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Abstract

Convolutional neural networks (CNN) have achieved great
success in analyzing tropical cyclones (TC) with satellite im-
ages in several tasks, such as TC intensity estimation. In con-
trast, TC structure, which is conventionally described by a
few parameters estimated subjectively by meteorology spe-
cialists, is still hard to be profiled objectively and routinely.
This study applies CNN on satellite images to create the en-
tire TC structure profiles, covering all the structural param-
eters. By utilizing the meteorological domain knowledge to
construct TC wind profiles based on historical structure pa-
rameters, we provide valuable labels for training in our newly
released benchmark dataset. With such a dataset, we hope to
attract more attention to this crucial issue among data sci-
entists. Meanwhile, a baseline is established based on a spe-
cialized convolutional model operating on polar-coordinates.
We discovered that it is more feasible and physically reason-
able to extract structural information on polar-coordinates,
instead of Cartesian coordinates, according to a TC’s ro-
tational and spiral natures. Experimental results on the re-
leased benchmark dataset verified the robustness of the pro-
posed model and demonstrated the potential for applying
deep learning techniques for this barely developed yet impor-
tant topic. For codes and implementation details, please visit
https://github.com/BoyoChen/TCSA-CNN-profiler .

1 Introduction
A tropical cyclone (TC), also called hurricane or typhoon,
is a kind of rotating storm formed on tropical oceans; it
is characterized by a low-pressure center (i.e., the “eye”),
eyewall associated with deep convective clouds and strong
winds, and spiral rainbands outside of the eyewall. This se-
vere weather system often causes serious damage to human
society due to gusty winds, torrential rainfall, high waves,
and storm surges.

Although the improvement of TC forecasting in recent
years ensures fairly good prediction of the track and pri-
mary rainfall distribution of a TC, there is still room for im-
provement in the ability to predict TC structure Knaff et al.;
Sampson and Knaff; Sampson et al.. Moreover, the TC struc-
ture, in terms of its 2-D surface wind fields, is closely related
to the potential TC damage, the area affected by gale-force
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winds, and the magnitude of storm surges (Powell and Rein-
hold 2007). Therefore, a better TC structure analysis serving
as the initial data of numerical weather prediction models is
critical to improving the prediction accuracy regarding TCs
(Tallapragada 2015; Bender et al. 2016).

It is not easy to accurately analyze the structure of a TC,
noting that TCs spend most of their lifetime on the open
ocean, where meteorological observation is severely limited.
Therefore, meteorologists strongly rely on satellite remote
sensing to estimate TC surface wind field, TC radial wind
profile, and structural parameters (e.g., intensity, the radius
of maximum wind, size; please refer to section 2).

The most straightforward way to analyze TC structure is
using space-borne radar surface wind observation (fig. 1),
such as Advanced Scatterometer (ASCAT, (Figa-Saldaña
et al. 2002; Knaff et al. 2011)). Although ASCAT provides
high-quality surface wind observation outside of the TC
inner-core (i.e., larger than approximately 80-150 km ra-
dius), ASCAT only provides two scans of a TC per day.
Sometimes, only a portion of the TC is observed due to AS-
CAT’s limited swath width.

To estimate TC structure at a higher frequency, other
kinds of satellite observations have to be used, such as mi-
crowave sounders on low-Earth-orbit satellites (Knaff et al.
2011; Demuth et al. 2004; Wimmers, Velden, and Cossuth
2019) and images from geostationary satellites (Velden et al.
2006; Knaff, Longmore, and Molenar 2014; Chen et al.
2019). Infrared images that observe cloud features associ-
ated with a TC can be used to estimate several important
TC structural parameters, including intensity and size. For
instance, Knaff et al. (2014) developed a TC size estimation
technique based on feature engineering. Their model utilized
principal component analysis of the azimuthally-averaged
radial profile of the infrared brightness temperature and lin-
ear regression to estimate TC size. With the structural pa-
rameters retrieved from satellite images, the TC radial wind
profile can be constructed by a physically-based parametric
wind model (Knaff et al. 2016; Morris and Ruf 2017).

