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Abstract

Recent studies show that small perturbations in video frames
could misguide single object trackers. However, such attacks
have been mainly designed for digital-domain videos (i.e.,
perturbation on full images), which makes them practically
infeasible to evaluate the adversarial vulnerability of track-
ers in real-world scenarios. Here we made the first step to-
wards physically feasible adversarial attacks against visual
tracking in real scenes with a universal patch to camouflage
single object trackers. Fundamentally different from phys-
ical object detection, the essence of single object tracking
lies in the feature matching between the search image and
templates, and we therefore specially design the maximum
textural discrepancy (MTD), a resolution-invariant and tar-
get location-independent feature de-matching loss. The MTD
distills global textural information of the template and search
images at hierarchical feature scales prior to performing fea-
ture attacks. Moreover, we evaluate two shape attacks, the re-
gression dilation and shrinking, to generate stronger and more
controllable attacks. Further, we employ a set of transforma-
tions to simulate diverse visual tracking scenes in the wild.
Experimental results show the effectiveness of the physically
feasible attacks on SiamMask and SiamRPN++ visual track-
ers both in digital and physical scenes.

Introduction
Single object tracking has attracted increasing attention in
security related applications, such as autonomous driving,
intelligent surveillance and human-machine interaction. The
visual tracking task resorts to creating the dynamic corre-
spondence (e.g., position) between a moving object in a
given template frame and that in subsequent search frames
without prior knowledge of object categories. Recently,
there have been significant improvements in tracking per-
formance with the adoption of deep convolutional neural
networks (DNNs). Providing a good tradeoff between real-
time tracking and accuracy, the Siamese-based trackers, e.g.,
SiamRPN (Li et al. 2018), SiamRPN++(Li et al. 2019),
SiamMask(Wang et al. 2019), have become the mainstream
approaches in visual tracking.

*Equal contribution, alphabetical order.
†Corresponding Author.
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DNNs are shown vulnerable to adversarial perturbations,
termed as adversarial attacks (Szegedy et al. 2014). Such
attacks exist for different vision tasks implemented with
DNNs, e.g., image classification (Kurakin, Goodfellow, and
Bengio 2016), object detection (Xie et al. 2017) and vi-
sual tracking (Yan et al. 2020a). Generally, adversarial at-
tacks can be categorized into digital attacks and physical
attacks, depending on which domain to inject the pertur-
bations (Huang et al. 2020). Specifically for single object
tracking, recent studies primarily target at digital attacks
(Yan et al. 2020a; Guo et al. 2019), leaving physical visual
attacks rarely explored. Indeed, physical attacks are much
more challenging than digital attacks due to practical con-
straints and feasibility.

In digital attacks, adversarial perturbations can be injected
into any pixel of an image, and they can be different from
image to image. In physical attacks, however, it requires
the perturbation region to be small enough to be physically
feasible, universal to diverse instances and robust to physi-
cal conditions (e.g., preprocessing, luminance factor). Also,
physical attacks are more challenging to be detected and de-
fended against, making them more threatening to trackers
than digital attacks.

Despite certain pioneering explorations in physical at-
tacks, existing works mainly focus on attacking image clas-
sifiers (Eykholt et al. 2018; Athalye et al. 2018) or object
detectors (Chen et al. 2018; Huang et al. 2020). Probably
against our intuition, though the task of visual tracking ap-
pears related with object detection (i.e., providing object
bounding-box), their working mechanisms differ consider-
ably. Object detection has one input and it estimates all loca-
tions of interested objects (instance-agnostic and category-
dependent) while the single object tracking has two inputs
and only localizes the user-specified target dynamically yet
with no prior information of its category. In essence, visual
tracking extracts and matches features between the template
and search frames.

As illustrated in Fig. 1, it is challenging to attack the
feature matching module. First, the dimensionality of fea-
ture maps are different between template and search frames.
Therefore it is infeasible to employ the feature space adver-
sarial loss proposed for classifiers (Inkawhich et al. 2019).
Second, the coordinates of the tracking object are not spa-
tially aligned in the feature space, which makes pixel-wise
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feature comparison proposed for physical attacks on object
detectors (Zhao et al. 2019) fail to generate effective per-
turbations in visual tracking. It is worth emphasizing that
existing attack methods on classification and object detec-
tion cannot be applied on visual tracking. It necessitates a
novel approach to de-match the Siamese features from the
two branches.

Meanwhile, it is desirable that the adversaries can control
the shape of the target’s bounding-box predictions, i.e., mis-
leading bounding boxes to dilate or shrink promptly yet con-
sistently over time. Further, physical attacks demand practi-
cal considerations, e.g., a patch small enough to be physi-
cally feasible, universally valid to different instances within
the same category, and robust to physical conditions and
tracker re-initialization. In this work, we made the first at-
tempt towards physically feasible universal attacks on SOTA
Siamese-based visual trackers. The proposed method gen-
erates effective patches to significantly reduce the tracking
performance of victim trackers in physically feasible sce-
narios. Overall, our main contributions are three-fold:

• We present the first physically feasible attack approach to
evaluate the adversarial vulnerability of SOTA Siamese-
based visual trackers. Our attack is universal to different
instances from the same category and robust in physical
conditions. This work can be a baseline to evaluate the
robustness of Siamese-based visual trackers in the wild.

• We propose the maximum textural discrepancy (MTD)
loss function to misguide visual trackers by de-matching
the template and search frames at hierarchical feature
scales. Further, we consider the entire tracking pipeline,
evaluating different shape attacks and optimization strate-
gies to generate stronger and more controllable attacks.

