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Abstract

When can we expect a text-video retrieval system to work
effectively on datasets that differ from its training domain?
In this work, we investigate this question through the lens
of unsupervised domain adaptation in which the objective is
to match natural language queries and video content in the
presence of domain shift at query-time. Such systems have
significant practical applications since they are capable gen-
eralising to new data sources without requiring correspond-
ing text annotations. We make the following contributions:
(1) We propose the UDAVR (Unsupervised Domain Adapta-
tion for Video Retrieval) benchmark and employ it to study
the performance of text-video retrieval in the presence of
domain shift. (2) We propose Concept-Aware-Pseudo-Query
(CAPQ), a method for learning discriminative and transfer-
able features that bridge these cross-domain discrepancies to
enable effective target domain retrieval using source domain
supervision. (3) We show that CAPQ outperforms alternative
domain adaptation strategies on UDAVR.

Introduction
Given a natural language query and a pool of videos, the
goal of text-video retrieval is to rank the videos according
to how well their content fits the query. Recent years have
seen substantial progress on popular benchmarks for assess-
ing text-video retrieval (Chen and Dolan 2011; Rohrbach
et al. 2015; Xu et al. 2016) through effective use of multi-
modal cues (Mithun et al. 2018) and powerful pretrained
models (Miech, Laptev, and Sivic 2018; Liu et al. 2019).
These impressive gains have been driven by access to large
quantities of labeled data for supervised learning. To date,
much of the work in this area has relied on the assump-
tion that the training data and test data arise from the same
domain. As a consequence, the use of text-video retrieval
methods in novel domains mandates the gathering of cor-
responding annotation such that models can be retrained or
fine-tuned on the target data.

One possible solution to this challenge can be found in
zero-shot text-video retrieval, in which one assumes no ac-
cess to any training content from the target domain. Indeed,
recent methods employing large-scale pretraining (Miech

* indicates equally contributed first and corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Two men play table tennis while several other
individuals watch in the background.

Activities

The lady cut up the seaweed into pieces.

Her movement is followed by three men—one wearing 
black tie, a handsome actor in grey flannel suit–and a 
bright, pleasant man wearing a blue-pin-striped suit.

MovieClips

There is a dog sharing food with a cat

VisualEvents

AudioVisualEvents

Figure 1: The Unsupervised Domain Adaptation for Video
Retrieval (UDAVR) benchmark. In this work, we repurpose
existing datasets from across four domains to study the task
of text-video retrieval without target domain supervision.
The videos from these four domains differ not only in visual
composition and duration, but also in the focus and style of
their text descriptions.

et al. 2019, 2020) have shown promising early results pur-
suing such an approach. It is reasonable to believe, how-
ever, that for many problems of interest, the zero-shot as-
sumption is overly constraining. In this work, we therefore
consider instead the less restrictive formulation in which a
model has access to labelled data on a source domain and
only unlabelled data on the target domain of interest, a set-
ting commonly referred to as Unsupervised Domain Adap-
tation (UDA).

Motivated by the considerable importance of video data
in both academic and commercial settings, recent works
have explored video-based UDA scenarios for action recog-
nition (Jamal et al. 2018; Chen et al. 2019b; Munro and
Damen 2020). To date, however, unsupervised domain adap-
tation for text-video retrieval has received limited attention
in the literature.

In this work we propose a new benchmark to enable in-
vestigation of the text-video retrieval task under this regime.
To this end we draw on existing datasets from four domains
highlighted in Fig. 1: these domains are Activities (sourced
from ActivityNet-Captions (Krishna et al. 2017)), Audio-
VisualEvents (sourced from MSR-VTT (Xu et al. 2016)),
MovieClips (sourced from LSMDC (Rohrbach et al. 2017a))
and VisualEvents (sourced from MSVD (Chen and Dolan
2011)).
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A naive application of empirical risk minimisation suf-
fers from two kinds of domain shift in adapting retrieval
models: video content/style shift and description distribution
shift. The former is visible in Fig. 1, in which we observe the
shift from a hand-held camcorder showing a game of table
tennis (top-left) to the cinematic style of Alfred Hitchcock
(bottom-left). The latter, a shift in description distribution, is
a key difference from other applications of UDA. Note that
differences in description distributions are typically driven
by differences in the description style among the teams of
annotators that produced each domain. We observe that the
Descriptive Video Services (which target a rich storyline for
the visually impaired) employed by (Rohrbach et al. 2017b)
that are responsible for the movie clip description in Fig. 1
(bottom-left) can produce descriptions that differ substan-
tially from those produced by Amazon Mechanical Turk
workers (such as those used by the efficient pipelines used
for the three remaining domains in Fig. 1).