However, there is some difficulty in using such a sam-
ple parametric model to analyze the TC structure. For ex-
ample, although satellite remote sensing provides various
observational data for TC structure analysis, the conven-
tional statistical methods face limitations in analyzing multi-
channel, high-dimensional, and temporal-spatially heteroge-
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Figure 1: The ASCAT surface winds (colored vectors, kt)
observation of Typhoon Soulik (2018) at August 22 2018
11:48 UTC. The raw ASCAT data can be download from
http://www.remss.com/.

neous satellite data. Meanwhile, deep learning has achieved
great success in analyzing satellite remote-sensing images
of tropical cyclones (TC), such as TC intensity estimation
(Chen et al. 2019), predicting TC intensification (Bai, Chen,
and Lin 2019; Yang, Lee, and Tippett 2020), and anticipating
TC formation (Matsuoka et al. 2018). In these studies, Con-
volutional Neural Network (CNN,(Krizhevsky, Sutskever,
and Hinton 2012)) successfully extracted features that were
difficult to quantify previously, form high-dimensional data,
and use them to complete a classification or regression work.
These deep learning models provided more efficient, stable,
and objective guidance for TC forecasting, and their perfor-
mance is comparable but does not significantly exceed the
state-of-the-art meteorological techniques.

The goal of this study is to explore the potential of deep
learning in this necessary but not well-tackled topic in me-
teorology. To remove the dependencies of any sample para-
metric model and analyze TC structure directly with satellite
images, we construct and release a new benchmark dataset,
in which TC wind profiles were constructed based on meteo-
rological domain knowledge to provide valuable data labels.

Furthermore, we propose a novel specialized CNN model
operating on polar coordinates. Several different loss func-
tion compositions and model structures are explored and dis-
cussed in the following section. By properly designing our
model, the experimental result show a promising future for
the deep leaning techniques in this new topic.

This paper is organized as follows. Section 2 describes
the definitions of TC structure and structural parameters,
and how meteorologist conventionally estimates it. Section 3
describes our new-released dataset: Dataset of Tropical Cy-
clone Structural Analysis. Section 4 proposes the CNN ar-
chitecture on polar coordinates, suitable for processing TC
satellite imagery that is rotationally invariant. Section 5 in-

cludes the experiment results and section 6 is the conclusion.

2 Background Knowledge
2.1 Definition of TC Structure and Structural

Parameters
As a cyclonically rotated system, a TC’s structure is usu-
ally referred to as the characteristics of the storm-centered
surface wind field, which is closely related to the poten-
tial TC impacts. However, noting that TC is fairly axis-
symmetric with respect to the center and has the tangential
wind components much larger than the radial wind compo-
nents (fig. 1), it is more practical to describe TC’s struc-
ture by the azimuthally-averaged radial surface wind profile
(Holland and Merrill 1984; Knaff et al. 2016).

With such a profile (fig. 2a, green line, as an example),
several important structural parameters can be defined. TC
intensity (Vmax) is conventionally defined as the maximum
wind near the TC center, and the radius of the maximum
wind (RMW) indicates where Vmax occurs. TC’s size is usu-
ally defined as the radial extent from the center of certain
wind thresholds, such as 5, 34, 50, or 64 kt. The 34 kt winds
radius (R34) is considered the most practical TC size pa-
rameter as it strongly relates to a TC’s impact. These three
parameters are the most critical parameters to be estimated
in real-time TC forecasting in operational weather predic-
tion centers. Furthermore, previous studies (Chan and Chan
2012; Weatherford and Gray 1988) have shown that the in-
tensity is not strongly related to the size. This implies that
knowing the intensity, which is the easiest one to estimate
among the three parameters, is not sufficient to determine
the structure of a TC.

2.2 Conventional Method to Estimate TC
Structure

A space-borne scatterometer (e.g., ASCAT) provides high-
quality surface wind observation (Figa-Saldaña et al. 2002;
Knaff et al. 2011). ASCAT is a C-band radar that measures
ocean roughness and uses it to retrieve surface winds un-
der approximately 30 m/s. Thus, the subjective analysis by
forecasters based on scatterometer observation is considered
one of the best metrics for analyzing TC structure (Sampson
et al. 2017, 2018). However, the sampling frequency (twice
pre-day) of ASCAT is not enough for operational TC struc-
ture analysis, which required a higher frequency (less than
six hour).

A method, ”Multiplatform Tropical Cyclone Surface
Winds Analysis” (MTCSWA) (Knaff et al. 2011), to esti-
mate TC surface wind fields every 6 h utilizes observation
from multiple satellite platforms and satellite-based wind re-
trieval techniques. MTCSWA uses a variational data-fitting
method to merge satellite observations that are temporal-
spatially heterogeneous. Although this method produces
wind estimates with generally smaller errors than single raw
input data, the analysis quality may be unstable when some
important input data (i.e., ASCAT) are not available.

