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Abstract
Image demosaicking and denoising are the two key funda-
mental steps in digital camera pipelines, aiming to recon-
struct clean color images from noisy luminance readings. In
this paper, we propose and study Wild-JDD, a novel learn-
ing framework for joint demosaicking and denoising in the
wild. In contrast to previous works which generally assume
the ground truth of training data is a perfect reflection of the
reality, we consider here the more common imperfect case
of ground truth uncertainty in the wild. We first illustrate its
manifestation as various kinds of artifacts including zipper
effect, color moire and residual noise. Then we formulate a
two-stage data degradation process to capture such ground
truth uncertainty, where a conjugate prior distribution is im-
posed upon a base distribution. After that, we derive an ev-
idence lower bound (ELBO) loss to train a neural network
that approximates the parameters of the conjugate prior dis-
tribution conditioned on the degraded input. Finally, to fur-
ther enhance the performance for out-of-distribution input,
we design a simple but effective fine-tuning strategy by tak-
ing the input as a weakly informative prior. Taking into ac-
count ground truth uncertainty, Wild-JDD enjoys good inter-
pretability during optimization. Extensive experiments vali-
date that it outperforms state-of-the-art schemes on joint de-
mosaicking and denoising tasks on both synthetic and realis-
tic raw datasets.

Introduction
Modern digital cameras use a single sensor overlaid with a
color filter array (CFA) to capture an image. This means that
only one color channel’s value is recorded for each pixel
location. LetN be the number of pixels in an image, the raw
data acquisition process can be simply modeled as

x = Az + n, (1)
where x ∈ RN is a noisy raw data vector of luminance read-
ings, A ∈ RN×3N is a mosaicking operation, z ∈ R3N

is an unknown clean image with three color channels, and
n ∈ RN is a noise vector.

Before the final “cooked” image is ready for the users,
the raw data undergoes a series of processing steps, known
as the image processing pipeline. Among those, demosaick-
ing and denoising (DM&DN) are two of the very early and
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(a) Zipper effect. (b) Color moire. (c) Residual noise.

Figure 1: Imperfect ground truth examples (electronic zoom-
in recommended): (a) A ground truth image from CBSD
dataset (Arbeláez et al. 2011) suffering from zipper effect,
an artificial jagged pattern around edges; (b) Color moire in
an image from ImageNet dataset (Russakovsky et al. 2015).
Such artifact appears as false coloring due to interpolation
error; (c) Noticeable residual noise in the collected “clean”
image from Renoir dataset (Anaya and Barbu 2018).

most crucial steps. Demosaicking aims to undo the mosaick-
ing operation A by interpolating the missing two-thirds of
each pixel’s color channels, while denoising removes the in-
evitable noise n from the measurement x. Due to their mod-
ular property, substantial traditional literature takes them as
independent tasks and executes them in a sequential manner.
This yields potentially suboptimal performance, and inspires
several works on jointly addressing the DM&DN tasks (Liu
et al. 2020; Kokkinos and Lefkimmiatis 2019; Tan et al.
2017a).

Among the joint DM&DN works, data-driven approaches
(Liu et al. 2020; Tan et al. 2018; Kokkinos and Lefkimmi-
atis 2018) have been shown more effective than applying
handcrafted priors and filters. These approaches usually re-
quire a collection of paired data, which are the mosaicked
noisy images x and the demosaicked clean “ground truth”
counterparts y. However, it is often costly and tedious to
collect a large amount of high quality real-life data. Further-
more, the collected y is not perfect without artifacts or noise.
We illustrate this in Figure 1. For demosaicking, many ap-
proaches (Syu, Chen, and Chuang 2018; Tan et al. 2017b)
take the output from a camera pipeline as y, possibly in-
troducing artifacts like zipper effect or color moire in re-
gions with rich textures and sharp edges. For denoising, the
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“clean” images are often collected by either setting a low-
ISO (Plotz and Roth 2017; Anaya and Barbu 2018) or av-
eraging a set of repeated shots of the same scene (Abdel-
hamed, Lin, and Brown 2018), which still contain notice-
able noise. Moreover, such denoising data collecting process
usually assumes the captured objects to be perfectly still, or
requires a precise spatial alignment and intensity calibration
among a burst of images. Potential failure cases would intro-
duce additional error into the collected dataset. Therefore,
all these in-the-wild issues means that the “ground truth” y
deviates from the needed authentic z, limiting the perfor-
mance of DM&DN model.

