
RGB-D Salient Object Detection via 3D Convolutional Neural Networks

Qian Chen1, Ze Liu1, Yi Zhang2, Keren Fu3,4∗, Qijun Zhao3,4, Hongwei Du1

1School of Information Science and Technology, University of Science and Technology of China
2Institut National des Sciences Appliquées de Rennes

3College of Computer Science, Sichuan University
4National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University

{poly,liuze}@mail.ustc.edu.cn, yi.zhang1@insa-rennes.fr, {fkrsuper,qjzhao}@scu.edu.cn, duhw@ustc.edu.cn

Abstract

RGB-D salient object detection (SOD) recently has
attracted increasing research interest and many deep
learning methods based on encoder-decoder architec-
tures have emerged. However, most existing RGB-D
SOD models conduct feature fusion either in the sin-
gle encoder or the decoder stage, which hardly guar-
antees sufficient cross-modal fusion ability. In this pa-
per, we make the first attempt in addressing RGB-D
SOD through 3D convolutional neural networks. The
proposed model, named RD3D, aims at pre-fusion in
the encoder stage and in-depth fusion in the decoder
stage to effectively promote the full integration of RG-
B and depth streams. Specifically, RD3D first conduct-
s pre-fusion across RGB and depth modalities through
an inflated 3D encoder, and later provides in-depth fea-
ture fusion by designing a 3D decoder equipped with
rich back-projection paths (RBPP) for leveraging the
extensive aggregation ability of 3D convolutions. With
such a progressive fusion strategy involving both the
encoder and decoder, effective and thorough interac-
tion between the two modalities can be exploited and
boost the detection accuracy. Extensive experiments on
six widely used benchmark datasets demonstrate that
RD3D performs favorably against 14 state-of-the-art
RGB-D SOD approaches in terms of four key evalua-
tion metrics. Our code will be made publicly available:
https://github.com/PPOLYpubki/RD3D.

Introduction
Salient object detection (SOD) aims to imitate the human
visual system on detecting objects or areas that attract hu-
man attention (Jiang et al. 2020; Fan et al. 2018a; Zhao
et al. 2019b). SOD has a wide range of applications in many
tasks, such as object segmentation and recognition (Han
et al. 2005; Li, Zhou, and Yang 2011), video detection (Li
et al. 2019; Fan et al. 2019), content-related image and video
compression (Itti 2004; Guo and Zhang 2009) as well as
tracking (Zhang et al. 2020d). Although SOD has been ad-
vanced notably by deep learning techniques (Wang et al.
2019), single-modal SOD still faces many problems, such
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Figure 1: Categorization of existing models. Note that (a)-(c)
conduct feature fusion either in the encoder or the decoder
stage, while our model (d) adopts progressive fusion involv-
ing both the encoder and decoder stages.

as weak appearance differences in the foreground and back-
ground regions, complex foreground and background, etc.

In recent years, an increasing number of RGB-D SOD
models have emerged to address these challenges of single-
modal SOD for more accurate detection performance
(Zhang et al. 2021). Although encouraging results have been
obtained, we notice that existing models conduct feature fu-
sion either in the single encoder or the decoder stage, which
may hardly guarantee sufficient cross-modal fusion ability.
As shown in Fig. 1, these models can be divided into three
categories according to how they extract and fuse cross-
modal features. In the first category (Fig. 1 (a)), the mod-
els (Fan et al. 2020b; Pang et al. 2020; Liu, Zhang, and Han
2020; Piao et al. 2020; Zhang et al. 2020c) extract features
from RGB and depth maps independently, and conduct fea-
ture maps fusion of the two modalities in the decoder. To
achieve effective cross-modal fusion, the authors tend to e-
laborately design complex or special modules for simulta-
neous fusion and decoding. The second category (Fu et al.
2020a; Li, Liu, and Ling 2020) (Fig. 1 (b)) uses a Siamese
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network as an encoder to extract features from RGB and
depth. Although the encoder network is shared across dif-
ferent modalities, however, it is still dedicated to feature ex-
traction similar to Fig. 1 (a) and no fusion behavior is con-
ducted in the encoder. The third category of models (Zhao
et al. 2020; Fan et al. 2020a; Song et al. 2017; Liu et al.
2019) (Fig. 1 (c)) adopt the “input fusion” strategy, which
concatenates RGB and depth across channel dimension be-
fore feeding them to the encoder. In this case, the main role
of fusion is played by the encoder since all the ingredients
fed to the decoder are already-fused features, making the de-
coder infeasible to conduct explicit cross-modal fusion.