The other approach to estimate an axis-symmetric TC
structure is to estimate key structural parameters. Several
studies (Knaff, Longmore, and Molenar 2014) have applied
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CNN for estimating TC intensity utilizing satellite imagery.
On the other hand, Knaff et al. (2014) related the storm-
centered satellite infrared imagery to TC size, in terms of
the radius of azimuthally-averaged 5-kt winds. They created
a multivariable linear regression equation based only on the
first three principal components of the azimuthally-averaged
radial profile of the infrared brightened temperature.

Estimating these structural parameters strongly relies on
extracting high-level features from satellite images. How-
ever, some of the methods are subjective and depended on
weather forecasters’ human intelligence; other objective sta-
tistical methods can only handle limited features or predic-
tors. As there may be a great potential to extract more useful
features by deep learning, we are motivated to apply deep
learning for estimating not only a single structural parame-
ter but, hopefully, the entire radial surface wind profile (i.e.,
the profiles as shown in fig. 2a).

3 Dataset: TCSA
A new dataset for Tropical Cyclone Structure Analysis
(TCSA) is released along with this research. TCSA can be
used to develop deep learning models that estimate TC struc-
tural parameters (e.g., intensity, size, size asymmetry) and,
more importantly, the axis-symmetric wind profile of the
storm.

As an extension of another open dataset – Dataset of
Tropical Cyclone for Image-to-intensity Regression (TCIR)
(Chen, Chen, and Lin 2018), TCSA contains 76835 TC im-
ages, collected from 2004 to 2018, covering 1407 TCs in
every basin over the globe. For each TC, images are col-
lected once per 3 hours. The center of the TCs are always
placed at the center of the images.

4 satellite channels are included in every images: (1) in-
frared, (2) water vapor, (3) visible light channel, and (4) pas-
sive micro-wave rain rate (Figure 3(a)).

4 labels are also provided, including (1) intensity (Vmax,
defined as the maximum wind velocity), (2) size (R34, de-
fined as the mean of radii of 34-knot wind in the four quad-
rants, in kilometer), (3) radius of maximum wind speed
(RMW), and, most important of all, (4) the wind profile.

3.1 Wind Profile Label
In the TCSA, we apply the parametric wind model (Mor-
ris and Ruf 2017) to calculate the TC wind profile for every
available data. The radial wind profile of a TC can be de-
scribed by

V (r) =
2r(RmVmax + 1

2fR
2
m))

(R2
m + arb)

− fr

2

where Rm is the radius of maximum wind speed (RMW),
Vmax is the maximum wind speed, r is the radial distance
from the storm center, and f is the Coriolis parameter. Here,
we use Rm , Vmax, and R34 to approach the most possible
wind profile of the TC, with parameters a and b calculated by
iteration. This wind model assumes that the TC is symmetry,
and the adjustment in a and in b allows fitting the wind speed

Figure 2: (a) A good wind profile and an uncertain wind pro-
file. For the good profile (green), Vmax, RMW, and R34 are
indicated. For the uncertain profile (brown), the best-track
RMW (orange ”x”) and the calculated RMW (brown ”x”)
differ to each other. (b) The scatter plot of RMW difference
vs. Vmax. The horizontal lines indicate the interval of 2 stan-
dard deviations in Y-axis. The red triangle indicates the po-
sition of the uncertain sample as shown in (a).

profile better. According to meteorological domain knowl-
edge, R34 and Vmax are fixed in our calculation because of
their higher reliability than that of RMW. R34 and Vmax are
also more critical in accessing TC impact in operational TC
forecast. Consequently, RMW is allowed to be adjusted dur-
ing the iteration. However, sometimes there might be a large
difference between the original RMW and calculated RMW
(fig. 2a), especially for weaker TCs. In such cases, we would
question the correctness of the calculated profile.

Although we collected over 76000 images, only 46%
data, 35310 images, can be equipped with a valid wind pro-
file label. This is usually because a sample’s R34 does not
exist while its intensity is weaker than 34 knots.

3.2 Profile Quality Analysis
It is noted that, even with valid wind profiles, there is still
a portion of data that has a large difference between the
original RMW label and the calculated RMW. We consider
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Figure 3: Selected TC images on (a) Cartesian coordinates
and (b) polar coordinates.

a wind profile with uncertainty if the distance between the
original RMW label and calculated RMW is more than two
standard deviations (fig. 2b). fig. 2(a) demonstrates good and
uncertain examples. The green line shows a good TC wind
profile, with Vmaxat maximum wind speed, RMW at the ra-
dius of Vmax, and R34 at the radius of wind speed equal to
34 knots. In contrast, the brown line is a profile with uncer-
tainty. Although Vmax andR34 always fit the best-track data,
the calculated RMW moves outward a lot, and the calculated
outer wind speed may be over-estimated.