To account for the fact that the collected ground truth y
is not a perfect reflection of z, we propose Wild-JDD, a
novel joint demosaiking and denoising learning framework
to enable training under ground truth uncertainty. In Wild-
JDD, we first formulate a two-stage data degradation pro-
cess, where a conjugate prior distribution is imposed upon a
base Gaussian distribution. Then, we derive an ELBO loss
from a variational perspective. In this way, the optimization
process is aware of the target uncertainty and prevents the
trained neural network from over-fitting to those randomness
errors. Beyond that, when the testing image falls outside of
the training range, we further enhance the performance by
regarding the input as a weakly informative prior.

Our main contributions are summarized as follows:

• We identify in existing DM&DN datasets the ground truth
uncertainty issues, manifesting themselves as various ar-
tifacts in the wild, such as zipper effect, color moire and
residual noise.

• We introduce a novel learning framework for joint demo-
saicking and denoising in the wild (Wild-JDD), where a
two-stage data degradation and an ELBO loss are formu-
lated for optimization. We also propose a simple but ef-
fective fine-tuning strategy for out-of-distribution input.

• Instead of simply generating a demosaicked clean image,
networks instantiated from our framework are capable of
estimating all the parameters involved in data degradation
and reconstruction, which provides better interpretability
of the optimization process.

• We conduct extensive experiments on both synthetic
and realistic datasets. Quantitative and qualitative com-
parisons show that Wild-JDD substantially outperforms
state-of-the-art works.

Related Work
In this section, we review the most relevant DM&DN works
from sequential processing to joint optimization, and from
supervised learning to self-supervised fine-tuning.

Traditionally, demosaicking and denoising are performed
sequentially in arbitrary order (Zhang et al. 2011; Akiyama,
Tanaka, and Okutomi 2015; Zhang et al. 2014). How-
ever, demosaicking first would correlate the noise spa-
tially, break the commonly used independent identically dis-
tributed (i.i.d.) assumption imposed on the noise model-
ing, and increase the difficulty of the following denoising
step (Nam et al. 2016; Zhang et al. 2009). Another issue

arises if denoising is performed first, ending up with an
over-smoothed result (Jin, Facciolo, and Morel 2020). To
address the above problems, recent studies jointly consider
DM&DN for better performance. Khashabi et al. proposed
one of the very first joint approaches through a learned non-
parametric random field, and published an MSR dataset for
evaluation. Heide et al. embedded a non-local natural prior
into a global primal-dual optimization. Klatzer et al. for-
mulated a sequential energy minimization framework. How-
ever, these heuristics-based methods were outperformed by
the deep-learning-based approaches. Gharbi et al. trained a
neural network on millions of images to achieve better re-
sults and shorter running time. After that, new approaches
were developed to extend the CNN’s capability in the field:
first with more effective network blocks (Huang et al. 2018;
Tan et al. 2018), or a cascade of refinement frameworks
(Kokkinos and Lefkimmiatis 2019, 2018), then by relying
on a variational deep image prior (Park et al. 2020), and ex-
ploiting density map guidance to adaptively recover regions
with different frequencies (Liu et al. 2020). These learning-
based methods have achieved state-of-art performances, but
the assumption that the clean color image is perfect remains
in doubt.

Data-driven approaches normally perform well if the test-
ing image shares a similar distribution with the training data
(Mohseni et al. 2020; Ehret et al. 2019). However, in prac-
tice, the noise type remains diversified and may fall outside
the training range. For this reason, Lehtinen et al. introduced
a pioneering “noise2noise” training strategy using pairs of
noisy images. A similar “mosaic2mosaic” framework im-
proved a joint DM&DN network by fine-tuning bursts of
raw images (Ehret et al. 2019). Nonetheless, performance
of these methods can be limited by inadequate shots of the
same scene. Batson and Royer; Krull, Buchholz, and Jug
tackled the problem by using only one realization for each
image at the price of a performance drop. These insightful
methods enable adaptive fine-tuning, but the quality or un-
certainty level of the pseudo ground truth has not been taken
into account.