Considering that feature extraction and fusion is crucial in
such an encoder-decoder architecture for the RGB-D SOD
task, the aforementioned models have not fully investigat-
ed the feature aggregation potentials in both the encoder
and decoder. Inspired by the success of 3D convolutional
neural networks (CNNs) in aggregating extensive feature
information for space-time processing (e.g., video recog-
nition (Feichtenhofer 2020), action localization (Gu et al.
2018)) where 3D CNNs often serve as encoders, we propose
to treat the depth modality as another “time state” of the
RGB one and aggregate information of the two modalities
through 3D CNNs. To the best of knowledge, our work is the
first attempt that addresses RGB-D SOD through 3D CNNs,
attributed to which RGB and depth information can be mu-
tually enhanced meanwhile making explicit fusion in the de-
coder possible. Another advantage is that due to the inner fu-
sion behavior of 3D convolutions, dedicated or sophisticat-
ed modules for cross-modal fusion are no longer required.
The proposed novel model, named RD3D (short for RGB-D
3D CNN detector for SOD), first conducts pre-fusion across
RGB and depth modalities through an inflated 3D encoder.
Then, the obtained pre-fused RGB and depth features are
fed to a 3D decoder for further in-depth fusion. The 3D
decoder incorporates rich back-projection paths (RBPP) in
order to better leverage the extensive aggregation ability of
3D convolutions. Therefore, both the encoder and decoder
of RD3D are 3D CNNs-based and they both involve cross-
modal fusion in a progressive manner (Fig. 1 (d)). Our work
has three main contributions:

• We exploit the idea of pre-fusion in the encoder stage and
show how it is beneficial to the final performance. We pro-
pose to tackle this by 3D CNNs, which can fuse the cross-
modal features effectively without requiring dedicated or
sophisticated modules.

• We design a 3D decoder that incorporates rich back-
projection paths (RBPP) in order to better leverage the
extensive aggregation ability of 3D convolutions. Such a
3D decoder makes the proposed RD3D a fully 3D CNNs-
based model and also the first 3D CNNs-based model for
the RGB-D SOD task.

• We show that RD3D, which is the first 3D CNNs-based
model for RGB-D SOD, surpasses 14 state-of-the-art
(SOTA) methods by a notable margin on the six widely
used benchmark datasets.

Related Work
Deep-based RGB-D Models. Existing deep models can be
divided into three classes according to the stage of fusion:
early-fusion (Peng et al. 2014; Song et al. 2017), middle-
fusion (Feng et al. 2016; Fu et al. 2020a,b; Zhang et al.
2020b; Piao et al. 2019) and late-fusion (Fan, Liu, and Sun
2014). By contrast, as shown in Fig. 1, this paper elaborate-
ly divides current methods into four categories according
to how they extract and fuse cross-modal features. Among
the first category named the two-stream network (Fig. 1 (a)),
(Han et al. 2017) utilized a CNN network to extract informa-
tion from the two modalities in the backbone stage, and then
fused such deep representations from multi-views via a fully
connected layer. (Piao et al. 2019) proposed a novel depth-
induced multi-scale recurrent attention network, which ex-
tracted features respectively from RGB and depth maps and
then input them to depth refinement blocks for integration.
(Chen et al. 2020) utilized separate CNNs to extract features
from RGB and depth modalities. The resulting hint map is
then utilized to enhance the depth map, which suppresses
the noise and sharpens the object boundary. The second cat-
egory is the Siamese network (Fig. 1 (b)). Fu et al. (Fu et al.
2020a) and Li et al. (Li, Liu, and Ling 2020) first adopted
a Siamese network with shared weights for the RGB/depth
stream during independent feature extraction. The third cat-
egory is called the input fusion network (Fig. 1 (c)). (Huang,
Shen, and Hsiao 2018) and (Liu et al. 2019) concatenat-
ed RGB and depth maps to formulate a four-channel input,
which was fed to a single-stream CNN. DANet proposed by
Zhao et al. (Zhao et al. 2020) fused bi-modal information in
the input stage, and meanwhile depth maps played a guid-
ance role in the decoder stage.