To tackle these challenges, we propose the concept-
Aware-Pseudo-Query (CAPQ) framework for cross-domain
text-video retrieval, which comprises two technical contri-
butions: a concept preservation regulariser that seeks to en-
hance the transferability of the learned embeddings (their
invariance to both visual and description distribution shift);
and a pseudo-labelling algorithm that aims to ensure that
they are as discriminative as possible in order to boost re-
trieval performance on a target domain without access to
the description distribution. Additionally, to mitigate the
hubness problem (Radovanovic, Nanopoulos, and Ivanovic
2010) (in which a small portion of the data samples be-
come “popular” i.e. they form the nearest neighbors of many
samples) that can arise from a naive application of pseudo-
labelling (Liu and Ye 2019), we propose an iterative, mutual-
exclusion selection mechanism that avoids over-exploitation
of a small number of pseudo-label candidates.

In summary, we make the following contributions: (1) We
propose, to the best of our knowledge, the first benchmark
for natural language text-video unsupervised domain adap-
tation, UDAVR, and employ it to assess the suitability of
existing methods for this task. (2) We propose CAPQ, a
method which employs source supervision and unlabelled
target data to achieve good target domain retrieval perfor-
mance. (3) We demonstrate that CAPQ outperforms source-
only generalisation as well as alternative domain adaptation
strategies such as variants of maximum mean discrepancy,
adversarial learning strategy and transportation modelling
on the proposed benchmark.

Related Work
Text-Video Retrieval. In recent years, cross-modal joint
embeddings (Otani et al. 2016; Dong, Li, and Snoek 2016)
have emerged as a popular mechanism for text-video re-
trieval. Further developments have sought to develop struc-
tured joint spaces (Mithun et al. 2018; Wray et al. 2019),
explore large-scale pretraining (Miech et al. 2019) and inte-
grate multiple modalities, learning from experts that operate
on both visual and audio sensory data (Miech, Laptev, and
Sivic 2018; Liu et al. 2019; Mithun et al. 2018; Gabeur et al.

2020). This latter methodology has proven particularly ef-
fective for text-video retrieval, and we use it as a test-bed for
our approach. However, differently from these works (which
train and test on the same domain), we explore the task of
UDA for text-video retrieval.
Unsupervised Domain Adaptation.

There has been significant research interest in develop-
ing UDA techniques, including variants of MMD (Long
et al. 2015; Long, Wang, and Jordan 2016; Sun and
Saenko 2016; Long et al. 2016; Tzeng et al. 2014; Yan
et al. 2017; Venkateswara et al. 2017), adversarial learn-
ing (Long et al. 2018; Liu and Tuzel 2016; Tzeng et al.
2017; Bousmalis et al. 2016; Liu, Breuel, and Kautz 2017;
Russo et al. 2017; Chen and Liu 2020) and transporta-
tion plan modelling (Courty et al. 2017; Chen et al. 2018;
Bhushan Damodaran et al. 2018; Haeusser et al. 2017) to
measure and reduce domain discrepancy. In the experiments
section, we compare our proposed approach with represen-
tative methods from each of these methods on the UDAVR
benchmark. More recently, UDA methods have been ex-
tended to object detection (Hsu et al. 2020) and variants of
action recognition on video data (Jamal et al. 2018; Chen
et al. 2019b; Munro and Damen 2020). Perhaps the set-
ting most closely related to ours is (Cao et al. 2018) who
consider the task of text-image retrieval. Differently from
our approach, they restrict the query text to be a single
word (falling within a predefined set of categories), rather
than a open-set free-form sentence query. We also note
that pseudo-labelling techniques (Zhang et al. 2018; French,
Mackiewicz, and Fisher 2017) have been investigated in
prior UDA work for image classification. However, such
approaches make use of discrete class labels and are con-
sequently not directly applicable in our video-text retrieval
application setting (for which discrete class boundaries are
unavailable).

Method
Overall Framework
In this section, we describe our overall framework for do-
main adaptation in the video retrieval setting and introduce
some basic notation. We assume access to a source domain
S = {vS , tS} of paired text and video samples and a tar-
get domain T = {vT } of unpaired videos. The goal of this
paper is to construct a model which is able to learn discrimi-
native and transferable features that bridge the cross-domain
discrepancy and learn a good joint embedding space for tar-
get domain retrieval. Crucially, it must do so in the absence
of knowledge of the the target domain text distribution tT .

As noted in the introduction, key challenges to learning
a good joint embedding space under this setting include:
(1) achieving robustness to visual content/style shift and de-
scription distribution shifts; (2) learning discriminative fea-
tures via the source domain that are transferable to an un-
known open set (free-form target queries).