Our method differs with previous works in that we do not
ideally assume the collected “ground truth” as perfect data.
Instead, we acknowledge the presence of various artifacts
and consider the case of training a joint DM&DN network
under the ground truth uncertainty.

Wild-JDD Methodology
We start with a dataset D =

{
x(i),y(i)

}M
i=1

, consisting
of M pairs of images. Our goal is to learn a function that
maps x(i) to its corresponding authentic ground truth z(i)

(note that y(i) is an approximation of z(i)). This goal is ap-
proached by two steps: (1) we formulate a two-stage data
degradation to link up all the parameters involved; (2) we
derive an expression of data likelihood for optimization.
Moreover, a fine-tuning strategy is applied to deal with
out-of-distribution inputs. To keep dimensional consistency
across different variables, in the following, without other-
wise stated, x(i) is first bilinearly interpolated to a color im-
age x̃(i) ∈ R3N , e.g. interpolating a missing green channel
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Figure 2: Visualization of the relation between the quality
of collected clean image and the noise level. Firstly multiple
(ten here) noisy realizations are generated given the original
cartoon image and its spatial noise map. Then the relatively
clean image is collected by averaging across those noisy re-
alizations. The PSNR map between the averaged image and
the original version indicates that those regions with higher
noise levels correspond to lower PSNR values and higher
uncertainties of the collected clean pixels.

by averaging its four green neighbors. The superscript (i) is
ignored in following subsections for simplicity.

Two-stage Data Degradation
Conventionally, the pixel/channel-wise expression for
data degradation is modelled with an additive Gaussian
noise (Zhou et al. 2019; Jia et al. 2019) as

x̃j |yj , σ2
j ∼ N (yj , σ

2
j ), (2)

where j = 1, 2, · · · , 3N specifies a dimension within an
image. However, yj is just a point estimator of the unknown
authentic ground truth zj , and training with yj only achieves
a suboptimal performance as variance of this estimator is
not considered. As such, we adopt a brand-new degradation
model as

x̃j |zj , σ2
j ∼ N (zj , σ

2
j ), (3)

and seek to first parameterize the unknown authentic ground
truth zj . Suppose zj follows a normal distribution with mean
yj and variance σ2

j /λ:

zj |yj , σ2
j , λ ∼ N (yj , σ

2
j /λ), (4)

where σ2
j has an inverse gamma distribution parameterized

by α, βj :
σ2
j |α, βj ∼ Γ−1(α, βj). (5)

Then
(
zj , σ

2
j

)
can be jointly denoted as a normal-inverse-

gamma distribution:(
zj , σ

2
j

)
|yj , λ, α, βj ∼ N-Γ−1(yj , λ, α, βj), (6)

which serves as a conjugate prior distribution over the base
distribution in Equation (3). The collected ground truth yj

Figure 3: Two-stage data degradation corresponds to two
sampling processes: first sampling from the conjugate prior
distribution to obtain parameters of the base distribution;
then sampling from the base distribution to obtain a de-
graded sample.

is an estimate of zj , while parameter λ reflects the quality
or uncertainty level of this estimation. For α and βj , they
can be interpreted in a way that the variance σ2

j is estimated
from 2α observations with a sum of sample squared devia-
tions 2βj . Similar to estimating the noise level by applying
a Gaussian filter to the variance map (Yue et al. 2019), we
parameterize α and βj as

α =
w2

2
,

βj =
w2

2
B({(xj+t − yj+t)2}bw

2/2c
t=−bw2/2c),

(7)

where B denotes a bilateral filtering operation on a variance
map patch centered at pixel j with odd window size w. Note
that λ and α here are invariant to the dimension j. According
to Equation (4), the variance of zj or the uncertainty of yj
is proportional to the noise level σ2

j . This can be reasonable,
e.g., when collecting the clean ground truth by averaging
multiple shots of the same scene, the noisier region should
have lower quality and higher uncertainty (see Figure 2).