• Experimental results show that the proposed physi-
cally feasible attacks can efficiently fool SiamMask and
SiamRPN++ both in standard visual tracking datasets
and in physical conditions. (Digital scenes are to imitate
universal physical attacks in the digital domain.)

Related Works
Siamese-based Visual Tracking
Single Object Tracking (SOT) aims to track an arbitrary
object in an online video stream without knowing the ob-
ject category in advance. Different from object detection,
SOT requires the tracker capable of tracking any object with
a one-shot glance. Generally, SOT can be formulated as
a similarity learning problem. Since the seminar work in
(Bertinetto et al. 2016) based on a fully-connected Siamese
architecture (SiamFC), there has been increasing interest in
SOT by leveraging the fast running speed and expressiveness
power of deep neural networks.

A Siamese network consists of two identical ϕ branches,
which transform an exemplar image z and a candidate im-
age x to the feature space prior to fusing them to return a
score. The SiamFC tracker (Bertinetto et al. 2016) first intro-
duced a correlation layer which highly improved the track-
ing accuracy. SiamRPN (Li et al. 2018) formulated SOT

Figure 1: The framework of the Siamese-based matching
network. Given a target template and the search region, their
features are extracted by a Siamese networkϕ. Since the fea-
tures could be in different shapes due to different image sizes
of the template and search input, the features are matched
using a cross-correlation layer to generate the matching map
(here ∗ denotes the cross correlation).

as a local one-shot detection task. Then it explored the re-
gion proposal sub-network (RPN) (Ren et al. 2015) to yield
faster speed and competitive tracking performance. To ad-
dress the translation invariance issue, SiamRPN++ (Li et al.
2019) introduced a spatial-aware sampling strategy to signif-
icantly boost its performance gain by utilizing more sophis-
ticated networks. SiamRPN++ also introduced the layerwise
and depthwise aggregation module to further increase the
tracker’s performance. More recently, researchers studied
the computational speed of visual trackers due to the pixel-
level position estimate. SiamMask (Wang et al. 2019) allevi-
ated this problem by formulating SOT as a multi-task learn-
ing problem. The SiamMask tracker involved training three
tasks jointly, i.e., similarity matching module for dense re-
sponse maps, RPN subnetwork for bounding box regression
and binary segmentation for position refinement. SiamMask
achieves the state-of-the-art performance on real-time visual
tracking.

Digital Attacks on Visual Trackers
It’s demonstrated that DNNs are vulnerable to adversarial
attacks on various computer vision tasks in the digital im-
age domain, e.g., classification (Szegedy et al. 2014; Good-
fellow, Shlens, and Szegedy 2015; Xie et al. 2017), object
detection and segmentation (Xie et al. 2017), or some re-
cent explorations on visual trackers (Yan et al. 2020a,b).
The work (Yan et al. 2020a) employed the generative ad-
versarial networks (Goodfellow et al. 2014) with the pro-
posed cooling-shrinking loss to generate imperceptible noise
to attack the SiamRPN++ tracker. Then the perturbation was
added to the template or search images on the network in-
put (after pre-processing), which makes the attack unfeasi-
ble even in digital attacks. Guo et al. (Guo et al. 2019) pro-
posed an online incremental attack. This attack exploits the
spatial and temporal consistency in video frames so that the
adversary fools object trackers with slight perturbations at
each temporal frame. In work (Yan et al. 2020b), the authors
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Attack PF SOTA Universal Re-initialization
(Guo et al. 2019) × X × ×
(Yan et al. 2020a) × X × ×
(Chen et al. 2020) × X × ×
(Yan et al. 2020b) × X × ×
(Wu et al. 2019) × X × ×

(Wiyatno and Xu 2019) × × X ×
Proposed Attacks X X X X

Table 1: Comparison of existing and the proposed adversar-
ial attacks on visual trackers. “PF” denotes “Physically Fea-
sible”; “SOTA” indicates the attacks are effective for SOTA
visual trackers.

evaluated the vulnerability of Siamese-trackers by hijack-
ing the bounding box of the tracking object to be a different
shape or to targeted position. Chen et al. (Chen et al. 2020)
generated the perturbation on the template frame with dual
attention. Wu et al. (Wu et al. 2019) proposed 3D adversar-
ial examples for visual trackers. Unfortunately, these attacks
only work in the digital domain since adversarial perturba-
tions were specifically designed differently for exemplar and
search frames. This makes it infeasible to extend to physi-
cally realizable attacks.

One More Attack on Visual Trackers
In the interesting work (Wiyatno and Xu 2019), the authors
designed an adversarial poster displayed on a big screen to
fool the GOTURN tracker (Held, Thrun, and Savarese 2016)
when a person approaches the screen. However, there are
major differences between this work and our proposed at-
tack. First, (Wiyatno and Xu 2019) requires the poster to
be big enough to fully cover tracking objects – the poster
size is 2.6m×2m while halving the size would fail to attack.
Essentially, this is an extension of digital attacks since the
perturbations can lie in arbitrary regions in the background.
Second, the work only largely perturbs search images with-
out changing the template image. This is unrealistic in phys-
ical conditions and it cannot handle model re-initialization
in trackers. Third, the victim GOTURN tracker is obsolete
which works differently from SOTA trackers. In contrast, we
examine the tracking pipeline and propose novel loss func-
tions for adversarial attacks. The proposed method generates
portable adversarial patches, small yet effective to attack
the state-of-the-art trackers. Since our patches appear both
in template and search images, they are capable of fooling
trackers even with model re-initialization. We focus on more
practical physical attacks on SOTA trackers. Such physically
feasible attacks are more dangerous yet less explored. In Ta-
ble 1, we compare the proposed methods with existing at-
tacks from different aspects.