In general, the above representative works do their utmost
to explore: 1) effective utilization of depth information, and
2) comprehensive fusion of RGB and depth cues. Unfortu-
nately, they have the limitation that feature aggregation po-
tentials in both the encoder and decoder are not fully lever-
aged. Complete survey of models in this field can be found in
(Zhou et al. 2021). Different from existing models, we pro-
pose the 3D CNNs-based progressive fusion scheme (Fig. 1
(d)) towards a new perspective of multi-modal feature ex-
traction and fusion.
3D CNNs. 3D CNNs are influential in many fields, such as
video processing (Ji et al. 2012; Tran et al. 2015), medical
image processing (Balakrishnan et al. 2019) and point cloud
processing (Zhou and Tuzel 2018). Balakrishnan et al. (Bal-
akrishnan et al. 2019) applied 3D convolutions to extract fea-
tures from image volumes in the encoder stage and utilized
a 3D CNN-based decoder to transform features on finer spa-
tial scales, enabling precise anatomical alignment. By using
3D convolutions, Zhou et al. (Zhou and Tuzel 2018) extract-
ed features from 3D voxels for point cloud-based 3D object
detection. The above methods use 3D convolutions to han-
dle data resided in the 3D space, but 3D convolutions can
also process data in multi-domain. Ji et al. (Ji et al. 2012)
applied them to extract features in spatial and temporal do-
mains from video data to capture motion information. To the
best of our knowledge, we are the first to investigate 3D con-
volutions for RGB-D saliency detection.
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Figure 2: Block diagram of the proposed RD3D scheme for RGB-D SOD. H denotes the spatial resolution of output feature
maps at each level, and T denotes the temporal dimension. Definitions of fi, F̂i, and Fi can be found in Eq. (2) and Eq. (3).

Methodology
Big Picture
The overall architecture of the proposed RD3D is shown in
Fig. 2. It follows the typical encoder-decoder architecture
and is composed of a 3D encoder and a 3D decoder. The 3D
encoder is basically a ResNet/VGG-like backbone which is
extended by 3D convolutions. It aims at cross-modal feature
pre-fusion while its outputs are modality-aware multi-level
features. On the other hand, the 3D decoder decodes features
by 3D convolutions. It follows the typical UNet-like top-
down fashion but incorporates rich back-projection paths
(RBPP, the blue line arrows in Fig. 2) as well as channel-
modality attention modules (CMA, the orange modules in
Fig. 2). After the final decoding by 3D convolutions, the de-
coder outputs a prediction map highlighting salient objec-
t(s). Noting that attributed to the extensive aggregation abil-
ity of 3D convolutions, no any explicit cross-modal fusion
modules are used in Fig. 2.

3D Encoder
As shown in Fig. 2, given an RGB image and a single-
channel depth map, we first normalize the depth map into
intervals [0, 255] and then replicate it into three channels.
Hereafter, we follow (Wang et al. 2018) and denote the di-
mension of a tensor as T ×H ×W × C, where “T ” refers
to the temporal dimension and “H”, “W ”, “C” mean the
height, width, and channels, respectively. We stack the RG-
B image (H × W × C) and the corresponding depth map
(H × W × C) to form a 4D tensor as the input of our
3D encoder, where T = 2 and C = 3. We adopt an in-
flated 3D ResNet (Carreira and Zisserman 2017) as our en-
coder, which replaces all 2D convolutions in the convention-
al ResNet (He et al. 2016) with 3D convolutions, and the

RGBi Depthi

ww2

Zero paddingZero padding

RGBo Deptho

w3w1w1 w2 w3

T dimension

Figure 3: Visualization of 3D convolution in the “T ” dimen-
sion, where the corresponding kernel size is 3. The super-
script “i/o” means input/output features of 3D convolution.

kernel sizes for the “T ” dimension are set as 3 for all the
3 × 3 3D convolutions, with padding, stride, output dimen-
sion being 1, 1 and 2, respectively. Computation in the “T ”
dimension of a 3D convolutional layer thus can be visualized
in Fig. 3 and is equivalent to the formulations below:

Ro = w2 ∗Ri +w3 ∗Di,

Do = w1 ∗Ri +w2 ∗Di,
(1)

where w1, w2 and w3 represent the three temporal weight
slices of the 3D kernel. Ri and Di denote the input RGB
and depth feature slices, respectively, whereas Ro and Do

denote the output ones. “∗” means the 2D convolution oper-
ation. One can see that the inner fusion property of 3D con-
volutions helps fuse the RGB and depth information, where
RGB and depth cues are mutually enhanced by each other
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Figure 4: Modality-aware hierarchical features in each tem-
poral slice. To make the impact of pre-fusion more visual-
ly obvious, we intentionally feed to our encoder RGB and
depth images that are not matched. As a result, explicit fu-
sion behavior can be observed.

when passing through a 3D convolutional layer. So, progres-
sive fusion is achieved by using successive 3D convolutions.

