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Abstract

In skeletal representation, intra-frame differences between
body joints, as well as inter-frame dynamics between body
skeletons contain discriminative information for action recog-
nition. Conventional methods for modeling human skeleton
sequences generally depend on motion trajectory and body
joint dependency information, thus lacking the ability to iden-
tify the inherent differences of human skeletons. In this pa-
per, we propose a spatio-temporal difference descriptor based
on a directional convolution architecture that enables us to
learn the spatio-temporal differences and contextual depen-
dencies between different body joints simultaneously. The
overall model is built on a deep symmetric positive definite
(SPD) metric learning architecture designed to learn discrim-
inative manifold features with the well-designed non-linear
mapping operation. Experiments on several action datasets
show that our proposed method achieves up to 3% accuracy
improvement over state-of-the-art methods.

Introduction

Human action recognition has become a challenging and ac-
tive topic in video understanding in recent years. With the
growing popularity of depth sensors, video formats based on
three-dimensional depth maps are widely used in addition to
the two-dimensional RGB videos. Previous biological study
(Johansson 1973) suggests that human behavior can be rep-
resented as the motion of a human skeleton, which is struc-
tured as an articulated system of body parts, making it robust
to the variations of viewpoint and location. In addition, re-
cent pose estimation algorithm (Cao et al. 2017) can extract
and gain human skeleton data from both the RGB videos and
depth maps, making it possible to design a general skeleton-
based framework for human action recognition. Therefore,
skeleton-based action recognition has drawn more and more
attention in recent years.

Recently, graph convolutional networks (GCNs) have
been proposed and applied in many tasks (Niepert, Ahmed,
and Kutzkov 2016; Atwood and Towsley 2016; Hamilton,
Ying, and Leskovec 2017). GCNs generalize traditional con-
volution operation to graphs of different structure, and it has
shown excellent performance for action recognition (Li et al.
2018; Yan, Xiong, and Lin 2018; Si et al. 2019) on account
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of the graph structure of skeleton data. GCNs structure the
human skeleton as a graph whose vertices and edges repre-
sent body joints and natural connections between these body
joints, to capture the joint dependencies of spatial and tem-
poral domains. They use the convolution operation to ob-
tain different weights for different neighbor subsets, indicat-
ing the influence of different subsets on the current body
joint. However, these methods merely explore the spatio-
temporal dependencies of body joints to model the skeleton
sequences and cannot reflect the intra-frame differences and
inter-frame dynamics information, thus lacking the ability to
identify the inherent spatio-temporal differences of human
skeletons.

Motivated by this observation, we introduce a second-
order spatio-temporal descriptor based on our proposed
directional convolution operation to address the lacking
of spatio-temporal differences. Different from GCNs, the
spatio-temporal descriptor is defined as a covariance-like de-
scriptor extracted from the intrinsic attributes of the skele-
ton data, consisting of spatial difference matrix and tempo-
ral dynamic matrix. The directional convolution is first pro-
posed in this paper to learn the joint dependencies of hu-
man skeletons. For a specific body joint, we allocate dif-
ferent directional weights to the neighboring joints located
in different directions to aggregate to a new joint. Thus, a
new human skeleton will be generated when the convolution
is conducted on all body joints, containing the dependency
information between adjacent joints in the original skele-
ton. The spatial difference matrix is introduced to learn the
unique static pattern of a skeleton, allowing us to distinguish
the current skeleton from the other skeletons to model the
intra-frame differences. In addition, the temporal dynamic
matrix is proposed to extract the temporal motion dynam-
ics between adjacent frames for better temporal modeling.
It is computed from the joint displacement information be-
tween current frame and the next frame to model the inter-
frame dynamics (Wang et al. 2016; Zhao, Xiong, and Lin
2018). In order to measure the joint dependency information
and spatio-temporal differences simultaneously, the spatial
difference and temporal dynamic matrices are designed to
be the aggregation of original convolutional features and
second-order statistical features extracted from the convolu-
tional features, which are actually SPD matrices residing on
the Riemannian symmetric space. Then, a novel non-linear



mapping operation is proposed for deep SPD learning, map-
ping the input SPD matrices to be lower dimensional and
more discriminative.

In summary, the main contributions of this paper are on
the following three aspects:

1. We propose a directional convolution operation to learn
the dependency relationships between different body
joints. By assigning different weights to the joints lo-
cated in different directions, the directional convolution
will generate a new skeleton that contains the dependen-
cies between adjacent joints.

