform fully
supervised methods with ≤50% annotation cost.
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