Therefore, based on equations (3) and (6), the data degra-
dation process comprises two stages (see Figure 3): (1) zj
and σ2

j take values by sampling from the prior distribution
p(zj , σ

2
j |yj , λ, α, βj); (2) then a degraded sample x̃j is gen-

erated from the conditional distribution p(x̃j |zj , σ2
j ).

Maximizing ELBO
For the purpose of predicting latent variables z,σ2 given ob-
served data point x̃, or approximating the intractable poste-
rior p(z,σ2|x̃), an encoder qw(z,σ2|x̃) is introduced with
learnable weights w, as in the work (Kingma and Welling
2013). Notably, due to our use of a conjugate prior in Equa-
tion (6), this encoder qw(z,σ2|x̃) is in the same probability
distribution family as the prior, i.e.,

qw(z,σ2|x̃) =
3N∏
i=1

N-Γ−1(ŷj , λ̂j , α̂j , β̂j), (8)

where {ŷj , λ̂j , α̂j , β̂j}3Nj=1 is the output of a neural network.
Note that here λ̂j is dimension-wise output learning the
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Figure 4: The overall architecture. The input was first downscaled into four color maps. Then a series of convolutional layers are
applied to remove the noise and to interpolate missing color values. The output is obtained by applying an upscaling operation
followed by an additional convolutional layer. This network learns a posterior distribution qw(z,σ2|x) = N-Γ−1(ŷ, λ̂, α̂, β̂).

same target λ for different j. The same is applicable to α̂j
and α.

We next describe how we actually train such a neural
network using a maximum likelihood estimation approach.
As described in the work (Kingma and Welling 2013), the
marginal log-likelihood can be calculated as

log p(x̃) = DKL(qw(z,σ2|x̃)||p(z,σ2|x̃)) + L(w; x̃),
(9)

where the KL divergence term is a non-negative value.
Therefore, maximizing the marginal log-likelihood log p(x̃)
is converted to maximizing the second term, called the evi-
dence lower bound (ELBO), and decomposed as

L(w; x̃) =−DKL(qw(z,σ2|x̃)||p(z,σ2))

+ Eqw(z,σ2|x̃)
[
log p(x̃|z,σ2)

]
.

(10)

This ELBO loss is maximized when: (1) the divergence term
encourages the distribution returned by the encoder network
close to the prior; (2) the expectation term guides the net-
work predicting parameters with a high likelihood after see-
ing the corrupted image. In the work (Kingma and Welling
2013), the sampling process requires a reparameterization
trick for gradient back-propagation. However, such kinds of
tricks are unnecessary here because a closed form expres-
sion for L(w; x̃) can be derived analytically as follows:

DKL(qw(z,σ2|x̃)||p(z,σ2))

=
3N∑
j=1

{
λα̂j

2β̂j
(yj − ŷj)2 +

λ

2λ̂j
− 1

2
log

λ

λ̂j
+ αj log

β̂j
βj

−1

2
+ log

Γ(αj)

Γ(α̂j)
+ (α̂j − αj)ψ(α̂j)− (β̂j − βj)

α̂j

β̂j

}
,

(11)

Eq(z,σ2|x̃)
[
log p(x̃|z,σ2)

]
=

3N∑
j=1

{
− log 2π

2

− log β̂j − ψ(α̂j)

2
− β̂j

2λ̂2j (α̂j − 1)
− α̂j(x̃j − ŷj)2

2β̂j

}
,

(12)

where Γ(·), ψ(·) denote the Gamma and Di-gamma func-
tion respectively (detailed derivations are provided in the
supplementary materials). Looking deeper into the term

λα̂j

2β̂j
(yj − ŷj)2 in Equation (11), we can notice that if the pa-

rameter λj is set to be large enough, the ELBO loss would
degenerate to a mean squared error (MSE). When using an
MSE loss, too much attention would be put into the restora-
tion term (yj−ŷj)2, leaving the existence of ground truth un-
certainty omitted and making the model biased to the train-
ing data. Therefore, from a variational point of view, Wild-
JDD provides a sound interpretability of the reason why the
restoration term and the rest regularization terms should co-
exist in the training process.