. We propose a spatio-temporal difference descriptor that
consists of spatial difference matrix and temporal dy-
namic matrix to extract the intra-frame differences and
inter-frame dynamics information.

3. We introduce a new deep SPD metric learning module
to employ the non-linear mapping operation on the SPD
manifold, which can map the SPD matrices to a low di-
mensional discriminative SPD space. The experimental
results on several standard datasets demonstrate the ef-
fectiveness of the proposed network architecture.

Related Work

Skeleton-based action recognition has become a popular
technique due to its effective and convenient representa-
tion of human actions. Recent data-driven works that can
automatically learn the skeleton representation from input
data have drawn substantial attention. Some convolutional
neural network (CNN) based models (Liu, Liu, and Chen
2017; Kim and Reiter 2017) employ convolution opera-
tion designed manually (including the step and size) to
learn the specific feature information and achieve remark-
able performance. The graph-based methods (Yan, Xiong,
and Lin 2018; Thakkar and Narayanan 2018) that generalize
traditional convolutional operation from images to graphs
have been proven to be effective with the graph structure
representation. In addition, deep long short-term memory
(LSTM) models (Shahroudy et al. 2016; Liu et al. 2016;
Song et al. 2017) and bidirectional-RNNs (Du, Wang, and
Wang 2015) have been proposed to model the contextual
dependency in the temporal domain with the temporal re-
current architecture.

On the other hand, the manifold-based approaches ex-
plore the view-invariant representation of skeletal data
(Anirudh et al. 2017; Huang and Van Gool 2017) for this
task. Some representations (Vemulapalli, Arrate, and Chel-
lappa 2014; Vemulapalli and Chellapa 2016) use geometric
transformations to embed the spatial information of skele-
tons into a Lie group space and use the corresponding Lie
algebra map to conduct the feature learning. The transported
square-root velocity fields (TSRVF) framework (Anirudh
et al. 2017) employs elastic functional coding to embed the
motion trajectories on manifold space to a low dimensional
and effective space for action representation. (Ben Tanfous,
Drira, and Ben Amor 2018) represents human actions us-
ing an intrinsic formulation of sparse coding and dictionary
learning of skeletal shapes in the Kendall’s shape space, and
effective coding approach is then used on the tangent space
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Figure 1: Illustration of the Cartesian plane that is divided
into b partitions.

Figure 2: Conceptual illustration of the directional convolu-
tion on the human skeleton. The neighbor joints of a body
joint all have different influences on the current joint, and
our directional convolution operation aggregates this infor-
mation to generate a new body joint.

where the dictionary of shapes is mapped to make the func-
tion of sparse coding lies in Euclidean space.

Proposed Method

The overall network architecture of our proposed model is
illustrated in Figure 3. It consists of four parts: Directional
convolution operation, spatio-temporal difference descrip-
tor, deep SPD metric learning and classification layers. The
directional convolution operation is first introduced to gener-
ate new skeletons containing the joint dependency informa-
tion. Next, the spatio-temporal difference descriptor is ag-
gregated from the second-order statistical features and direc-
tional convolution features. Deep SPD metric learning mod-
ule is then designed to extract more compact and discrimi-
native features. Finally, standard classification methods are
conducted on the feature space to identify the action classes.

Directional Convolution on Human Skeletons

The convolution operation applied to the skeleton data is
aimed to learn the joint dependencies that combine body
joint features with its correlated variation information. The
skeleton data is naturally constructed as a specific graph
structure, whose vertices and edges are body joints and hu-
man body parts, respectively. Thus, the conventional convo-
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Figure 3: The overall architecture of our proposed model.

lution on grid structure data is no longer suitable for han-
dling skeleton data. In this work, we construct a directional
convolution kernel based on the human skeleton structure.

First, the human skeletons are rotated to make the ground
plane projection of the vector from left hip to right hip par-
allel to the global z-axis. This rotation guarantees that all
human skeletons are in the same perspective and can be pro-
jected from the front view on the same Cartesian plane as
2D maps. Then, the Cartesian plane is divided into b parti-
tions as shown in Figure 1 according to the previous parti-
tion strategy (Xia, Chen, and Aggarwal 2012). Let IV and
L denote the number of human skeletal body joints and the
length of a skeleton sequence, respectively. Let p! € R3
(i=1,..N,t =1,...L) represents the 3D position (z, y, z)
of body joint i at frame ¢ and (%, t) denotes the neighbor set
of body joint 7. The neighbor set of joint 7 is defined as a set
of joints that are connected to joint ¢ in the human skeleton.