We propose the CAPQ framework to tackle these chal-
lenges (Fig. 2). CAPQ comprises a feature extractor F , a
cross-domain video encoder φvid, a text encoder φtext, a con-
cept selector ψC and a hallucinator ψH. We discuss these
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Figure 2: The components of the proposed CAPQ frame-
work. Green and red arrows denote the flow of informa-
tion from the source and target domains, respectively. First,
we adopt a collection of frozen, pretrained expert models,
F , to extract generic features F (vS) and F (vT ), covering
an array of semantic concepts. Next, text and video en-
coders project generic features to the text-video joint em-
bedding space to produce transferable and discriminative
features φvid(v

S), φvid(v
T ) and φtext(t

S). These properties
are achieved through the multi-modality concept preserva-
tion loss LP and ranking losses LS , LT in both source and
target domains. To enable the ranking loss in target domain
without target text tT , we design a novel pseudo-text selec-
tion module to select “pseudo text” pT for φvid(v

T ) from the
pool of unbiased source text embedding φtext(t

S).

components and their interactions in the following.
Feature Extractor: We first adopt a frozen feature extractor
F , which comprises a collection of models (often referred to
in the literature as experts (Miech, Laptev, and Sivic 2018;
Liu et al. 2019)) that have been pre-trained (on tasks such
as image classification, action recognition, etc.) to extract
features from source and target domain videos. Descriptors
F (vS), F (vT ) are intended to form a generic representation
of the content (this is achieved by employing a pretrained
models that cover a wide range of semantic concepts).
Video and Text Encoder: The video encoder φvid takes a
generic video descriptor F (v) as input and projects it into
the joint text-video embedding space. Similarly, the text en-
coder φtext first maps each query sentence t to a set of feature
vectors using pre-trained word-level embeddings (Mikolov
et al. 2013), then aggregates the resulting word embeddings
via NetVLAD (Arandjelovic et al. 2016) and projects the re-
sults to produce the final text representation φtext(t) for the
retrieval task. We aim to learn a good joint embedding space,
where the features are both transferable and discriminative
to optimize the performance of target domain retrieval. For
simplicity, we denote φvid(F (v)) as φvid(v) in the following
section unless otherwise specified.
Transferable: To make the feature transferable, we aim to
reduce both the video embedding shift and description distri-
bution shift between two domains. This can be achieved by
leveraging the constraints of the multi-modality experts’ pre-
trained models via a concept preservation loss. The Video
Encoder φvid and Text Encoder φtext, Concept Selector ψC

and Hallucinator ψH work cooperatively to minimize the
concept preservation loss LP , which aims to preserve pre-
viously acquired knowledge by penalising joint space em-
beddings that are unable to retain the discriminative signal
provided by the pre-trained models. In this way, LP tends to
encourage the joint visual and text embedding to be concept-
aware and domain-agnostic. In doing so, we can (1) implic-
itly reduce the source and video embedding shift in the joint
space under this constraint; (2) encourage the text encoder
to map annotations of a given style AS(v) to a more generic
text embedding φtext(t), where the functionAS(·) represents
the description style associated with the source domain an-
notation. The objective of this design is to give φtext(t) ac-
cess to a wider coverage of diverse semantic concepts con-
tained in the paired video v that can in principle be leveraged
to answer unknown queries from the target domain.
Discriminative: The features should be discriminative, i.e.,
the embeddings for paired text and video should lie close
together, while embeddings for text and video that do not
match should lie far apart. Intuitively, we can use available
training pairs {vS , tS} via a ranking loss LS to make the
embedding as discriminative as possible, but only in the
source, rather than the target domain. To address this, we
propose a pseudo-text mutually-exclusive selection mech-
anism, selecting from the best collection of unbiased text
embeddings φtext(t) (as noted above, these embeddings are
designed to minimise the influence of the source domain an-
notation style) and assign it to the target video as a target
pseudo query embedding pT . We then refine the joint video-
text embedding space by minimizing the second ranking loss
LT between the pseudo pairs in the target domain {vT , pT }.

Combining the above two designs together, we reach the
overall training objective of our CAPQ framework:

min
φvid,φC,ψH

L = LS + λ1LP + λ2LT . (1)

where λ1 and λ2 are the weighting coefficients.