Also note that the output number in the “T ” dimension of
our encoder is fixed as 2 under the particular consideration
that there are only two modalities in our problem, namely
RGB and depth. Although there exist other temporal designs
of 3D kernels, Eq. (1) is adequate to reflect our idea of us-
ing 3D CNNs. Specifically, in Eq. (1) RGB and depth cues
are preserved by shared weights w2, and meanwhile each
one is enhanced by the other by learnable weights w1/w3.
This achieves certain modality-aware individuality as well
as cross-modal fusion, leading to the term “pre-fusion”. Fig.
4 visualizes either temporal slice of feature maps at differen-
t levels, from which it is observed that information between
the two modalities are cleverly integrated, but they are not
the same. Finally, as shown in Fig. 2, the yielded modality-
aware multi-level features whose temporal dimensions equal
to 2 are fed to channel reduction (CR) modules to reduce
their channels to a fixed smaller number (while the other di-
mensions are unchanged), i.e. 32 in practice, for the subse-
quent decoding. This is to reduce computation load as well
as memory usage.

Inspired by (Carreira and Zisserman 2017; Feichtenhofer,
Pinz, and Wildes 2016; Girdhar et al. 2018), we propose to
initialize our 3D encoder in a centralized strategy using Im-
ageNet pre-trained weights of the 2D ResNet, namely using
such 2D weights to initialize the central slice w2 of a 3D
kernel while setting other slices to 0, i.e., w1 = w3 = 0.
This strategy is equivalent to using a shared 2D ResNet to
process RGB and depth at the beginning, which exactly co-
incides with the recent idea of using Siamese network for
RGB-D SOD (Fu et al. 2020a).

3D Decoder with Rich Back-Projection Paths
As shown in the decoder part of Fig. 2, the channel-reduced
features at each spatial resolution is aggregated with those at
other resolutions in a hierarchical way. Inspired by but dif-
ferent from the widely employed UNet-like top-down fash-
ion, which only considers upsampling low-resolution fea-
tures to incorporate with high-resolution ones for refinemen-
t, we propose to combine additional downsampling flows
from high-resolution features to low-resolution ones, denot-
ed by the blue line arrows in Fig. 2, to leverage the ex-
tensive aggregation ability of 3D convolutions. Such down-
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Figure 5: Proposed 3D channel-modality attention module
that attends on both channel and temporal dimensions.

sampling flows transport rich feature information from the
higher resolutions to the lower resolutions, enriching high-
level feature representation. Note that besides the classical
UNet architecture, this also contrasts to the existing tech-
nique (Hou et al. 2017) whose short connections transport
information from high-level to low-level, since we transport
in the opposite direction. We call our this method Rich Back-
Projection Paths (RBPP). Another important reason of using
RBPP is that, 3D convolutions will be more memory- and
computation-efficient when used in such a decoder than in
RBPP’s counterparts that transport features in the opposite
direction, like in (Hou et al. 2017).

To be more specific in Fig. 2, for the ith level, we use
a series of downsampling blocks to back-project features
from all higher resolutions and meanwhile use an upsam-
pling block to upsample the nearby aggregated feature out-
puts. The downsampling block is composed of a 1 × 3 × 3
3D convolutional layer, a BN layer, and a ReLU layer. In
contrast, the upsampling block is composed of a bilinear up-
sampling layer and a 1× 3× 3 3D convolutional layer, fol-
lowed by a BN layer and a ReLU layer. Note that both the
downsampling and upsampling blocks will keep the tempo-
ral dimension number unchanged. Below, we denote the two
blocks as DB(·) and UB(·), respectively. The feature com-
putation at the ith level (i ∈ {0, 1, 2, 3}) is formulated as:

F̂i = TConcat(fi, DB(fi−1)...DB(f0), UB(Fi+1)) (2)

Fi = TR(CMA(F̂i)), (3)

where TConcat(·) means time concatenation (i.e., concate-
nating in the temporal axis), fi means the ith-level reduced
feature tensor after the CR module in the encoder, Fi+1 is
the nearby feature outputs computed at the (i + 1)th lev-
el, TR(·) denotes a temporal reduction operation which re-
duces the temporal dimension number to 1 as shown in Fig.
2, and CMA(·) denotes the Channel-Modality Attention
module introduced below. F̂i denotes the intermediate fea-
tures whereas Fi is the final feature outputs at the ith level.
Note that we set F4 = f4, and the kernel sizes of the 3D
convolutions in TR(·) vary from 10× 1× 1 (when i = 3) to
3 × 1 × 1 (when i = 0). After F0 is obtained, a prediction
head consisting of a (1× 1× 1, 1) convolutional layer and a
Sigmoid layer is used to get the final prediction map.
Channel-Modality Attention Module. For generally en-
hancing features in a 3D decoder, we propose the Channel-
Modality Attention module (CMA), which is inspired by
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Metric AFNet CTMF PCF MMCI CPFP D3Net DMRA SSF A2dele JLDCF UCNet CoNet cmMS DANet RD3D
N