Figure 2 illustrates the operational process of our direc-
tional convolution. Given the body joint ¢ as the origin of
the Cartesian plane, its neighbors are distributed in different
parts. The neighbors located in different directions usually
have different influence on the center point. Thus, differ-
ent weights are assigned to these directions. Then, the di-
rectional convolution at joint ¢ can be defined as:
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where |n(i,t)| denotes the number of elements in neighbor
set n(i,t), k; denotes the direction where the joint j is lo-
cated in relative to the joint ¢, and ij indicates the direc-
tional weight matrix.

Different from the conventional 2D convolution operat-
ing on pixels, the directional convolution in this work is
aimed to aggregate 3D geometric characteristics of differ-
ent joint locations p§. The 3D joint positions contain two
aspects of information: direction information and size infor-
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mation. The direction information can be obtained from the
directional weight W by allocating different directional an-
gles with corresponding weights. Thus, to preserve the size
information, we use the rotation operation rather than nu-
merical values as the directional weight parameters. Com-
pared with the numerical value weights that may change the
size information of inputs, the rotation operation can keep
the size information invariant. Thus, the directional weights
Wy, are designed to be 3 x 3 rotation matrices in this work.

Spatio-Temporal Difference Descriptor

The spatio-temporal difference descriptor, consisting of spa-
tial difference matrix and temporal dynamic matrix, is in-
troduced to resolve the lack of spatio-temporal difference
information. With regard to the spatial difference features
of a skeleton, the spatial difference matrix is employed to
measure the intra-frame body joint differences, which repre-
sents the static characteristics of the convolutional features
at a specific frame. For body joint ¢ at current frame ¢, the
corresponding joint differences are first computed, then the
products of these difference vectors and their transposes are
added together to obtain the statistical matrix that indicates
the specificity distinguishing each joint from the other joints:
1
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CclL,=—
S,Z N_

j=1
where CY% ; and f(p}) denote the statistical and convolu-
tional features of joint ¢ at time stamp ¢. Then, the spatial dif-
ference matrix of joint ¢ at frame ¢ can be formulated based
on the aggregation rule (Nguyen et al. 2019) that embeds the
feature space in the Riemannian symmetric space by:

Ch, + f0)f ()™ f(p})
F@h)” L

where C§ ; is a 3 x 3 square matrix and f(p}) isa 3 x 1

column vector, thus making the spatial difference matrix S*i

St = 3)



a4 x 4 square matrix.

In this case, the difference matrices of all body joints rep-
resent the unique motion pattern of a skeleton, enabling us
to distinguish the current skeleton from the other skeletons.
Thus, the full spatial difference matrix of the frame ¢ can be
denoted as:

Se=1(8")",(8")", ... (s")T]". @

On the other hand, the temporal dynamic matrix is pro-
posed to derive the inter-frame dynamic changes for bet-
ter temporal modeling. Compared with the spatial difference
matrix, the temporal dynamic matrix is defined as the motion
dynamic information of the convolutional features between
frame ¢ and its next frame ¢,,. Similar to the aforementioned
calculation, the statistical matrix is first computed from the
products of the joint displacement vectors and their corre-
sponding transposes between adjacent frames:

N
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where f (pi") denotes the convolutional feature of joint ¢ at
time stamp ¢,, and C’- represents the resulting 3 x 3 statisti-
cal matrix. To acquire the complete movement process of an
action, we define t,, =t + 1 whent¢ < L, and ¢t,, = 1 when
t = L. Thus, the temporal dynamic matrix of frame ¢ can be
formulated as:

CL+ ) ()" Fph)
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where f(pl) = & SN f(p!) denotes the mean vector of
the convolutional features and T} is the temporal dynamic
matrix of size 4 X 4.

Finally, the spatio-temporal difference descriptor of the
frame ¢ can be denoted as:

D, =((S)",(T)"]". Q)

As studied in previous work (Lovri¢, Min-Oo, and Ruh
2000), the spatial difference matrix S} and temporal dy-
namic matrix T} are all SPD matrices, leading to the spatio-
temporal difference descriptor matrix residing on Rieman-
nian symmetric space.