Concept Preservation
The Concept Preservation loss LP is designed to preserve
the previously acquired knowledge to make both video and
text features in the joint space transferable. Concretely, the
concept selector ψC first maps a generic video descriptor
F (v) (the output of feature extractor module F ) to a con-
cept distribution y = ψC(F (v)) associated with the origi-
nal pretraining task (y ∈ RC where C denotes the number
of external concepts in the original classification task). For
example, video retrieval systems (e.g. (Miech, Laptev, and
Sivic 2017)) often make use of models pretrained to per-
form image classification on ImageNet (this model would
then form part of the feature extractor F ). In this case, the
concept selector represents the final linear layer of the pre-
trained model, which is responsible for transforming a frag-
ment of the generic descriptor F (v) to a distribution over
the 1000 concepts of ImageNet, y ∈ R1000. We use the
same concept selector to project both the source and tar-
get generic video descriptors F (vS) and F (vT ) to their re-
spective concept distributions, i.e., yS = ψC(F (v

S)) and
yT = ψC(F (v

T )), in order to provide a common signal for
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both domains. Since video-text pairings are available in the
source domain, we propagate the predicted external concept
distribution for the source video, yS , to its paired text em-
bedding. Equivalently, given a video-text pair {vS , tS}, we
require that they are mapped to the same concept distribution
yS if the text describes the video.

Next, we use the predicted concept distribution y, as a
signal to encourage the joint text-video embeddings to pre-
serve their knowledge of concepts present in the pretrained
models. Specifically, we construct a hallucinator, ψH (imple-
mented as a two layer MLP), whose goal is to make predic-
tions ŷ ∈ RC from the embeddings φvid and φtext that match
those of the concept selector, y. Intuitively, to be able to
generate these predictions accurately, the embeddings must
retain the ability to distinguish between external concepts
known to the pretrained models. As for the concept selector,
we use the same hallucinator ψH for both the text and video
embeddings, implicitly encouraging feature alignment be-
tween φvid(v) and φtext(t). We implement this idea through
a concept preservation loss, LP , which is Kullback–Leibler
divergence between the concept distribution y and the hallu-
cinator predictions ŷ, as follows:

LP(y, ŷ) =
1

N

N∑
i=1

C∑
c=1

−yi,c log(
exp(ŷi,c)∑C

c′=1 exp(ŷi,c′)
), (2)

where N is the number of samples and C is the number
of classes. The concept distribution y provides a soft la-
bel to guide feature learning. Note that in the source do-
main, we can maximally preserve external concept in both
the video and text embeddings by minimising LP(yS , ŷSv )+
LP(yS , ŷSt ); in the target domain, since the text queries
are not available, we instead preserve only the concept in
the target video embedding at training, i.e., by minimising
LP (yT , ŷTv ). The overall concept preservation loss is:

LP = LP(y
S , ŷSv , ) + LP(y

S , ŷSt ) + LP(y
T , ŷTv , ) (3)

By preserving the previously acquired knowledge to
perform the pretraining classification tasks, the concept
preservation loss encourages: (1) feature alignment between
φvid(vs) and φvid(vt) as they can be transferred to the seman-
tic external concepts by using a shared hallucinator; (2) the
output of the text encoder φtext(t) to cover a wider range of
semantic concepts that could describe the paired video v, as
the paired φvid(v) and φtext(t) shared the same concept dis-
tribution. Note that concept preservation is performed only
during training. For inference, the concept selector is dis-
carded (there is consequently no run-time penalty to this ap-
proach).

To summarize, the concept preservation loss LP encour-
ages learning of domain-agnostic joint video-text embed-
dings by retaining and preserving semantic concepts that
were encountered during pretraining. In addition, LP aims
to hallucinate from a domain-specific, biased joint embed-
ding to a more diverse and richer embedding by eliminating
the domain-specific description styles.
Discussion on Multi-Modality Features: As noted in the
related work section, several recent text-video retrieval
methods adopt multi-modal pretrained model features to

achieve robustness. Note CAPQ is directly applicable to the
multi-modal setting by using NM feature extractors F ,
{Fn, n ∈ [1, 2, ..., NM ]}. The multi-concept preservation
loss extends Eqn. (3) as follows:

L̂P =
1

NM

NM∑
n=1

LP,n. (4)

.

Discriminative Joint Space Learning
Given video-text pairs from the source domain, we can train
discriminative embeddings for retrieval by minimizing a
contrastive margin loss (Karpathy and Fei-Fei 2015) LS :

LS =
1

Nb

Nb∑
i=1,j 6=i

max(0, m+ sSi,j − sSi,i)

+max(0, m+ sSj,i − sSi,i), (5)

where Nb is the batch size, m is a margin, and the sSi,j rep-
resents the similarity score between the ith source video vSi
and the jth text description tSj as:

sSi,j =
φvid(v

S
i ) · φtext(t

S
j )

|φvid(vSi )||φtext(tSj )|
. (6)

To perform well on the cross-domain retrieval task, we
propose to refine the joint video-text embedding space
(trained from LS) to fit the requirements of discriminative
target domain retrieval. To do so, we propose a pseudo-text
selection mechanism, selecting from the collection of un-
biased text embeddings φtext(t