JU
2K

Sα ↑ 0.772 0.849 0.877 0.858 0.879 0.893 0.886 0.899 0.869 0.903 0.897 0.895 0.900 0.899 0.916
Fmax
β ↑ 0.775 0.845 0.872 0.852 0.877 0.887 0.886 0.896 0.873 0.903 0.895 0.893 0.897 0.898 0.914

Emax
φ ↑ 0.853 0.913 0.924 0.915 0.926 0.930 0.927 0.935 0.916 0.944 0.936 0.937 0.936 0.935 0.947
M ↓ 0.100 0.085 0.059 0.079 0.053 0.051 0.051 0.043 0.051 0.043 0.043 0.047 0.044 0.045 0.036

N
LP

R

Sα ↑ 0.799 0.860 0.874 0.856 0.888 0.905 0.899 0.914 0.881 0.925 0.920 0.908 0.915 0.915 0.930
Fmax
β ↑ 0.771 0.825 0.841 0.815 0.867 0.885 0.879 0.896 0.881 0.916 0.903 0.887 0.896 0.903 0.919

Emax
φ ↑ 0.879 0.929 0.925 0.913 0.932 0.945 0.947 0.953 0.945 0.962 0.956 0.945 0.949 0.953 0.965
M ↓ 0.058 0.056 0.044 0.059 0.036 0.033 0.031 0.026 0.028 0.022 0.025 0.031 0.027 0.028 0.022

ST
E

R
E Sα ↑ 0.825 0.848 0.875 0.873 0.879 0.889 0.886 0.893 0.879 0.905 0.903 0.908 0.895 0.901 0.911

Fmax
β ↑ 0.823 0.831 0.860 0.863 0.874 0.878 0.886 0.889 0.879 0.901 0.899 0.905 0.893 0.892 0.906

Emax
φ ↑ 0.887 0.912 0.925 0.927 0.925 0.929 0.938 0.936 0.928 0.946 0.944 0.949 0.939 0.937 0.947
M ↓ 0.075 0.086 0.064 0.068 0.051 0.054 0.047 0.044 0.044 0.042 0.039 0.040 0.043 0.043 0.037

R
G

B
D

13
5 Sα ↑ 0.770 0.863 0.842 0.848 0.872 0.904 0.900 0.904 0.884 0.929 0.934 0.909 0.931 0.924 0.935

Fmax
β ↑ 0.728 0.844 0.804 0.822 0.846 0.885 0.888 0.884 0.870 0.919 0.930 0.895 0.922 0.914 0.929

Emax
φ ↑ 0.881 0.932 0.893 0.928 0.923 0.946 0.943 0.941 0.920 0.968 0.976 0.945 0.970 0.966 0.972
M ↓ 0.068 0.055 0.049 0.065 0.038 0.030 0.030 0.026 0.029 0.022 0.019 0.028 0.019 0.023 0.019

D
U

TL
F

-D Sα ↑ 0.468 0.831 0.801 0.791 0.749 0.775 0.889 0.915 0.885 0.913 0.863 0.919 0.912 0.899 0.932
Fmax
β ↑ 0.357 0.823 0.771 0.767 0.718 0.742 0.898 0.924 0.892 0.916 0.857 0.927 0.914 0.906 0.939

Emax
φ ↑ 0.638 0.899 0.856 0.859 0.811 0.834 0.933 0.951 0.930 0.949 0.904 0.956 0.943 0.940 0.960
M ↓ 0.229 0.097 0.100 0.113 0.099 0.097 0.048 0.033 0.042 0.039 0.056 0.033 0.037 0.043 0.031

SI
P

Sα ↑ 0.720 0.716 0.842 0.833 0.850 0.864 0.806 0.874 0.826 0.879 0.875 0.858 0.867 0.875 0.885
Fmax
β ↑ 0.712 0.694 0.838 0.818 0.851 0.861 0.821 0.880 0.832 0.885 0.879 0.867 0.871 0.876 0.889

Emax
φ ↑ 0.819 0.829 0.901 0.897 0.903 0.910 0.875 0.921 0.890 0.923 0.919 0.913 0.907 0.918 0.924
M ↓ 0.118 0.139 0.071 0.086 0.064 0.063 0.085 0.053 0.070 0.051 0.051 0.063 0.060 0.054 0.048

Table 1: Quantitative SOD results in terms of S-measure (Sα), maximum F-measure (Fmax
β ), maximum E-measure (Emax

φ ) and
mean absolute error (M). Six widely used benchmark datasets are employed in the evaluation. ↑/↓ denotes that a larger/smaller
value is better. The best results are highlighted in bold.