T, = (6)

Deep SPD Metric Learning

2D fully connected layer. To extract the discriminative
information contained in the SPD matrix and preserve the
original matrix structure, we introduce a specific layer,
called 2D fully connected layer, to generate a more com-
pact and discriminative SPD matrix. The 2D fully connected
layer is an extension of conventional fully connected layer,
making it applicable to 2D matrices. To this end, we divide
the neural connections into two-dimensional direction: row
dimensional direction and column dimensional direction.
Matrix X of size m x n can be expressed in the form
of row vector and column vector, respectively. The row
vector form of the matrix can be represented as an n-
dimensional row vector [ X1, X5, ..., X,], where each ele-
ment X;,i € {1,2,...,n}, is an m-dimensional column vec-
tor [ X}, X2, ..., X™|T. Similarly, the column vector form
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of the matrix can be represented as an m-dimensional col-
umn vector [(X 1T (X2)T, ..., (X™)T]T, where each ele-
ment X7, j € {1,2,...,m}, is an n-dimensional row vector
[(X{, X7, ..., X7].

Given that W represents the p X m connection weight
matrix, then all the m neurons in each column vector of the
input matrix are fully connected to the p neurons in the cor-
responding column vector of the output matrix with the spe-
cific weight parameter W € RP*™ that can be formulated
as:

Y=WX=WX;,WXy,:--- , WX,], (8)

where Y represents the new p X n matrix generated by row
dimensional connections.

Similarly, given that V' represents the n X g connection
weight matrix, the column dimensional connections con-
ducted on the row vector of the matrix can be obtained as
before. Therefore, the column dimensional connections that
connect all the n neurons in each row vector of the input
matrix with the ¢ neurons of the output matrix using the cor-
responding weight parameter V' € R"*9 can be formulated
as:

YV
YV
Z=YV = . , 9)
Yrv
where Z denotes the output p X ¢ matrix generated by col-
umn dimensional connections.

By generalizing the aforementioned situation to SPD ma-
trices, we can find that m = n, p = ¢ and the column di-
mensional weight V' can be represented as transpose of the
row dimensional weight W due to the symmetry property
of the SPD matrix. Thus, the 2D fully connected layer for
the SPD matrix can be further formulated as:

Z=WXV=WXWT, (10)

where X is the input m x m SPD matrix, Z is the output
p X p matrix, W € RP*™ denotes the row dimensional
weight. Here, we set p < m for dimensionality reduction of
the SPD matrix. Moreover, to ensure that the output matrix
Z remains an SPD matrix, the row vectors of W should be
linearly independent; in other words, W should be a row
full rank matrix.

Rectification function. Following the 2D fully connected
layer that transforms the input SPD matrix to a low di-
mensional discriminative SPD matrix, a non-linear opera-
tion should be employed to ensure the non-linearity of the
mapping. In addition, the non-linear operation is required
to preserve the SPD matrix structure. Considering the spec-
tral decomposition of the SPD matrix Z = QAQ7, we de-
fine a rectification function operating directly on the diago-
nal eigenvalue matrix A to generate a new diagonal matrix
with its diagonal values as:

(Aji—e)
R;; =h(Ay) = {K ’

where e is the rectification threshold that determines whether
the eigenvalue A;; is the principal component. According to

Zf A“‘ <€
otherwise’

(1)



Figure 4: Images of the rectification function A(-) and log(-)
function operating on the eigenvalues with € set to 1. The
red curve represents the rectification function, and the blue
curve denotes the resulting logarithm function.

the geometric characteristics of the feature space, € is con-
strained as ¢ > 1 to ensure the continuity of the feature
space.

Therefore, the operation that rectifies the input SPD ma-
trix can be defined as:

M = g(Z) = Qdiag(h(A11), ...h(A:)) QT

where M is the rectified SPD matrix, ¢(-) denotes the recti-
fication operation on SPD matrix, and diag(-) is the opera-
tion to construct a diagonal matrix.

As shown in Figure 4, when the eigenvalues are close to
zero, the proposed rectification function adopt exponential
operation to replace the linear map to generate new proper
eigenvalues, which can effectively prevent the eigenvalues
of the input SPD matrix from being close to zero. In this
work, we set ¢ = 1 for preliminary exploration. Figure 4
also illustrates that the logarithmic operation on small pos-
itive eigenvalues without our proposed rectification opera-
tion may produce large negative values that harm the perfor-
mance of feature representation and learning. However, the
proposed rectification operation can address the abovemen-
tioned problem. The logarithmic operation on the eigenval-
ues processed with rectification function can generate valid
values and outputs even though the original inputs are close
to zero, which also benefits the logarithm operation on the
SPD matrix.