S) and assign the ‘best’ to the
target video vT as target pseudo text embedding pT . We then
refine the joint space by minimizing the second ranking loss
LT between the target video embedding φvid(F (v

T )) and
the selected pseudo query embedding pT as a similar form
to (5), in which the similarity computed for target domain
pairings over the sampled mini-batches sTi,j can be calcu-
lated as:

sTi,j =
φvid(v

T
i ) · pTj

|φvid(vTi )||pTj |
. (7)

Mutually-Exclusive Selection Algorithm: Intuitively,
given a collection of unbiased text embeddings φtext(t

S) (by
unbiased we mean, unbiased towards a particular annotator
distribution), it is straight-forward to select the best one for
each target video feature φvid(v

T
j ) by selecting the text em-

bedding that yields the highest similarity score (i.e. max-
imises S(φvid(v

T
j ), φtext(t

S))). However, this naive selection
mechanism is problematic, as the selected pseudo text em-
bedding for one target video vi, might also generate high
similarity scores for other target videos, vj , where i 6= j,
particularly in the early stages of training. This observa-
tion motivates the design of a mutually-exclusive pseudo-
text embedding selection process (described below), which
operates on a collection of NQ unbiased text embeddings
{φtext(t

S
i )}

NQ

i=1, and a minibatch of NB target video features
{φvid(v

T
j )}NB

j=1. Concretely, we perform a bi-directional soft-
max operation to refine similarity matrix prior to selection to
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enable enforcement of the desired mutual-exclusion prop-
erty. Given a similarity matrix S, we first amplify the dis-
criminative capability of the text and compute Stext by ap-
plying the softmax function along the text dimension of S;
we also apply the softmax function along the video dimen-
sion of S to obtain Svideo to amplify video discriminability.
We then refine the similarity matrix by taking two directions
into account via S′ = Stext ·Svideo. The selection assignment
pj for the jth video embedding φvid(v

T
j ) follows from the re-

fined similarity matrix S′ by selecting the unbiased text em-
bedding that yields the highest similarity score. Note that in
our proposed selection process, the selected source instance
embedding is not the conventional class or cluster category
label, but an unbiased text instance in the joint embedding.

The proposed mutually-exclusive pseudo-text selection
method is particularly designed for cross-modal retrieval
task, because the method first looks through all candidate
texts and videos, establishes a smooth similarity graph and
finally assigns the “best” pseudo-texts which are not the
nearest neighbors of other different video queries. This is the
key difference compared with conventional pseudo labelling
mechanism used in classification tasks, where no penalty is
applied when the same pseudo label is assigned for different
visual queries (i.e. those that fall within the same cluster).

Analysis
To provide insight into the function of the CAPQ framework,
we conduct an analysis of our approach through the lens of
non-conservative domain adaptation (Ben-David et al. 2010)
inspired by the analysis of (Chen et al. 2019a). Let H de-
note the hypothesis class and S, T , T̂ , the source, target and
pseudo-target domain(paired target video samples with the
pseudo text selected by CAPQ). The target domain risk (ex-
pected error), εT (h), associated with hypothesis h ∈ H can
be bounded by three terms:

εT (h) ≤ εS(h) +
1

2
dH∆H(S, T ) + E, (8)

where εS(h) denotes source domain risk, dH∆H(S, T ) is a
measure of discrepancy between the distributions S and T ,
andE = εS(h

′
, fS)+εT (h

′
, fT ) represents the shared error

of the ideal joint hypothesis (h
′

denotes the ideal joint hy-
pothesis and fS and fT represent the true labeling functions
for source and target respectively).

In CAPQ, the εS(h) term is minimized by the source do-
main bidirectional loss LS . To minimize the domain dis-
crepancy dH∆H(S, T ), we use a common set of robust
pretrained, multi-modality visual and language model en-
codings (as anchors without fine-tuning) which are subse-
quently aligned by the proposed transferable concept preser-
vation operations. However, it has been noted that minimiz-
ing the first two terms is insufficient because E can grow
even when the cross-domain marginals are exactly aligned
(Chen et al. 2019a) (see also (Wu et al. 2019)). We illus-
trate in the following that E can be bounded with the pro-
posed mutually-exclusive pseudo-text selection method, and
the upper bound can be reduced by the design of CAPQ.