After formulating the ELBO loss for each single image,
the overall optimization objective is obtained by computing
across the entire dataset:

min
w

M∑
i=1

− log p(x̃(i)); log p(x̃(i)) ≈ L(w; x̃(i)). (13)

At test time, the desired demosaicked clean image is ob-
tained by taking the expectation of z, i.e. E[z] = ŷ, while
the noise map is parameterized as E[σ2] = β̂

α̂−1 , according
to the definition of N-Γ−1 distribution.

Corrupted Input as a Weakly Informative Prior
Data-driven approaches are generally promising when a test
image shares similar characteristics with the training set.
However, their performances are limited when the input is
considerably different, e.g. having a different type of noise.
Inspired by the “noise2noise” (Lehtinen et al. 2018) and
“mosaic2mosaic” (Ehret et al. 2019) algorithms, we further
improve our trained model by taking the corrupted input as
a weakly informative prior, i.e. replacing yj by x̃j during
fine-tuning and using a smaller λ to indicate the increased
uncertainty. However, it comes with an underlying problem:
the network may merely learn an identity mapping function,
i.e. predicting x̃j given x̃j .

It can be observed that in smooth regions, pixels share a
strong spatial correlation. Therefore, we tackle the above is-
sue by an alternative scheme, replacing yj by a random pixel

x̃j+t in a small patch {x̃j+t}bp
2/2c

t=−bp2/2c centered at pixel x̃j ,
where p denotes the patch size. It is possible that x̃j+t dif-
fers a lot to x̃j in texture-rich regions, requiring another step
to exclude the outlying x̃j+t. We achieve this by applying a
simple filter: if the value x̃j+t falls outside the confidence
interval (x̃j − 2σj , x̃j + 2σj), this informative prior x̃j+t is
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Method σ
Kodak

(24 images)
McMaster

(18 images)
WED-CDM
(100 images)

MIT moire
(1000 images)

Urban100
(100 images)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
FlexISP 31.31 0.8694 31.17 0.8627 31.08 0.8754 29.06 0.8206 30.37 0.8832
SEM 34.59 0.9269 32.36 0.8869 32.85 0.9234 27.46 0.8292 27.19 0.7813
ADMM 31.60 0.8787 32.63 0.8966 31.79 0.9003 28.58 0.7923 28.57 0.8578
DeepJoint 5 36.11 0.9455 35.47 0.9378 35.09 0.9485 31.82 0.9015 34.04 0.9510
Kokkinos 36.22 0.9426 34.74 0.9252 35.12 0.9410 31.94 0.8882 34.07 0.9358
SGNet - - - - - - 32.15 0.9043 34.54 0.9533
Wild-JDD 36.88 0.9520 35.85 0.9425 35.92 0.9543 32.29 0.8987 34.70 0.9534
Wild-JDD* 36.97 0.9526 35.94 0.9435 36.01 0.9551 32.39 0.8999 34.83 0.9540
FlexISP 28.64 0.7583 28.51 0.7534 28.24 0.7691 26.61 0.7491 27.51 0.8196
SEM 29.78 0.7681 28.68 0.7306 28.90 0.7563 25.45 0.7531 25.36 0.7094
ADMM 31.04 0.8595 31.72 0.8699 30.90 0.8758 28.26 0.7720 27.48 0.8388
DeepJoint 10 33.10 0.9018 33.18 0.9047 32.69 0.9156 29.75 0.8561 31.60 0.9152
Kokkinos 33.32 0.9022 32.75 0.8956 32.76 0.9066 30.01 0.8123 31.73 0.8912
SGNet - - - - - - 30.09 0.8619 32.14 0.9229
Wild-JDD 33.81 0.9127 33.53 0.9123 33.44 0.9244 30.30 0.8645 32.42 0.9288
Wild-JDD* 33.88 0.9136 33.61 0.9137 33.51 0.9255 30.37 0.8657 32.54 0.9299
FlexISP 26.67 0.6541 26.55 0.6572 26.24 0.6694 24.91 0.6851 25.55 0.7642
SEM 25.79 0.5954 25.45 0.5800 25.46 0.5799 23.23 0.6527 23.25 0.6156
ADMM 30.16 0.8384 30.50 0.8412 29.85 0.8497 27.58 0.7497 28.37 0.8440
DeepJoint 15 31.25 0.8603 31.49 0.8707 30.99 0.8823 28.22 0.8088 29.73 0.8802
Kokkinos 31.28 0.8674 30.98 0.8605 30.94 0.8710 28.28 0.7693 29.87 0.8451
SGNet - - - - - - 28.60 0.8188 30.37 0.8923
Wild-JDD 31.92 0.8765 31.90 0.8846 31.75 0.8965 28.89 0.8310 30.79 0.9055
Wild-JDD* 31.99 0.8777 31.97 0.8863 31.82 0.8979 28.95 0.8325 30.89 0.9070