the squeeze-excitation attention block (Hu, Shen, and Sun
2018). The underlying purpose is to learn different attention
weights considering both channel and temporal dimensions.
As shown in Fig. 5, suppose the input is a 4D tensor with
dimension T ×H ×W × C. Firstly, the tensor is reshaped
to H ×W × (C ∗ T ) to combine the modality information
into the channel dimension. Next, the typical channel atten-
tion mechanism (Hu, Shen, and Sun 2018) is applied to the
reshaped features as shown in Fig. 5, and finally the attended
feature tensor is reshaped back from (H ×W × (C ∗ T ))
to T × H ×W × C and then added with the original ten-
sor to form a residual attention manner. Our experimental
results show that CMA outperforms the naive 3D squeeze-
excitation block and is more suitable for our framework.

Experiments and Results
Datasets and Metrics
We evaluate our RD3D on six popular public datasets hav-
ing paired RGB and depth images, including: NJU2K (1,985
pairs) (Ju et al. 2014)), NLPR (1,000 pairs) (Peng et al.
2014), STERE (1,000 pairs) (Niu et al. 2012), DES (135
pairs, also called the RGBD135 dataset in some previous
works) (Cheng et al. 2014), SIP (929 pairs) (Fan et al. 2020a)
and DUTLF-D (1,200 pairs) (Piao et al. 2019). Following
(Chen and Li 2018; Chen, Li, and Su 2019; Han et al. 2017),
we use the same 1,485 pairs from NJU2K and 700 pairs from
NLPR for training. The remaining pairs are used for testing.

Specially, on the latest DUTLF-D dataset, we follow (Piao
et al. 2019; Zhao et al. 2020; Piao et al. 2020; Li et al. 2020;
Ji et al. 2020) to add additional 800 pairs from DUTLF-D
for training and test on the remaining 400 pairs. In summa-
ry, our training set contains 2,185 paired RGB and depth
images except when testing is conducted on DUTLF-D.

We use the newly proposed S-measure (Sα) (Fan et al.
2017) and E-measure (Eφ) (Fan et al. 2018b), as well as
the generally agreed F-measure (Fβ) (Borji et al. 2015) and
Mean Absolute Error (M) (Perazzi et al. 2012) as evalua-
tion metrics for comparing performance of different models.
These four metrics provide comprehensive and reliable e-
valuation results and have been adopted by many previous
works. Following (Fu et al. 2020a), we report the maximum
F-measure (Fmax

β ) and maximum E-measure (Emax
φ ) scores.

Implementation Details
3D ResNet We implement our 3D ResNet encoder based
on the 2D ResNet (He et al. 2016). We replace all 2D ker-
nels in the ResNet-50 with their 3D versions and the 3D ker-
nel weights are initialized by the 2D weights pre-trained on
ImageNet (Russakovsky et al. 2015) in a centralized initial-
ization manner (Girdhar et al. 2018). We reduce the channel
numbers of different side outputs to a fixed number 32 in the
channel reduction (CR) modules.

Training and Testing Settings Our framework is imple-
mented based on PyTorch (Paszke et al. 2019) on a work-
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   RGB      Depth       AFNet     CTMF       PCF      MMCI      CPFP     D3Net     DMRA       SSF      A2dele   JLDCF    UCNet     CoNet     cmMS     DANet      RD3D        GT

Figure 6: Qualitative comparisons of RD3D with state-of-the-art (SOTA) methods. “GT” indicates the ground truth.

Architecture Speed Size NLPR (500 pairs) NJU2K (300 pairs) STERE (1000 pairs) SIP (929 pairs)
(fps) (MB) Sα ↑ M ↓ Fβ ↑ Eφ ↑ Sα ↑ M ↓ Fβ ↑ Eφ ↑ Sα ↑ M ↓ Fβ ↑ Eφ ↑ Sα ↑ M ↓ Fβ ↑ Eφ ↑

Input Fusion 47.4 94.4 .919 .027 .901 .953 .904 .043 .904 .937 .892 .047 .885 .935 .876 .053 .879 .917
Two-stream 32.5 200.0 .929 .023 .918 .962 .913 .039 .911 .944 907 .040 .899 .941 .878 .052 .881 .923

Siamese 46.4 94.4 .927 .024 .917 .959 .915 .037 .913 .946 .904 .041 .898 .939 .867 .057 .867 .905
RD3D 45.6 180.8 .930 .022 .919 .965 .916 .036 .914 .947 .911 .037 .906 .947 .885 .048 .889 .924