As target annotations are not available, we reformulate
the shared error E based on the pseudo video-text pairs in

the target domain T̂ as follows: E = minh εS(h, fS) +

εT̂ (h, fT ), where εT̂ is the expected risk error on T̂ . Based
on the triangle inequality, the upper bound of E can be de-
rived as the following: E ≤ minh εS(h, fS) + εT̂ (h, fT̂ ) +
2εT̂ (fS , fT̂ ) + εT̂ (fT , fT̂ ). In the following discussion, we
illustrate how different modules in CAPQ can reduce the
bounded terms.
Discussion. First, minimization of εS(h, fS) and εT̂ (h, fT̂ )
is achieved by minimizing the source and pseudo-target
ranking losses, LS and LT , respectively.
Second, the proposed mutually-exclusive pseudo-selection
algorithm with the pseudo-target ranking loss LT aims
to progressively align cross-domain visual features at
the level of the text descriptions. For example, using the
pseudo-selection algorithm, the φvid(v

T
j ) may be assigned

to the same text description as φvid(v
S
i ). In these cases, the

risk εT̂ (fS , fT̂ ) is expected to be minimized.

Third, the term εT̂ (fT , fT̂ ) represents the false labelling
rate of target samples. To minimize this term, we employed
two procedures: 1) in the proposed mutually-exclusive
pseudo-text selection, the method can robustly pick differ-
ent source text descriptions to target visual queries. It aims
to diversify the candidate pool of pseudo-text selection for
robust assignment and to mitigate hubness. 2) leveraging the
transferable concept preservation design LP , the constraint
of “learning a visual embedding with external, generic con-
cepts” helps select a reliable pseudo text and can restrict the
contribution to inhibit the accumulation of risk εT̂ (fT , fT̂ ).

Experiments
In this section, we introduce the UDAVR text-video retrieval
benchmark and evaluate the proposed framework. We first
conduct a detailed domain shift analysis on UDAVR. Then,
using this analysis, we select four adaptation directions from
among the set of possible adaptations between the four do-
mains. Next we compare our proposed CAPQ with existing
retrieval and UDA methods. Finally, we present an ablation
study to analyze the model configurations of the proposed
methods.

The UDAVR Benchmark
The UDAVR benchmark consists of 160k videos, sourced
from four datasets spanning different domains; (1) Audio-
VisualEvents from the MSR-VTT dataset (Xu et al. 2016),
which gathered videos (together with audio tracks) from
YouTube using popular user queries; (2) VisualEvents from
the MSVD dataset (Chen and Dolan 2011) which was simi-
larly sourced from YouTube but was curated such that each
video contained a single unambiguous event, did not include
overlaid text or subtitles and had the sound track removed
before captioning; (3) Activities from the ActivityNet-
Captions dataset (Krishna et al. 2017) was sourced from web
videos (each containing multiple sequential events), with a
focus on complex human activities; (4) MovieClips from
LSMDC (Rohrbach et al. 2015) comprising short video clips
from movies. The statistics of each domain are summarised
in Table 1, (number of videos/sentences, average length
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Figure 3: Cross domain statistics.(a) MMD of the pre-trained
video feature distribution.(b) The Jensen-Shannon diver-
gence (JSD) of the vocabulary distributions between any
pair of datasets.(c) Recovery Matrix:Ratio between source-
only and target-only model performances. Row indicates
source domain, column indicates target domain.

of videos/sentences, the audio track availability, annotation
process). In the following, we first analyze three main fac-
tors leading to domain gaps in UDAVR, including video
shift, text shift, and annotation function shift. Then we re-
port the performance recovery matrix and finally define a set
of adaptation directions which specifically target video shift
(splitVideo), text shift (splitText), annotator shift (splitAnnoF) as
well as the overall most difficult shift (splitHard) based on
these analysis.

Video Shift: We employ Maximum Mean Discrepancy
(MMD) (Gretton et al. 2012) with pretrained video fea-
tures to measure the video shift across domains (Fig. 3(a)).
We select the most difficult direction (with greatest MMD)
VisualEvents→MovieClips and denote it splitVideo.

Text Shift: We report the Jensen–Shannon divergence (JSD)
of vocabulary distribution among all pairs of domains
in Fig. 3(b). We select AudioVisualEvents→MovieClips
(which exhibits the greatest text shift) and denote it splitText.

Annotation Function Shift: The annotation function shift
across domains is closely linked to annotator style. We se-
lect MovieClips→Activities as representative for splitAnnoF
since: (1) As shown in Table 1, annotations from the
MovieClips domain are generated via Descriptive Video
Service (providing rich captions to accompany the dialogue)
while Activities adopt different Amazon Mechanical Turk
(AMT) pipelines. (2) Large differences in duration also in-
crease the Annotation Function Shift (i.e., Activities videos
require a paragraph summary of all major events in temporal
order).