Table 1: Comparison against state-of-the-art works on five datasets. The parameter σ indicates the noise level of inputs corrupted
by additive white Gaussian noise. The best and second best results are in bold and Italic, respectively. Note that for SGNet, the
code is not released publicly and their results on Kodak, McMaster and WED-CDM datasets are not reported in their paper.

masked from computing the fine-tuning ELBO loss, i.e.,

Lft =
3N∑
j=1

1(x̃j+t ∈ (x̃j−2σj , x̃j+2σj))Lj(w; x̃), (14)

where 1(·) denotes an indicator function, and Lj(w; x̃) can
be computed with j-indexed components in Equation (10),
(11), (12) after replacing yj by x̃j+t.

Illustrative Experimental Results
To show the effectiveness of our framework, we conduct ex-
tensive experiments with both synthetic datasets and realistic
raw data. We focus on the Bayer pattern, which has been the
dominating choice among various CFA patterns.

Network Architecture
In previous section, qw(z,σ2|x̃) represents the network tak-
ing x̃ as the input. However, the original input is actually x,
and the bilinear interpolation process from x to x̃ can be
considered as part of the job done by the network. There-
fore, our network is trained to learn a mapping function
qw(z,σ2|x). We use a light-weight network architecture as
shown in Figure 4. The GRDB building module refers to
a grouped Residual Dense Block (Zhang et al. 2018), con-
sisting of dense connected layers and a local feature fusion.

A downscaling layer is positioned at the first layer to re-
arrange a mosaicked input to four quarter-resolution color
maps. This rearrangement helps to save memory and speed
up the training. Each of the first three convolution layers has
64 filters with 3×3 kernel size. After that, an upscaling layer
is used to unpack the features back to full-resolution. The
last convolution layer produces 12 feature maps with 3 × 3
kernel size. These 12 feature maps correspond to four pa-
rameters ŷ, λ̂, α̂, β̂, each of which has 3 maps. The network
is implemented using PyTorch framework.

Experiments on Synthetic Datasets
We first compare our method with previous works on the
synthetic datasets in sRGB space, following the convention
without an inverse ISP processing (Liu et al. 2020; Klatzer
et al. 2016). In this experiment, 800 high-resolution images
from DIV2K (Timofte et al. 2017) and 2650 high-resolution
images from Flickr2K (Lim et al. 2017) are used for training.
These images are randomly cropped into 120× 120 patches
with a batch size of 128. After the augmentation by flip-
ping and rotation, the noisy mosaicked inputs are generated
by applying the Bayer pattern sampling and adding random
Gaussian noise in the range of [0, 20]. Unlike most denois-
ing works assuming the i.i.d. noise, which deviates from the
practical application, we adopt non-i.i.d Gaussian modeling
with spatially variant noise levels, following the work (Yue
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(a) Inputs (b) FlexISP (c) SEM (d) ADMM (e) DeepJoint (f) Kokkinos (g) Wild-JDD (h) Ground truth

Figure 5: Visual comparison of our method against competing related works. Our reconstructions preserve texture details of
high quality without introducing noticeable moire or zipper artifacts.

et al. 2019). During network training, we empirically set the
parameter λ as 2e3 and α as 180.5 (window size w as 19).
The Adam optimizer (Kingma and Ba 2014) is used. The
learning rate is initialized as 5e-4, reduced by a factor of
0.8 when the training meets a plateau in PSNR, with a mini-
mum value of 1e-4. The whole training process takes around
5 days on a single RTX 2080Ti GPU.