Physically Feasible Attacks
In this section, we present the pipeline of the proposed
method, as shown in Fig. 2. We first formulate the problem
of physically feasible attacks on visual tracker, and we then
elaborate our method in detail.

For a Siamese tracker with the matching network ϕ (see
Fig. 1), we denote the template image as z(t) ∈ Rwz×hz×c

at the t-th re-initialization, and the search image as x(t,s) ∈
Rwx×hx×c at the s-th frame corresponding to the t-th trial.
The search image passes through a sub-window ω which in-
volves cropping, padding and resizing operations before it
is fed into the matching network. We denote the extracted
features from the template and search images as ϕ(z(t)) ∈
Rw′

z×h
′
z×c

′
, ϕ(ω(x(t,s))) ∈ Rw′

x×h
′
x×c

′
, respectively.

In physically feasible tracking attacks, adversaries at-
tempt to find a universal patch δ to significantly degrade
the performance of the visual trackers over time. Suppose
a target has been camouflaged by the adversarial patch, let
us denote the exemplar image as z(t)δ and the search image
as x(t,s)

δ , respectively. z(t)δ and x(t,s)
δ can be expressed as,

z
(t)
δ = z(t) �M (t) + (I(t) −M (t))� δ

x
(t,s)
δ = x(t,s) �M (t,s) + (I(t,s) −M (t,s))� δ

(1)

where � represents the element-wise Hadmard product;
M (t),M (t,s) denote binary masks for z(t)δ and x(t,s)

δ , re-
spectively; I(t), I(t,s) represent all-one matrices with the
same dimension asM (t),M (t,s), respectively.

Similar to existing digital attacks (Yan et al. 2020a; Guo
et al. 2019), we will blind the Siamese-based visual track-
ers over time. Concretely, assume that a victim tracker is
re-initialized with an exemplar image z(t)δ ∈ Za where an
adversarial patch has been attached on the tracking object.
Correspondingly, the search frames are x(t,s)

δ ∈ X (t)
a ,

{x(t,1)
δ ,x

(t,2)
δ , · · · ,x(t,S)

δ }. Then with δ, the tracker will fail
to correctly match z(t)δ with x(t,s)

δ , s = 1, · · · , S.

Maximum Textural Discrepancy
As illustrated in Fig. 1, the essence of Siamese-trackers is to
locate the target in search regions via a matched filter repre-
sented by ϕ. The activated matched features will then be de-
livered to downstream functional sub-networks. Therefore, a
sufficient condition to blind a Siamese-tracker is to de-match
its upstream representations.

The work (Inkawhich et al. 2019) proposed a targeted-
classification attack by minimizing the representation dis-
tance between the source and target images in the feature
space. This attack was shown to achieve high transferability
for classification tasks. However, unlike the targeted classi-
fication attack, there is no “target image” (i.e., an instance
of a targeted class) in visual tracking. Also, the dimension-
ality difference of ϕ(z(t)) and ϕ(x(t,s)) hinders the direct
calculation of the feature distance.

Recent studies reveal an intriguing phenomenon that neu-
ral networks are biased towards textures in image classifi-
cation (Geirhos et al. 2019; Zhang and Zhu 2019). Textures
refer to certain spatially stationary statistics in natural im-
ages, which can be calculated from the Gramian matrix in
the feature space (Gatys, Ecker, and Bethge 2016; Johnson,
Alahi, and Fei-Fei 2016). The textural feature is indepen-
dent of feature dimensionality and it also explicitly exploits
the vulnerability of neural networks.
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Figure 2: Overview of the proposed attack pipeline. Given a randomly-initialized patch and the training streams, firstly the
patch is transformed randomly (e.g., random change in brightness, contrast, color, translations, rotation, sheering etc). Then the
patch applier overlays the patch onto the target. At each iteration, we sample a random batch of frames, dynamically processing
and passing them into the victim trackers. Finally the patch is updated by minimizing the proposed overall loss function.

Motivated by this, we propose the Maximum Textural Dis-
crepancy (MTD) as a novel loss function to fool the matched
filter. Specifically, the objective is to maximize the discrep-
ancy of textural representations between z(t)δ and x(t,s)

δ so
that the feature representations are de-matched in the up-
stream of visual trackers. The hierarchical MTD loss on D
layers, LMTD, is defined as:

LMTD(z
(t)
δ ,x

(t,s)
δ ) = − 1

D

∑
d∈D

∣∣∣∣∣∣∣∣G (ϕd(z(t)δ )
)
−

G
(
ϕd(ω(x

(t,s)
δ ))

) ∣∣∣∣∣∣∣∣
F
(2)

where F denotes the Frobenius norm; G represents the
Gramian matrix operator G : f (d) ∈ Rwd×hd×cd 7→
Rcd×cd , where f (d) , {f (d)

(1), · · · ,f
(d)

(cd)
} denotes the fea-

ture map profile composed of feature map f (d)
(i) ∈ Rwd×hd

of the i-th channel (i = 1, · · · , cd), at the d-th layer
(d = 1, 2, · · · , D). Concretely, given two feature maps
f
(d)
(i) ,f

(d)
(j) ∈ Rwd×hd from the feature map profile f (d), the

Gramian output Gi,j(f (d)) at the i, j-th component (i, j =
1, · · · , cd) can be computed:

Gi,j(f (d)) =
〈
V ec(f

(d)
(i) ), V ec(f

(d)
(j))
〉

(3)

where <,> and V ec(·) denote the inner product and matrix
vectorization operation, respectively.