Empirical Difficulty: We adopt the performance recovery
matrix to measure the domain shift with all three factors
(mentioned above) coupled. We set up a cross-domain video
retrieval baseline for each transfer task, i.e., the ratio be-
tween source-only and target-only performances (the geo-
metric mean of R@1, R@5 and R@10) with both models
tested on target data, as shown in Fig. 3(c). It can be seen
that splitVideo, splitText and splitAnnoF are most challenging in
that they have the three lowest performance recovery ratios
in Fig. 3(c). We select VisualEvents→Activities for splitHard
since it has the lowest performance recovery ratios among
the remaining directions.

Results and Comparisons
We evaluate the proposed method using four splits (adap-
tation directions) of UDAVR defined in the previous sec-
tion . We adopt the standard retrieval metrics of the target
domain dataset, namely R@K (K = 1,10) and median rank
(MR), where R@K (recall at K) represents the percentage
of test queries for which at least one relevant item is found
among the top-K retrieved results. The results of four splits
are shown in Tables 2 and 3.

In each split, we report the performance of our CAPQ and
comparisons with six existing methods. These include two
strong video-retrieval network architecture methods (Miech,
Laptev, and Sivic 2017; Liu et al. 2019) and four unsuper-
vised adaptation baselines (Ganin et al. 2016; Long et al.
2015; Sun and Saenko 2016; Courty et al. 2017). Note that
neither of the video-retrieval approaches (MoEE (Miech,
Laptev, and Sivic 2018) and CE(Liu et al. 2019)) investi-
gated the cross-dataset adaptation problem. Since CE out-
performs MoEE slightly in all four datasets in the conven-
tional video-retrieval setting, we adopt CE as our backbone
architecture and report the CE results as a solid source-
only (SO) baseline. For fair comparison, the adaptation
methods we consider, namely Maximum Mean Discrepancy
(MMD), adversarial feature alignment (DANN), Deep Coral
(D-CORAL) and optimal transport (OT) each use the same
backbone network as CAPQ.

To summarise: (1) CAPQ outperforms MMD, DANN, D-
CORAL and OT based adaptation methods on all adaptation
directions across the four splits. Specifically, our method
outperforms prior approaches by a considerable margin, no-
tably achieving a relative gain in geometric mean (R1,R10)
of approximately 52%, 27%, 29% and 23% over the second
best on each of the four splits respectively. (2) Conventional
domain adaptation techniques are effective for addressing
the video content and text shifts, but not for annotation func-
tion shifts. Specifically, as shown in Table 3, when encoun-
tering different annotation styles, a direct application of con-
ventional domain adaptation techniques can under-perform
the source-only model.

Ablation Study and Analysis
In this section, we perform ablation studies on the splitText
adaptation task and investigate the effectiveness of network
components and the use of pre-trained features in the con-
cept preservation loss. Finally, we provide qualitative results
via visual examples.
Architectural Variants: We conduct a detailed ablation
study by examining the effectiveness of each proposed
component. As shown in Table 4, each combination of
the proposed modules yields improved performance com-
pared with the SO baseline (without adaptation) under all
evaluation metrics. We observe that pseudo-text selection
contributes the most significant performance gain as an indi-
vidual module, suggesting that refining the joint text-video
embedding space is valuable by minimizing the second
ranking loss between the pseudo text queries and the target
videos. With both the concept preservation and pseudo-text
selection, CAPQ performs the best, achieving a relative
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Domain / Source Dataset #Videos Video Audio Sentence #Sentence Query
Length Source Length

AudioVisualEvents / MSR-VTT 10,000 20s Yes AMT workers 200,000 9.34
VisualEvents / MSVD 1970 10s No AMT workers 70,028 7.03

Activities / ActivityNet-Captions 14,926 180s Yes AMT workers 54,926 49.76
MovieClips / LSMDC 102,046 4s Yes DVS +Scripts 102046 9.75

Table 1: Comparison of four domains in UDAVR.