For testing, five widely-used benchmark datasets are used,
including: Kodak1, McMaster (Zhang et al. 2011), WED-
CDM (Tan et al. 2017b), MIT moire (Gharbi et al. 2016) and
Urban100 (Huang, Singh, and Ahuja 2015). These datasets
are collected from various devices under different scenarios.
Note that the ground truth in these datasets are not perfect
either. However, if one method can consistently outperform
others across various datasets, its effectiveness can still be
validated and approved. For comparison, six existing state-
of-the-art works on joint DM&DN task are adopted, includ-
ing: FlexISP (Heide et al. 2014), SEM (Klatzer et al. 2016),
ADMM (Tan et al. 2017a), DeepJoint (Gharbi et al. 2016),
Kokkinos (Kokkinos and Lefkimmiatis 2018) and SGNet
(Liu et al. 2020). We run their source code for evaluation
or directly cite their reported performance if the code is not
avaiable. The results are reported in both PSNR and SSIM
matrices listed in Table 1.

Overall, our method outperforms all other works quan-
titatively, though our method is trained for non-i.i.d. noise
cases. For both DeepJoint and SGNet, they assume an accu-
rate noise map as known input, which is not reasonable in
practice. In contrast, our method is able to perform a truly-
blind reconstruction without such a known noise map. To
further improve the performance, we adopt a self-ensemble
strategy by applying the flipping and rotation on the input
to generate 8 augmented inputs. After being processed by
the network, 8 outputs are obtained and transformed back to
the original geometry, followed by an averaging to get a uni-
fied final output. Note that the augmentation on input would
break its Bayer pattern, e.g. from RGGB to GRBG. There-
fore, a Bayer Preserving Unification is utilized by padding
and cropping the image borders (Liu et al. 2019). We denote

1http://r0k.us/graphics/kodak

Method linear sRGB
PSNR SSIM PSNR SSIM

JMCDM 37.44 0.971 31.35 0.942
RTF 37.77 0.976 31.77 0.951
FlexISP 38.28 0.974 31.76 0.941
SEM 38.93 0.980 32.93 0.960
DeepJoint 38.61 0.963 32.58 0.913
Kokkinos 39.29 0.975 33.37 0.930
MMNet20 40.07 0.979 34.24 0.942
DMCNN-VD 38.33 0.968 32.00 0.920
DMCNN-VD-Tr 40.07 0.981 34.08 0.957
Wild-JDD 40.16 0.980 34.34 0.945
Wild-JDD* 40.36 0.981 34.59 0.947

Table 2: Evaluation on realistic raw data. Our network is
trained once using linear data and evaluated on both linear
and sRGB space.

our method with self-ensemble as Wild-JDD*. Qualitative
comparison is also provided in Figure 5. Our reconstruc-
tions remove the noise and preserve details pretty well with-
out introducing noticeable artifacts, while other works tend
to produce color moire in high-frequency regions. Although
Kokkinos (Kokkinos and Lefkimmiatis 2018) also has good
immunity to those artifacts, the produced images are over-
smoothed due to their iterative processing properties.

Experiments on Realistic Raw Data
In the previous experiment, we trained and evaluated on
sRGB data to enable more comparison with other works.
However, Khashabi et al. suggested that the evaluation
should also be conducted on the raw data and thus pro-
posed a realistic MSR 16-bits benchmark dataset. We retrain
our network on their Linear Bayer Panasonic set with 200
images, in the same parameter setting to previous experi-
ment. Table 2 reports our overall better performance in both
linear and sRGB space compared to other representative
works, including JMCDM (Chang, Ding, and Li 2015), RTF
(Khashabi et al. 2014), FlexISP (Heide et al. 2014), SEM
(Klatzer et al. 2016), DeepJoint (Gharbi et al. 2016), Kokki-
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Figure 6: Increasing PSNR values when fine-tuning for
different corrupted inputs. For each iteration, the updated
PSNR values are obtained by averaging them across the
McM dataset.