(12)

Other layers. Following the non-linear mapping opera-
tion, i.e., 2D fully connected layer and rectification function,
tangent map metric learning layer is introduced to project
the SPD manifold into its tangent space at identity matrix I
(Tosato et al. 2012; Chavel 2006), which makes it convenient
to calculate and avoids the complex and time-consuming
Riemannian computations due to the non-Euclidean nature
of the underlying space. In addition, LSTM and classical
deep learning classification layers, i.e., fully connected layer
and softmax layer, are conducted on the tangent vector space
to train the deep SPD network.
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Figure 5: Recognition results of the directional convolution
with different number of plane partitions on MSR-Action3D
dataset.

Experiments
Datasets and Training Settings

G3D-Gaming dataset (Bloom, Makris, and Argyriou 2012)
contains 20 different gaming action classes performed by 10
different subjects. Each subject consists of 20 body joints,
and the corresponding 3D joint locations (z,y, z) are cap-
tured in the camera coordinate system. Following the cross-
subject test setting, samples performed by half of the sub-
jects are used for training and the remaining half of the sam-
ples are used for testing. The recognition results reported
on this dataset are evaluated by averaging over ten different
configurations of training and testing sets. HDMO0S5 dataset
(Miiller et al. 2007) contains 130 action classes executed by
five different subjects. Each skeletal sequence is performed
several times by different subjects. Each subject contains
31 body joints, and the corresponding 3D joint locations of
these joints are provided in the dataset. Following the stan-
dard evaluation protocol, we randomly select half of the se-
quences for training and the rest for testing. The results re-
ported on this dataset are evaluated averagely over ten ex-
periments with different splits. Northwestern-UCLA dataset
(Wang et al. 2014) is captured by three Kinect cameras with
different views. It contains 1494 sequences covering 10 dif-
ferent action classes. Each sequence is performed by 10 dif-
ferent actors repeated from 1 to 6 times. Each subject con-
sists of 20 body joints. We follow the standard evaluation
protocol where samples from the first two cameras are used
for training and samples captured by the last camera are used
for testing.

In our experiments, the human skeletal sequence length
is set to 100, 50 and 50 for G3D-Gaming, HDMOS5 and
Northwestern-UCLA, respectively. The batch size is set to
30, the learning rate is fixed as 0.01, the directional weights
are initialized as random rotation matrices, the row dimen-
sional weights are initialized as random semi-orthogonal
matrices and the rectification threshold € is set to 1. The
LSTM layer contains 100 neurons and it is trained using
Adam optimization algorithm (Kingma and Ba 2014). All
experiments were conducted on Matlab deep learning tool-
box with a TITANXP GPU.



Method Accuracy
LSTM 80.97%
StddNet 87.56%
Di-StddNet (b = 8) 88.97%
Di-StddNet (b = 12) | 89.23%
Di-StddNet (b = 16) | 90.06%

Table 1: Ablation study results of the spatio-temporal dif-
ference descriptor and directional convolution on the G3D-
Gaming dataset. LSTM is the baseline network whose in-
puts are original body joint locations. StddNet represents
the network architecture containing spatio-temporal differ-
ence descriptor, tangent map and LSTM. Di-StddNet equips
StddNet with directional convolution. The different values
of b indicate different directional settings employed in the
corresponding model.

Method Accuracy
Di-StddNet (b = 16) + Oblock 90.06%
Di-StddNet (b = 16) + 1block 91.54%
Di-StddNet (b = 16) + 2blocks | 92.03%
Di-StddNet (b = 16) + 3blocks | 89.58%

Table 2: Comparisons of the recognition accuracy under dif-
ferent non-linear mapping block configurations on the G3D-
Gaming dataset. 0, 1, 2 and 3 indicate the number of map-
ping blocks (2D fully connected layer + rectification op-
eration) employed in the corresponding model. All these
models listed for comparison are based on the Di-StddNet
(b = 16) architecture.