Proposition 1. The Gramian matrix in Eq. (3) turns out
to be the correlation matrix of feature maps from different
channels. By maximizing the textural discrepancy measured
by the Gramian matrix, we can minimize the correlation be-
tween z(t)δ and x(t,s)

δ (∀t, s) in the feature space. Please find
our proof in Appendix A.

Remark. From the analysis above, we conclude that the
MTD loss (in Eq. (2)) explicitly de-matches the feature rep-
resentations produced from the matched filter ϕ.

Shape Attacks
In visual attacks, it is desirable that attackers can misguide
bounding-box predictions promptly and consistently over
time. Here we consider shape attacks (i.e., shape dilation
or shrinking) by fooling the downstream regression sub-
network to make visual attacks in a controllable manner.

The SOTA Siamese trackers, e.g. SiamRPN++ and
SiamMask, use RPN to locate the object’s position, which
consists of two branches: the regression network for pro-
posal regression and the classification network for target or
background prediction. The regression network predicts the
shape of bounding boxes {(x̃(s,t)i , ỹ

(s,t)
i , h̃

(s,t)
i , w̃

(s,t)
i )}Ni=1.

The classification network discriminates the target from its
background with the classification feature map and gener-
ates the similarity map. Further, motion modeling is adopted
to re-rank the proposals’ score {p̃(s,t)i }Ni=1. Finally bounding
box with the highest score is selected as the target position.

In SiamMask and SiamRPN++, the motion model penal-
izes the position prediction and encourages the output to be
spatially stable. Therefore it is challenging to interfere the fi-
nal classification which could misguide trackers. As a result,
alternatively we propose shape attacks by distracting the
shape of the bounding boxes. In shape attacks, firstly we se-
lect a set of bounding boxes which provide top-K penalized
scores: {p̃(s,t)k }Kk=1. Based on these penalized scores, we
can explicitly consider the motion model in visual tracking.
Concretely, the selected bounding boxes form a set Ω(s,t) =

{(h̃(s,t)1 , w̃
(s,t)
1 ), (h̃

(s,t)
2 , w̃

(s,t)
2 ), · · · , (h̃(s,t)K , w̃

(s,t)
K )}. De-

note the targeted bounding box shape as (
∨
h,
∨
w) and the

regression margin as mτ . The loss for regression shape
attacks LSha can be written as:

LSha(z
(t)
δ ,x

(t,s)
δ ) =

1

K

K∑
k=1

max

(∣∣∣h̃(s,t)k −
∨
h
∣∣∣
1

+∣∣∣w̃(s,t)
k − ∨w

∣∣∣
1
, mτ

) (4)

In Eq.(4), with specified parameters (
∨
h,
∨
w and mτ ), adver-
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saries can control the desired shape of predicted bounding

boxes after attack, i.e., shape dilation (
∨
h =

∨
w = 1) or shape

shrinking (
∨
h =

∨
w = −1) attacks. It is worthy to mention

that the proposed Shape loss is distinct from that in (Yan
et al. 2020a), because their loss necessitates a clean video as
the input; however, we do not have such information in the
physically feasible scenes. Moreover, we incorporate into
our loss formulation the motion model in tracking attacks.

Universal Physical Attacks
Practical physical attacks present more challenges than dig-
ital attacks on the trackers. As elaborated below, we address
three challenges: (1) physically realizable; (2) universal to
diverse instances; and (3) robust to physical conditions and
tracker re-initialization.

Physically feasible. The proposed patch-based loss func-
tions (i.e. Eqs.(2) and (4)) can be directly applied to the
physical conditions. Since natural images (or patches) gen-
erally look smooth, we consider the smoothness constraint
to avoid sharp texture transitions and increase its “stealth-
iness”. We use the total variation (TV) (Sharif et al. 2016;
Thys, Van Ranst, and Goedemé 2019) to penalize the
smoothness term,

LTV (z
(t)
δ ,x

(t,s)
δ ) =

1

wδ hδ

wδ∑
i=1

hδ∑
j=1

{∣∣∣δi+1,j − δi,j
∣∣∣2 +

∣∣∣δi,j+1 − δi,j
∣∣∣2}1/2

(5)

where wδ, hδ represent the width and height of the adversar-
ial patch δ, respectively.

Universality. Universality could mean two aspects in
physical attacks. First, the patch is effective for different in-
stances within the same category (e.g. human, cars). Sec-
ond, the patch remains adversarial for instances from dif-
ferent categories. Here we focus on the first case, and we
leave the latter scenario as future work. Given the ran-
domly sampled exemplar image z(t)δ ∈ Za and search frame
x
(t,s)
δ ∈ X (t)

a , {x(t,1)
δ ,x

(t,2)
δ , · · · ,x(t,S)

δ }, the overall ob-
jective function L for universal physical attacks becomes,

L(zδ,xδ) =
∑

z
(t)
δ ∈Za

∑
x

(t,s)
δ ∈X (t)

a

αLMTD + βLSha + γLTV

(6)
where α, β, γ denote the weights for loss functions LMTD,
LSha and LTV , respectively.

Robustness. Robustness is important to ensure that the at-
tacks work properly in the physical world, where the patch
may suffer from different visual distortions when captured
by a visual tracker (e.g. camera from a moving car). To
mimic the real world conditions, we include diverse trans-
formations and apply the expectation over transformation
(EoT) (Athalye et al. 2018) on adversarial patches. Apart
from some affine transforms (e.g. rotation, translation) in
(Athalye et al. 2018), we also consider changes in perspec-
tives, brightness, contrast and color jittering. Detailed setting

Algorithm 1: The proposed algorithm of universal
and physically feasible attacks on visual tracking.