Table 2: Comparisons of different backbone strategies on four large datasets. The results of our RD3D are highlighted in bold.
Here Fβ , Eφ mean Fmax

β and Emax
φ , respectively, whose superscripts are omitted for the sake of space.

station with 4 NVIDIA 1080Ti GPUs. During training, we
adopt the Adam optimizer with an initial learning rate of
0.0001, which is decayed by a cosine learning rate scheduler.
The weight decay is set to 0.001. The data is first resized
to [352, 352] and then augmented by random horizontal flip
and multi-scale transformation with the scale of {256, 352,
416}. We train for 100 epochs on 4 GPUs with the batch size
equals to 10 per GPU, and the total training time is about 6
hours. The model after the last epoch is used for inference.
Regarding the supervision, we calculate the typical binary
cross-entropy loss. During testing, an image of arbitrary size
is first resized to [352, 352] and the predicted saliency map
is resized back to its original size.

Comparisons with SOTAs
We compare RD3D with 14 SOTA deep RGB-D SOD mod-
els, including AFNet (Wang and Gong 2019), CTMF (Han
et al. 2017), PCF (Chen and Li 2018), MMCI (Chen, Li,
and Su 2019), CPFP (Zhao et al. 2019a), D3Net (Fan et al.
2020a), DMRA (Piao et al. 2019), SSF (Zhang et al. 2020c),
A2dele (Piao et al. 2020), JL-DCF (Fu et al. 2020a), UCNet
(Zhang et al. 2020b,a), CoNet (Ji et al. 2020), cmMS (Li
et al. 2020) and DANet (Zhao et al. 2020). Quantitative re-
sults are shown in Table 1. It can be seen that compared
with other methods, our results have notable improvemen-
t on the six datasets, advancing the best scores obtained by
SOTA models by an average of 0.68%/0.50% on Sα/Fmax

β .
We show visualization results of RD3D and other methods

in Fig. 6. In the global view, the detection of RD3D is more
accurate. In the detailed view, e.g., in the first row of Fig.
6, only RD3D can accurately identify the two people as the
foreground. In general, the decent qualitative performance
of RD3D is consistent with the quantitative analysis.

Ablation Studies: Backbone Strategies
To validate the pre-fusion in the backbone via 3D CNNs, we
compare the four backbone strategies shown in Fig. 1 (a)-
(d). Our method belongs to Fig. 1 (d), and we implement In-
put Fusion Network (Fig. 1 (c)), Two-stream Network (Fig.
1 (a)), and Siamese Network (Fig. 1 (d)) by switching the
encoder part of RD3D. Note that the main difference lies in
the way the encoder deals with multi-modal inputs. For fair
comparison, we keep the decoder the same. We implemen-
t Input Fusion Network by first concatenating the RGB and
depth images in the channel dimension and then fusing them
by the first convolution layer in the 2D ResNet. Since the in-
put shape is inconsistent with the original ResNet, we mod-
ify the first convolution layer and later repeat the encoder
outputs in the temporal axis to enforce input T = 2 for the
decoder. For Two-stream Network, we use two 2D ResNets
to extract hierarchical features separately. Likewise, features
are then concatenated in the temporal axis. The Siamese
Network is implemented by a shared 2D ResNet for RGB
and depth, while keeping other settings the same.

Table 2 shows experimental results on four large datasets
including NLPR, NJU2K, STERE and SIP. As can be seen,
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Model Speed Size NLPR (500 pairs) NJU2K (300 pairs) STERE (1000 pairs) SIP (929 pairs)
(fps) (MB) Sα ↑ M ↓ Fβ ↑ Eφ ↑ Sα ↑ M ↓ Fβ ↑ Eφ ↑ Sα ↑ M ↓ Fβ ↑ Eφ ↑ Sα ↑ M ↓ Fβ ↑ Eφ ↑

DANet 32.0 106.7 .915 .028 .903 .953 .899 .045 .898 .935 .901 .043 .892 .937 .875 .054 .876 .918
JL-DCF 9.0 520.0 .925 .022 .916 .962 .903 .043 .903 .944 .905 .042 .901 .946 .879 .051 .885 .923
RD3D 45.6 180.8 .930 .022 .919 .965 .916 .036 .914 .947 .911 .037 .906 .947 .885 .048 .889 .924

Model-1 52.5 180.5 .913 .031 .894 .949 .906 .043 .898 .940 .897 .049 .884 .935 .873 .059 .867 .915
Model-2 50.2 180.5 .918 .028 .899 .949 .913 .040 .913 .944 .906 .042 .897 .940 .878 .053 .882 .919
Model-3 45.8 180.7 .921 .027 .904 .949 .914 .039 .913 .942 .907 .042 .897 .939 .866 .059 .864 .901
Model-4 40.4 219.1 .931 .022 .921 .965 .920 .034 .923 .952 .908 .039 .901 .944 .883 .048 .890 .924

Table 3: Ablation results on four large datasets, where Fβ , Eφ mean Fmax
β and Emax

φ . The results of our RD3D are in bold.