Method Kodak McMaster WED-CDM
PSNR SSIM PSNR SSIM PSNR SSIM

MSE 33.77 0.9124 33.45 0.9096 33.37 0.9233
ELBO 33.81 0.9127 33.53 0.9123 33.44 0.9244

Table 3: Comparison of ELBO against the MSE on synthetic
datasets with noise level σ = 10.

nos (Kokkinos and Lefkimmiatis 2018), MMNet20 (Kokki-
nos and Lefkimmiatis 2019), DMCNN-VD and DMCNN-
VD-Tr (Syu, Chen, and Chuang 2018).

Fine-tuning Out-of-distribution Input
To examine the effectiveness of our fine-tuning strategy,
three types of noise are considered, including Uniform,
Poisson-Gaussian and Brown-Gaussian. Implementation de-
tails are similar to previous experiments except that parame-
ter λ is set to be a smaller value 1, the learning rate decreased
to 2e-6 and p is empirically set as 3. The results in Figure 6
show a 0.1∼0.3 dB PSNR improvement as the number of it-
erations increases until roughly 50. Notably, with too many
iterations, the performance would drop from its peak. This
concern could be eased with the help of no-reference image
quality assessment tools (Xu, Jiang, and Min 2017).

Ablation Study
ELBO versus MSE When setting the parameter λ to be
large enough, our ELBO loss would degrade to a commonly
used MSE loss, which assumes the dataset ground truth to be
a perfect target. The superiority of using ELBO against MSE
loss is validated in Table 3, where a consistent PSNR im-
provement can be observed. This slight improvement comes
from capturing the mild uncertainty embedded in the col-
lected ground truth during training.

We also conduct an additional experiment to compare
their optimization process. We take a single image from the
Cartoon Set (Royer et al. 2020) as z. Then a Bayer pattern
mosaicking and AWGN noise are applied to this image, fol-
lowed by a bilinear interpolation to obtain a corrupted ver-
sion x̃. This corrupted image x̃ is set to be the learning ob-
jective of a neural work. As described in the work Deep Im-
age Prior (Ulyanov, Vedaldi, and Lempitsky 2018), a neural

Figure 7: Comparison of ELBO against MSE on learning a
cartoon image.

(a) Input x̃ (b) Mask

GT FT FT w/o mask

(c) Visual comparison

Figure 8: Fine-tuning with and without the mask.

network tends to learn the clean signal faster than learning
the random noise. Therefore, we can see that in Figure 7, the
PSNR curve of MSE increases and then decreases. When
ELBO comes into play, its PSNR curve fluctuates roughly
around the curve of MSE. This fluctuation results from the
interaction between ELBO’s restoration term and ELBO’s
regularization terms. This is consistent to our expectation,
that the neural network is aware of the uncertainty affili-
ated with the target x̃ instead of treating x̃ as the absolute
learning target. Therefore, training with our ELBO loss can
achieve a higher intermediate peak of the PSNR curve.

Effect of the mask Using the mask during fine-tuning can
effectively avoid edges getting blurred. As shown in Figure
8 (b), a mask map generated by our simple confidence in-
terval scheme is able to outline those edges. In Figure 8 (c),
fine-tuning with such a mask preserves the sharp edges more
faithfully than fine-tuning without the mask.

Conclusion
We have presented the Wild-JDD, a novel learning frame-
work for joint demosaicking and denoising tasks. We iden-
tify the ground truth uncertainty issues, formulate a two-
stage data degradation process and derive an ELBO loss for
optimization. We also propose a simple but effective fine-
tuning strategy for out-of-distribution input. Comprehensive
experiments demonstrate the effectiveness of our method.
Wild-JDD not only outperforms state-of-the-art solutions in
terms of both statistical and perceptual quality by a clear
margin, but also provides good interpretability, where the
restoration term and the rest regularization terms coexist to
account for the learning target uncertainty. We hope that
Wild-JDD will inspire more future research to study the ef-
fective training under the ground truth uncertainty in image-
to-image translation tasks.
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