Data: Training video streams set X , number of template
images T , number of search images S at one
template, regression margin mτ , loss weights
α, β, γ, maximum number of iterations M .

Result: Optimized adversarial patch δUPS .
1 Initialize adversarial patch with Gaussian noise, iter = 0;
2 while iter < M do
3 Sample a template image z(t) from X ;
4 Sample one search image x(t,s) from X from nearby

frames of z(t);
5 Sample a transform T on patch δ, warp transformed

patch δ to template z(t);
6 Sample a transform T on patch δ, warp transformed

patch δ to search image x(t,s);
7 Pre-process the image pair {z(t),x(t,s)} and input

them to victim tracker;
8 Compute MTD loss LMTD from Eq.(2);
9 Select bounding boxes set

Ω(s,t) = {(h̃(s,t)
1 , w̃

(s,t)
1 ), · · · , (h̃(s,t)

K , w̃
(s,t)
K )}

based on top-K penalized scores;
10 Compute the shape loss LSha from Eq.(4);
11 Compute the total variation loss LTV from Eq.(5);
12 Compute the overall loss L(zδ,xδ) from Eq.(6);
13 Optimize δ using the Adam optimizer from Eq.(7);
14 iter ← iter + 1;
15 end

can be found in Appendix B. Denote the transformation as
T . Our robust adversarial patch on visual tracking δUPS can
be obtained by,

δUPS = arg min
δ

Eδ∼ T δ
[
L(zδ,xδ)

]
(7)

where L(zδ,xδ) is given in Eq. (6).
The overall pipeline of the proposed attack, the universal

physically feasible attack, is described in Algorithm 1.

Experiments
In this section, we empirically evaluate the effectiveness of
the proposed attacks on visual tracking both in digital and
physically feasible scenes. The attacks in digital scenes are
to imitate the physically feasible attacks in the real world.
Therefore we can quantitatively assess our attacks on the
standard datasets and tune parameters more efficiently. The
experiments were conducted on one NVIDIA RTX-2080 Ti
GPU card using PyTorch (Paszke et al. 2019).

Experimental Setup
In all experiments, we keep the patch and object size ratio
within 20% to be physically feasible. For parameters in the
overall loss expression in Eq.(6), we set D = 3, and the loss
weights are set respectively as: α = 1000, β = 1, γ = 0.1.
In the Shape loss in Eq.(4), we setK = 20. More concretely,

for the shrinking attack, we set
∨
h = −1,

∨
w = −1,mτ = 0.7;
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Figure 3: Quantitative comparison of three metrics on per-
son with different thresholds.

and for the dilation attack, we use
∨
h = 1,

∨
w = 1,mτ = 0.7.

Please refer to Appendix B for more detailed settings.
The victim models are SOTA Siamese-based trackers:

SiamMask and SiamRPN++ (Wang et al. 2019; Li et al.
2019). Adversarial patches were trained and tested on dif-
ferent instances and background to better evaluate their gen-
eralization and robustness.

To quantitatively evaluate the attack performance, we em-
ploy three popular metrics in visual tracking: success, preci-
sion and normalized precision (Muller et al. 2018; Fan et al.
2019). The success is computed as the Intersection-over-
Union (IoU) between the predicted bounding box and the
groundtruth. The precision is measured by the distance be-
tween the tracking result and groundtruth bounding box in
pixels. The normalized precision is computed with the Area
Under Curve (AUC) between 0 and 0.5 (Muller et al. 2018).

Physically Feasible Attacks in Digital Scenes
For the physically feasible attacks in digital scenes, we
experimented on three object categories: person, car and
cup from the Large-scale Single Object Tracking (LaSOT)
dataset (Fan et al. 2019). Each category consists of 20
videos, among which we randomly select one video for ad-
versarial patch generation. We then attack the rest 19 videos
within the same category by warping the patch on the target.

In Table 2, we report the performance drop on both track-
ers (Wang et al. 2019) where we consider the white-box
attacks individually. As a comparison experiment, we also
evaluate the influence of random patches (i.e. without train-
ing) with the same patch/object ratio. Interestingly, we ob-
serve that random patches can even boost the tracking per-
formance. The reason might be that the random patch essen-
tially provides more useful information for target localiza-
tion. By contrast, there is a sharp performance decrease with
adversarial patches in each category. We also quantitatively
compare three metrics with different thresholds in Fig. 3 on
“person”. Clearly, on SiamMask and SiamRPN++, adver-
saries can significantly reduce the tracking performance with
our generated patches while the non-trained random patches
improve the tracking performance. We have the same obser-
vations on “car” and “bottle” categories.

In Fig.4, we show visual examples of the “dilation” and
“shrinking” attacks on the “person” object on SiamRPN++.
There are two observations: (1) the IoU (2nd row) of both
attacks quickly drop to a low value with an adversarial
patch; otherwise, the IoU keeps a high value without attacks.

Figure 4: Illustration of the effectiveness of the generated
patch. The 1st and 3rd rows show visual examples of the pro-
posed dilation and shrinking attacks on “person”. Bounding
boxes in red depict the initialization positions while the blue
ones display predicted positions after our attacks. The 2nd

row shows the comparison in IoU prediction between clean
and attacks over time. The red dot indicates model initializa-
tion at that time.

Correspondingly, SiamRPN++ produces dilated (1st row) or
shrinked prediction boxes (3rd row). (2) The tracker keeps
losing the target even if we re-initialize it with a new tem-
plate image (2nd row). These observations further confirm
the effectiveness of the proposed physically feasible attacks.