RD3D based on 3D CNNs outperforms the other three strate-
gies by a notable margin. The Input Fusion Network per-
forms worst though its model size is small, because multi-
modality inputs are fused too naively, leading to insufficien-
t extraction of multi-modal information. Besides, the Two-
stream Network and Siamese Network are comparable to
each other, but both are worse than our strategy. This clear-
ly demonstrates the effectiveness of pre-fusion in the back-
bone through 3D convolutions. Regarding the model speed
and size of our scheme, they are almost equal to those of the
Two-stream Network, but our numbers are slightly better.

Ablation Studies: Other Modules
We take the full model of RD3D as the reference and con-
duct thorough ablation studies by replacing or removing the
key components. The full version is denoted as RD3D (3D
ResNet+CMA +RBPP), where “CMA” and “RBPP” refer
to the usage of CMA modules and RBPP. Firstly, we con-
struct a baseline “Model-1” (3D ResNet) by removing C-
MA modules and RBPP. Thus, the decoder of this model
is just a plain 3D UNet decoder. Secondly, to validate the
effectiveness of the rich back-projection paths (RBPP), we
realize “Model-2” (3D ResNet+CMA) by removing all the
back-projection paths. Thirdly, to demonstrate the benefit of
channel-modality attention modules (CMA), we implement
“Model-3” (3D ResNet+CA+RBPP), which replaces all C-
MA modules with naive squeeze-excitation channel atten-
tion modules (Hu, Shen, and Sun 2018), namely only chan-
nel attention is considered and during the squeeze operation,
the global pooling is applied to the other three dimensions.
Lastly, to investigate the proposed CMA modules, we al-
so construct “Model-4” (3D ResNet+CMA*+RBPP), where
“CMA*” means moving CMA from the decoder to the en-
coder stage. CMA modules are inserted into the ResNet
backbone in a way as suggested by (Hu, Shen, and Sun
2018). Results of the above ablation studies are reported in
Table 3, where two SOTA models DANet and JL-DCF are
listed also. The following observations can be achieved.
Effectiveness of the Baseline Model. Without bells and
whistles, the baseline model “Model-1” performs favorably
against the two latest SOTA models DANet and JL-DCF,
showing the potentials of using 3D convolutions for achiev-
ing effective cross-modality feature aggregation. Note that
this baseline model consists of only basic 3D convolutions
without any other augmentation.
Effectiveness of RBPP. Comparing between “Model-2” and

the full RD3D in Table 3 shows that removing the RBPP
leads to consistent performance degeneration. This implies
that taking use of all information from higher-resolution
levels is beneficial, especially to our framework where
the back-projection paths contain rich multi-level modality-
aware information.
Effectiveness of CMA. Comparing “Model-3” to RD3D in
Table 3, one see that when the CMA modules are replaced,
the performance drops, demonstrating that our channel-
modality attention mechanism can enhance the final pre-
diction and is probably more suitable for our fully 3D
CNNs-based framework. Comparing “Model-2” to “Model-
1”, without RBPP, the improvement from adding CMA is
still notable. This implies that combining RBPP and CMA is
a reasonable and effective design, which results in substan-
tial enhancement. In addition, “Model-4” achieves slightly
better benchmark results than RD3D, showing that the pro-
posed CMA modules can also work on the backbone. How-
ever, moving CMA to the encoder leads to slightly the high-
er computation and model size as in Table 3, because much
more CMA modules have been deployed. Since using atten-
tion modules in the backbone is usually not adopted by the
previous works, for fair comparison, we opt to deploy CMA
in the decoder of RD3D.

Conclusion
We propose a novel RGB-D SOD framework called RD3D,
which is based on 3D CNNs and conducts cross-modal fea-
ture fusion in a progressive manner. RD3D first utilizes 3D
convolutions for pre-fusion between RGB and depth, and
then conduct explicit fusion of modality-aware features by
a 3D decoder augmented with rich back-projection paths
and channel-modality attention modules. Extensive experi-
ments on six benchmark datasets demonstrate that RD3D,
which is the first fully 3D CNNs-based RGB-D SOD mod-
el, performs favorably against existing SOTA approaches.
Detailed ablation studies and discussions validate the key
components of RD3D. In the future, we hope RD3D could
encourage more RGB-D SOD designs based on 3D CNNs.
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