Method
splitVideo splitHard

t2v v2t t2v v2t
R1 R10 MR R1 R10 MR R1 R10 MR R1 R10 MR

MoEE 0.8 6.9 195 0.9 3.6 271 2.0 11.3 160 2.3 11.8 135
SO 1.0 7.1 187 0.9 3.7 267 2.2 13.2 110 2.6 13.8 102

MMD 1.5 7.9 230 1.1 5.7 223 2.9 14.6 108 2.5 14.2 98
D-CORAL 0.9 4.2 312 0.4 3.3 327 2.1 12.5 165 2.2 13.2 140

DANN 1.3 7.3 281 1.0 5 246 2.6 14.3 120 2.3 13.7 115
OT 0.8 4.0 313 0.4 3.8 322 2.5 12.2 143 2.2 12.8 120

CAPQ (ours) 2.3 10.5 164 1.7 9.7 162 3.7 19.1 64.3 3.0 16.3 70

Table 2: Performance comparison on splitVideo and splitHard

Method
splitText splitAnnoF

t2v v2t t2v v2t
R1 R10 MR R1 R10 MR R1 R10 MR R1 R10 MR

MoEE 1.4 9.9 162 1.1 7.5 196 1.2 7.5 265 1.3 6.7 272
SO 1.5 10.3 162 1.6 9.3 190 1.3 7.7 267 1.4 6.8 275

D-CORAL 2.5 10.5 149 1.9 9.5 177 1.0 6.4 325 0.9 6.4 325
MMD 1.7 10.4 155 2.0 8.3 187 1.2 7.1 265 1.5 9.0 243
DANN 1.9 9.3 178 1.7 9.6 176 1.0 5.6 429 1.1 5.8 311

OT 2.3 10.7 151 1.9 10.2 175 1.0 6.2 325 0.8 6.2 325
CAPQ(ours) 3.1 11.9 137 2.7 12.4 150 1.7 9.2 182 1.9 10.7 142

Table 3: Performance comparison on splitText and splitAnnoF

gain of 64.2% over the SO baseline (without adaptation).
Another interesting observation is: we also report the
performance of CAPQ-preserve (no target videos) in the
second row, which applies the concept preservation loss
only on the source videos and texts (without pseudo-text
selection). In this setting, no target video is required during
training and we observe that even in this restricted scenario,
the method still outperforms the baseline (SO) by a small
margin. It indicates that it is useful to make the feature
embedding generic, but not sufficient for the cross-domain
video retrieval task. We also report the number of parame-
ters in the last column in Table. 4: CAPQ introduces 14M
more parameters during training (due to the hallucinator).
At test-time, since the hallucinator is discarded, there is no
computational overhead—inference speed is identical to
that of the baseline model (SO).

Qualitative Examples: We also evaluate CAPQ by pro-
viding qualitative results and visual examples from splitText
in Fig. 4. The first three rows show successful applications
of CAPQ and the last row shows a case where it is less
effective. Four target domain videos and their corresponding
ground truth text descriptions (MovieClips domain) are
displayed in the first column for visualization. We observe
that CAPQ outperforms the Source Only model by a large
margin for each of the first three rows. We also provide
the selected pseudo-text in the fourth column using our
method. The selected pseudo-text, while not a precise

Method t2v v2t Para-NumR1 R10 MR R1 R10 MR
SO 1.5 10.3 162 1.6 9.3 190 23.6M

Preserve (no T) 2.2 12.1 168 2.4 10.7 187 37.1M
CAPQ-preserve 2.5 11.7 164 2.5 9.5 185 37.1M
CAPQ-pseudo 2.6 11.3 158 2.4 10.9 163 23.6M

CAPQ 3.1 11.9 137 2.7 12.4 150 37.1M

Table 4: Ablation study on network components (splitText)

Target Videos Source Videos
with Pseudo TextSource-Only Pseudo TextCAPQ

GT: The Air Force 
personnel shepherds 

them

GT Rank: 210
Sim: 0.08

Group of
people are on
stage in front

of crowd.

GT Rank: 51
Sim: 0.23

Discussion of
mystery of the

planet mars
being solved is

in progress.

Chief
commander

asking
something to

soldier.

GT Rank: 189
Sim: 0.18

GT: The light draws 
back across the lake

GT: Someone steps 
among immobilized 

suspects.

GT Rank: 6
Sim: 0.76

GT Rank: 2
Sim: 1.09

GT Rank: 1
Sim: 1.12

Box falls on
the floor in
room filled
with mine-

craft sprites.

GT Rank: 443
Sim: 0.12

GT: Now at her apartment, 
SOMEONE sits in a chair,

her hands fidgeting.

GT Rank: 127
Sim: 0.62

Figure 4: Qualitative results analysis on splitText.

match, captures some of the semantic concepts relevant
to the target video. In addition, we also show the source
domain video frames linked with the selected pseudo
text in the last column—the selected source videos share
significant commonalities with the target videos. In the last
row of Fig. 4, we show an instance for which CAPQ is less
effective. In this setting, there is insufficient coverage of
the concepts present in the target video for the pseudo-text
approach to have high utility. Nevertheless, the selected
pseudo-text does still provide some benefit in this setting
(in particular the similar scene (room/apartment) and is
still identified correctly by CAPQ, providing some boost to
performance over the SO model).

Conclusions
In this work, we have proposed a new benchmark and in-
vestigated the task of unsupervised domain adaptation for
text-video retrieval in this setting. We have introduced the
CAPQ framework, and shown that it outperforms standard
domain adaptation techniques.
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