Physically Feasible Attacks in Real Scenes
After having verified our attacks in virtual scenes, we con-
duct experiments to demonstrate their efficacy in real world
environments. In physical attacks, we mainly experiment on
the “person” and “bottle” categories with diverse instances.

In Fig. 5, we show example frames of tracking results af-
ter physical attacks with “dilation” (rows 1 - 3) and “shrink-
ing” attacks (rows 4 - 6), respectively. In “dilation” at-
tacks, the predicted bounding box dilates to the full frame
size which fails the victim tracker gradually yet promptly.
Specifically, in the second row, the template is selected as the
white bottle (i.e. Frame #1 in red as the target, textural region
in the middle as our patch). In less than one second (Frame
#24, real time=0.8 second), however, the tracker has been
confused by erroneously tracking two other bottles as the
target. The bounding box continues dilating until it “fills in”
the whole image frame (Frames #24 – 297). At Frame #298,
we re-initialize the tracker with the target object, however
again the tracker has been easily fooled by our patch on it.
In the third row, we display a small patch on a mobile phone
screen (screen size 14.9 cm × 7.1 cm), the tracker quickly
gets misguided even with model re-initialization (Frames
#70 – 121). By contrast, when we remove the patch, the
tracker can track well (Frames #423 – 494). Conversely, in
“shrinking” attacks (rows 4 – 6), the predicted bounding box
quickly shrinks to a small region and produces unstable pre-
dictions which eventually fails in tracking the target. For ex-
ample, the tracker may confuse itself with objects near the
target (Frames #220 – 460 in row 4; Frames #62 – 286 in
row 6). The tracking predictions may also fall onto the patch
and the predicted bounding boxes could be “threw away”
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Category Metric Random (↓%) Dilation Attack (↓%) Shrinking Attack (↓%)
#1 #2 #1 #2 #1 #2

Person
Success -24.7 8.4 42.5 37.0 38.8 65.1

Precision -37.9 -1.3 38.9 35.8 20.4 74.2
Norm Precision -24.4 9.0 36.0 24.3 17.8 76.9

Car
Success -11.9 -2.7 46.9 57.5 32.2 44.5

Precision -11.1 -5.3 39.5 41.2 21.2 42.8
Norm Precision -12.6 -3.0 45.2 41.7 19.8 43.0

Bottle
Success -9.9 -16.5 49.5 38.2 45.7 25.4

Precision -14.9 -30.3 69.5 67.9 18.5 20.5
Norm Precision -12.9 -22.9 44.1 27.6 5.6 34.0

Table 2: Quantitative performance evaluation of the proposed attacks on SiamMask (#1) and SiamRPN++ (#2) with person, car
and bottle categories. The table reports the percentage of performance drop in tracking with patches from: Random, Dilation
and Shrinking attacks, respectively. “↓” denotes performance drop and larger values are preferred.

Figure 5: Example frames of tracking results of the proposed physically feasible attacks in real scenes.

Category Success (↓%) Precision (↓%) Norm Precision (↓%)
Person 65.6 36.0 54.1
Bottle 83.5 77.5 91.7

Table 3: Quantitative performance evaluation in physical at-
tacks. The symbol “↓” denotes performance drop and larger
values indicate stronger attacks.

intentionally (Frames #136 – 263 in row 5).
We also quantitatively measure the performance of physi-

cal attacks. We manually annotate target objects on “bottle”
(row 2) and “person” (row 5). To approximately measure the
performance on clean objects (without patch), we manually
annotate the patch region and replace patch values with uni-
form intensity as 127. The performance drop of metrics are
reported in Table 3.

Ablation Studies
We evaluate the influence of the MTD loss and patch size ra-
tios. Ablation studies were conducted on the LaSOT dataset.

MTD loss function. We compare the performance drop
(i.e. w/ and w/o the MTD loss) on the “person” object on
SiamMask in Table 4. Clearly, the MTD loss can signifi-
cantly boost the attack performance on three metrics. Simi-

Metric Dilation Attack (↓%) Shrink Attack (↓%)
w/o MTD w/ MTD w/o MTD w/ MTD

Success 28.5 37.0 53.7 65.1
Precision 26.5 35.8 55.5 74.2

Norm Precision 18.9 24.3 62.7 76.9

Table 4: Ablation study of the MTD loss on SiamMask. “↓”
denotes performance drop and larger values are preferred.

lar observations for SiamRPN++ are shown in Appendix C.
This observation implies that MTD loss indeed enhances the
attack ability.

Patch size ratio. The patch size ratio is an important pa-
rameter in physically feasible attacks. Therefore, we evalu-
ate the attack performance wrt different patch size ratios on
SiamMask (#1) and SiamRPN++ (#2) in Fig. 6. In general,
as the patch ratio increases from 15% to 35%, all three met-
rics decrease gradually, indicating stronger attack abilities.
Therefore, the reported attack performances (with patch ra-
tio as 20%) can be further improved if we utilize a larger
patch size ratio in the experiments.
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Figure 6: Attack performances as a function of the patch ra-
tio.