Directional Convolution Network Pre-training

In this work, to capture the dependency relationships be-
tween adjacent body joints, we introduce a directional con-
volution subnetwork and pre-train it on the MSR-Action3D
(Li, Zhang, and Liu 2010) dataset. The pre-trained network
contains two main parts: directional convolution and LSTM.
Then, the pre-trained directional convolution part is added
into our main network and remains unchanged when we
train our model. During pre-training, the directional convo-
lution operation first generates spatial features according to
the input joint positions. Then, LSTM is employed to ex-
plore the temporal relationships of feature sequences. The
pre-trained network is processed under different directional
configurations with the number of partitions b set to 4, 8§,
12, 16 and 20, respectively. Figure 5 shows the recogni-
tion accuracies with different number of partitions. We se-
lect the top-3 best performing settings, i.e., b = 8,12, 16,
as the directional convolution part of our backbone network,
and evaluate the recognition performances of using different
subnetworks under the same test conditions.

Ablation Study

To demonstrate the effectiveness of our proposed compo-
nents of the deep SPD learning model, we conduct extensive
experiments on G3D-Gaming dataset.
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Oblock 1block | 2blocks
b=138 | 88.97% | 89.46% | 89.83%
b=12 | 89.23% | 90.16% | 90.91%
b=16 | 90.06% | 91.54% | 92.03%

Table 3: Recognition accuracies of Di-StddNets with differ-
ent configurations on the G3D-Gaming dataset.

Method Accuracy
RBM-+HMM (Nie and Ji 2014) 86.40%
Lie Group (Vemulapalli, Arrate,

and Chellappa 2014) 87.23%
Rolling Rotations (Vemulapalli and

Chellapa 2016) 87.95%
LieNet (Huang et al. 2017) 89.10%
Di-StddNet (b = 16) + 2blocks 92.03%

Table 4: Comparisons of the recognition result on the G3D-
Gaming dataset.

Spatio-temporal difference descriptor. First, we test the
effect of introducing spatio-temporal difference descriptor
into our network. The basic LSTM model is used as the
baseline network architecture where body joint locations are
employed as the network inputs without information extrac-
tion. Then, we add the spatio-temporal difference descriptor
and the corresponding tangent map operation on the baseline
LSTM as StddNet. Results shown in Table 1 demonstrate
that the introduction of spatio-temporal difference descrip-
tor improves the recognition performance.

Directional convolution. In this experiment, we equip the
abovementioned StddNet with directional convolution, titled
as Di-StddNet, to evaluate the performance of directional
convolution. Table 1 shows the recognition performance of
our proposed Di-StddNet with different directional settings
of b, i.e., b = 8,12,16. Experimental results suggest that
the models with directional convolution all outperform the
StddNet, which demonstrates the effectiveness of the direc-
tional convolution. In addition, the best performance can be
achieved when b is set to 16.

Non-linear mapping block. Consisting of 2D fully con-
nected layer and rectification operation, the mapping block
is designed to generate more compact and discriminative
SPD matrices. As mentioned in Section , the elements of
the spatio-temporal descriptor are all 4 x 4 SPD matrices.
Consequently, we set up three mapping blocks. The weight
sizes of these three blocks are setto 3 x 4,2 x 3and 1 x 2,
leading to the resulting SPD matrix sizes to be 3 x 3, 2 x 2
and 1 x 1. In this experiment, we set Di-StddNet (b = 16),
the best performing model so far, as the baseline network to
analyze the effect of non-linear mapping block. As shown
in Table 2, we evaluate the recognition performance of Di-
StddNet (b = 16) with different number of mapping blocks.
The result shows that adding the mapping blocks appropri-
ately can improve the recognition accuracy. And the highest
recognition accuracy is achieved with 2 blocks added. After



Oblock 1block 2blocks
b=28 74.60%+£2.12 | 76.31%+2.73 | 77.83%+3.07
b=12 | 76.43%+2.25 | 78.27%+2.69 | 80.27%=+2.35
b=16 | 77.58%+2.98 | 79.14%+2.51 | 82.32%+2.27

Table 5: Recognition accuracies of Di-StddNets with differ-
ent configurations on the HDMOS dataset.