Conclusion
As the first attempt, we study universal physically feasible
attacks against single object tracking. To generate an effec-
tive patch, we propose the MTD loss to effectively de-match
the template and search frames in hierarchical feature levels.
We then propose two shape attacks to misguide visual track-
ers in a more controllable way. Finally we evaluate different
optimization strategies to make the patch universal to differ-
ent instances within a category and more robust to practi-
cal environments. Experimental results demonstrate that the
proposed methods can significantly degrade advanced visual
trackers’ performances in the physically feasible attack set-
ting. Our exploration on physically feasible attacks raises the
security concerns of real-world visual tracking.
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Appendices
A. Proof of Proposition 1
Proof. For the template frame, denote its feature map pro-
file f , {f (1),f (2), · · · ,f (c)} where c represents the num-
ber of channels produced by a certain layer of interest. As-
sume the feature maps can be modeled by multivariate ran-
dom variables r ,

(
r(1), r(2), · · · , r(c)

)T
. Denote the ob-

servations of a random variable r(k) by v(k) ∈ Rwh (k =
1, · · · , c), where v(k) is the vectorized representation of the
k-th feature map f (k). For the search frame, we follow the
same assumption in the feature layer and denote the random

variables by r′ ,
(
r′(1), r

′
(2), · · · , r

′
(c)

)T
. We also denote

the observations of a random variable r′(k) by v′(k) ∈ Rw′h′
,

where v′(k) is the vectorized representation of the k-th fea-
ture map f ′(k) (k = 1, · · · , c).

The i, j-th component (i, j = 1, · · · , c) of the Gramian
operator Gi,j(v) and Gi,j(v′) can be computed:

G(v)i,j = vT(i) · v(i)
G(v′)i,j = v′

T
(i) · v′(i)

The textural discrepancy term described by Gi,j(v) and

Gi,j(v′) can be expressed:

Ltd =

∣∣∣∣∣∣∣∣G (v)− G (v)

∣∣∣∣∣∣∣∣2
F

=
∑
i,j

(
G(v)i,j − G(v′)i,j

)2
=
∑
i,j

[
(G(v)i,j)

2 + (G(v)i,j)
2
]

− 2
∑
i6=j

G(v)i,jG(v′)i,j − 2
∑
i

G(v)i,iG(v′)i,i

=
∑
i,j

[
(G(v)i,j)

2 + (G(v′)i,j)
2
]

− 2
∑
i6=j

G(v)i,jG(v′)i,j − 2
∑
i

∣∣∣∣G(v)i,iG(v′)i,i

∣∣∣∣
Clearly, maximizing Ltd involves minimizing the inner
product of diagonal components from two Gramian opera-
tor outputs.

Let us zero-pad v(k) ∈ Rwh and it yields ṽ(k) ∈ Rw′h′
,

where we have ṽT(i)ṽ(j) = vT(i)v(j). Then,∑
i

∣∣∣∣G(v)i,iG(v′)i,i

∣∣∣∣ =
∑
i

∣∣∣∣ṽT(i) · ṽ(i) · v′T(i) · v′(i)∣∣∣∣
=
∑
i

||ṽ(i)||2 · ||v′(i)||2

≥
∑
i

||ṽT(i) · ṽ′(i)||2

Denote the cross-correlation between r.v. r(i), r′(i) as
Kr(i),r

′
(i)

, then we have:

lim
w′h′→∞

ṽT(i) · ṽ′(i) = (w′h′)2 ·Kr(i),r
′
(i)

Therefore, given sufficient observations (w′h′ → ∞), we
have:

Ltd ≤
∑
i,j

[
(G(v)i,j)

2 + (G(v)i,j)
2
]

− 2
∑
i6=j

G(v)i,jG(v′)i,j − 2(w′h′)4
∑
i

|Kr(i),r
′
(i)
|2

Therefore, the textural discrepancy function Ltd is a
lower bound of the expression to the right represented by
|Kr(i),r

′
(i)
|. By maximizing Ltd, we can minimize the abso-

lute value of the cross-correlation between feature represen-
tations of template and search frames modeled by multivari-
ate r.v. r(i) and r′(i) for i = 1, 2, · · · , c.

B. Implementation Details
We provide more details of the parameter setting in our ex-
periments. We employ the Adam optimizer from the Py-
Torch platform with hyperparameters: exponential decays
β1 = 0.9, β2 = 0.999, learning rate lr = 10 (for inten-
sity between [0,255]), weight decay set as 0, the batchsize
set as 20, and the maximum training epochs M = 300.
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Transforms Parameters Remark
brightness 0.1 brightness factor chosen uniformly from [0.9, 1.1]
contrast 0.1 contrast factor chosen uniformly from [0.9, 1.1]

hue 0.1 hue factor chosen uniformly from [-0.1, 0.1]
saturation 0.01 saturation factor chosen uniformly from [0.99, 1.01]
rotation 5 range of degrees chosen uniformly from [-5, 5]

translation 0.02 maximum absolute fraction (wrt image size) for translations
scaling 0.02 scale factor (wrt image size) chosen uniformly from [0.98, 1.02]

shearing 5 range of degrees chosen from [-5, 5]

Table 5: Patch transforms and parameters in the experiments.

In the MTD loss in Eq.(2), we chooseD = 3. Specifically,
for SiamMask and SiamRPN++ trackers, which utilize the
ResNet-50 as the backbone network, D layers are the last
three residual blocks for multi-scale feature extraction.

In the Shape loss in Eq.(4), we set K = 20. More con-

cretely, for the shrinking attack, we set
∨
h = −1,

∨
w =

−1,mτ = 0.7; and for the dilation attack, we use
∨
h =

1,
∨
w = 1,mτ = 0.7.
In the overall loss in Eq.(6), the loss weights are set re-

spectively as: α = 1000, β = 1, γ = 0.1.
In the final loss in Eq.(7), the transforms that we em-

ployed and their parameters have been listed in Table 5.
To generate adversarial patches, firstly we randomly se-

lect one video from a category (e.g. person) as the training
data and create the training pairs. The rest videos (with dif-
ferent instances/background) serve as the test set. Then we
warp the trained patch on each frame of the test videos with
the fixed patch size ratio to evaluate the attack performance.

C. Ablation Study on MTD for SiamRPN++
We conduct and report in Table 6 the ablation study of the
MTD loss on the SiamRPN++ tracker on the person cate-
gory. For both of the dilation and shrinking attacks, we ob-
serve that MTD improves the attacking performance in three
metrics. For instance, in the dilation attacks, the success
metric improves by 11.3% by the incorporation of MTD;
and this metric improves by 24.3% in the shrinking attack.
Therefore, we can enhance the attack ability in the visual
tracking attacks by additionally utilizing the MTD loss.

Metric Dilation Attack (↓%) Shrink Attack (↓%)
w/o MTD w/ MTD w/o MTD w/ MTD

Success 31.2 42.5 14.5 38.8
Precision 24.7 38.9 14.0 20.4

Norm Precision 25.4 36.0 16.0 17.8

Table 6: Ablation study on the MTD loss on SiamRPN++ on
the “person” category. The symbol “↓” denotes performance
drop and larger values indicate stronger attacks.

To summarize, the proposed algorithm includes three
losses: the MTD, Shape loss and TV. Without MTD,
the attack performance degrades considerably. This is be-
cause MTD can effectively blind the Siamese-based track-
ers by de-matching the upstream representations. Without

the Shape loss, it is difficult to control the output bound-
ing box after attacks. This is because the Shape loss is to
make attacks more controllable. Without the TV loss, the
attack performance almost stays the same in digital simu-
lations, but attacks will fail in physical experimental tests.
This is because the TV loss is to smooth the patch texture to
be physically feasible.

References
Athalye, A.; Engstrom, L.; Ilyas, A.; and Kwok, K. 2018.
Synthesizing robust adversarial examples. In International
conference on machine learning, 284–293.

Bertinetto, L.; Valmadre, J.; Henriques, J. F.; Vedaldi, A.;
and Torr, P. H. 2016. Fully-convolutional siamese networks
for object tracking. In European conference on computer
vision, 850–865. Springer.

Chen, S.-T.; Cornelius, C.; Martin, J.; and Chau, D. H. P.
2018. Shapeshifter: Robust physical adversarial attack on
faster r-cnn object detector. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, 52–68. Springer.

Chen, X.; Yan, X.; Zheng, F.; Jiang, Y.; Xia, S.-T.; Zhao,
Y.; and Ji, R. 2020. One-Shot Adversarial Attacks on Vi-
sual Tracking With Dual Attention. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10176–10185.

Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.;
Xiao, C.; Prakash, A.; Kohno, T.; and Song, D. 2018. Robust
physical-world attacks on deep learning visual classification.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1625–1634.

Fan, H.; Lin, L.; Yang, F.; Chu, P.; Deng, G.; Yu, S.; Bai,
H.; Xu, Y.; Liao, C.; and Ling, H. 2019. Lasot: A high-
quality benchmark for large-scale single object tracking. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 5374–5383.

Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image style
transfer using convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2414–2423.

Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wich-
mann, F. A.; and Brendel, W. 2019. ImageNet-trained
CNNs are biased towards texture; increasing shape bias im-

1244



proves accuracy and robustness. International Conference
on Learning Representations .

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and harnessing adversarial examples. International Con-
ference on Learning Representations 1–11.

Guo, Q.; Xie, X.; Juefei-Xu, F.; Ma, L.; Li, Z.; Xue, W.;
Feng, W.; and Liu, Y. 2019. SPARK: Spatial-aware Online
Incremental Attack Against Visual Tracking. arXiv preprint
arXiv:1910.08681 .

Held, D.; Thrun, S.; and Savarese, S. 2016. Learning to track
at 100 fps with deep regression networks. In European Con-
ference on Computer Vision, 749–765. Springer.

Huang, L.; Gao, C.; Zhou, Y.; Xie, C.; Yuille, A. L.; Zou,
C.; and Liu, N. 2020. Universal Physical Camouflage At-
tacks on Object Detectors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
720–729.

Inkawhich, N.; Wen, W.; Li, H. H.; and Chen, Y. 2019. Fea-
ture space perturbations yield more transferable adversarial
examples. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 7066–7074.

Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Percep-
tual losses for real-time style transfer and super-resolution.
In European conference on computer vision, 694–711.
Springer.

Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533 .

Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; and Yan, J.
2019. Siamrpn++: Evolution of siamese visual tracking with
very deep networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 4282–4291.

Li, B.; Yan, J.; Wu, W.; Zhu, Z.; and Hu, X. 2018. High per-
formance visual tracking with siamese region proposal net-
work. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8971–8980.

Muller, M.; Bibi, A.; Giancola, S.; Alsubaihi, S.; and
Ghanem, B. 2018. Trackingnet: A large-scale dataset and
benchmark for object tracking in the wild. In Proceedings
of the European Conference on Computer Vision (ECCV),
300–317.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, 8026–8037.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. In Advances in neural information processing sys-
tems, 91–99.

Sharif, M.; Bhagavatula, S.; Bauer, L.; and Reiter, M. K.
2016. Accessorize to a crime: Real and stealthy attacks on
state-of-the-art face recognition. In Proceedings of the 2016
acm sigsac conference on computer and communications se-
curity, 1528–1540.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing proper-
ties of neural networks. International Conference on Learn-
ing Representations 1–10.
Thys, S.; Van Ranst, W.; and Goedemé, T. 2019. Fooling au-
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