Method ' Accuracy

I;;Z g?li(iila%pg%ﬂiapam’ Aljrate’ 70.26% + 2.89
Chellasolgy Pt and |71 5150 4501
3(1)3?71;Iet (Huang -and Van Gool | 51 4507 4 1.1

75.78%+2.26
73.42%+2.05

82.13% =+ 2.39
82.32%+2.27

LieNet (Huang et al. 2017)
PA-LSTM (Shahroudy et al. 2016)
ST-GCN (Yan, Xiong, and Lin
2018)

Di-StddNet (b = 16) + 2blocks

Table 6: Comparisons of the recognition result on the
HDMOS5 dataset.

that, adding additional blocks will harm the performance.
This is reasonable, because when 3 blocks are used, the fi-
nal output SPD matrix will be reduced to be 1 x 1, result-
ing in the loss of too much useful information. We believe
that the performance improvements obtained by Di-StddNet
+ Iblock and Di-StddNet + 2blocks indicate the benefit of
non-linear mapping blocks for SPD metric learning.

Comparison with the State-of-the-Art

G3D-Gaming dataset. In this dataset, we follow the stan-
dard cross-subject test protocol and use half of the subjects
for training. As we discussed in Section , the original ele-
ments of the difference descriptor are all 4 x 4 SPD matri-
ces, and the weight sizes of the non-linear mapping blocks
are 3 X 4,2 x 3 and 1 x 2. Thus, the resulting SPD matrices
will be of size 1 x 1 after 3 blocks are added. In theory, this
would result in the loss of too much useful information and
decrease the recognition performance. The ablation studies
of the non-linear mapping blocks justify our argumentation.
Therefore, we equip the Di-StddNet with at most 2 blocks
in our experiments. Table 3 shows the recognition perfor-
mance of Di-StddNets with different configurations. As we
can see, stacking some more mapping blocks of 2D fully
connected and rectification function layers can improve the
performance of Di-StddNet. And the best performance can
be achieved when Di-StddNet (b = 16) with 2 blocks added.
Results shown in Table 4 suggest that our best performing
Di-StddNet model outperforms all the previous methods.
HDMO0S5 dataset. Results from Table 5 and 6 suggest
that, compared with the manifold-based methods Lie group
(Vemulapalli, Arrate, and Chellappa 2014), Rolling Rota-
tions (Vemulapalli and Chellapa 2016), SPDNet (Huang and
Van Gool 2017) and LieNet (Huang et al. 2017), the pro-
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Oblock | 1block | 2blocks
b=38 | 87.3% | 89.5% | 90.6%
b=12 | 88.4% | 91.7% | 93.8%
b=16 | 89.8% | 90.9% | 92.4%

Table 7: Recognition accuracies of Di-StddNets with differ-
ent configurations on the Northwestern-UCLA dataset.

Method Accuracy
Lie Group (Vemulapalli, Arrate,
and Chellappa 2014) 74.2%
Actionlet ensemble (Wang et al.
2012) 76.0%
HBRNN (Du, Wang, and Wang
2015) 78.5%
Visualization CNN (Liu, Liu, and
Chen 2017) 86.1%
Ensemble TS-LSTM (Lee et al.
2017) 89.2%
AGC-LSTM (Si et al. 2019) 93.3%
Di-StddNet (b = 12) + 2blocks 93.8%

Table 8: Comparisons of the recognition result on the
Northwestern-UCLA dataset.

posed Di-StddNet models gain significant performance im-
provements. Moreover, our Di-StddNet (b 16) with 2
blocks still outperforms the deep learning based LSTM and
CNN models. The better performance of our proposed Di-
StddNet with non-linear mapping blocks demonstrate the
superiority of the proposed method.

Northwestern-UCLA dataset. As shown in Table 7, with
the number of non-linear mapping blocks increasing, the Di-
StddNet achieves better performance and our Di-StddNet
(b = 12) with 2 blocks obtains the highest recognition accu-
racy along different configurations. Table 8 gives the perfor-
mance comparisons of our model with other state-of-the-art
methods. Experimental results show that the proposed Di-
StddNet (b = 12) + 2blocks model outperforms the previous
state-of-the-art methods.

Conclusion

In this paper, we propose a spatio-temporal difference de-
scriptor for non-linear metric learning on SPD manifold. A
directional convolution network is first introduced to gener-
ate new human skeletons with the contextual joint depen-
dencies learned in the pre-training process. Then, the pro-
posed model constructs a set of spatio-temporal difference
descriptors based on the new skeleton sequences. The dif-
ference descriptors can capture the intra-frame skeleton dif-
ferences and inter-frame dynamic changes that are comple-
mentary to original static skeleton information for human
action recognition. In addition, we introduce 2D fully con-
nected layer and rectification operation on SPD matrices to
further improve the performance of manifold metric learn-
ing. Experiments on several standard datasets demonstrate
the effectiveness of the proposed model.
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