As shown in fig. 2(b), the RMW of most of the samples
shifts slightly to fit the wind model. We can see that there
are 91.6% of data with RMW difference within two standard
deviations (17.4km). Most of the data having significant dif-
ferences are weak TCs, since the parametric wind model is
developed upon mature TCs.

While the wind profile label we calculated could hardly be
perfect, especially with the assumption that the TCs are per-
fectly symmetric, we still believe that these labels are valu-
able in tackling the important topic of TC structure.

4 Proposed Method
According to TCs’ spiral nature, a TC is generally axis-
symmetric or point symmetric with the center. Therefore,
we propose a unique CNN model that operates on polar co-
ordinates with respect to the TC center. Before the training,
we project all the TC images, originally 128x128 on Carte-
sian coordinates, to 180x103 images on polar coordinates (
fig. 3). Using polar coordinates brings us three benefits:

1. They provide more explainable dimensions than those on
Cartesian coordinates, allowing us to interpret the model
better. Each index in the first dimension (180 points) rep-
resents 2 degrees of the directional angle, while each point
in the second dimension (103 points) represents 5 kilome-
ters of the radius.

2. As proposed in (Chen, Chen, and Lin 2018), the spiral

Figure 4: A schematic showing convolution kernel working
on (a) Cartesian coordinates and (b) polar coordinates.

Figure 5: A schematic showing two different way to ob-
tain Vmax and R34 from the model. Since method (a) might
cause contradictory result, method (b) is recommended.

characteristic of TCs enables us to obtain better results
by blending the predictions of an image rotated with sev-
eral different angles. The effectiveness of this method is
also supported in the following work (Chen et al. 2019).
To rotate an image on Cartesian coordinates, it requires
interpolations and probably cropping if we do not want
black corners. But on polar coordinates, the only thing we
need to do is to roll the image.

3. On polar coordinates, the meaning of a convolution kernel
is a sector, instead of a square, with its vertex pointing to
the TC center. The sector mask can further highlight the
spiral structure that grows outward from the cyclone eye
fig. 4. We will discuss the efficiency of convolution masks
in different coordinate systems and different shapes later
in section 5.1.

We stack IR1 and PMW (2 out of all 4 channels), into
180x103x2 images before we pass them into our CNN
model. The selection of IR1 and PMW is proven to be the
best in (Chen et al. 2019).

4.1 Profiling a TC
As suggested in section 2, TC structure is conventionally
represented by several parameters: Vmax, RMW, and R34.
In this work, we hope to further predict the entire wind pro-
file (fig. 2a). Such a wind profile covers the information pro-
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vided by all the above parameters and provides a more con-
crete concept of a TC’s structure.

However, considering the simplicity and the convenience
to compare with other works, we hope that the model can
also output Vmax and R34 in addition to the wind profile.

On the other hand, as mentioned in section 3, only 46%
of the data have profiles. Meanwhile, if the Vmax of a TC
is lower than 34, its R34 will naturally be 0. In other words,
while every data is guaranteed to have Vmax, not every data
has a profile and an R34 label.

Therefore, in order to make good use of each data, the loss
of Vmax prediction is also added to the loss function during
training. Since the data always has a Vmax label, we can en-
sure that there’s a loss to be optimized for each data, even if
the data don’t have profiles and R34 labels. To output Vmax

and R34 along with the profile, we have two approaches:
A naive way is to let the model output three predictions

at the same time: Vmax, R34, and the profile. Nevertheless,
even if the three outputs share most of the layers, there may
be contradictory results. For example, as shown in fig. 5(a),
while Vmax is lower than 34, the model output a nonzero
R34.

It is worth noting that there are direct links between the
profile and the other two labels. Thus, we suggest to first
obtain the profile before inferring R34 and Vmax from the
determined profile, as shown in fig. 5(b).

In the following section, a profile will be denoted as p
while the i-th element in the profile will be denoted as pi.

Inferring Vmax (FV ) By definition, Vmax is the maxi-
mum wind speed in the profile, which can be calculated sim-
ply by the transformation FV :

FV (p) = max
i

(pi) (1)

Inferring R34 (FR) We first get the biggest index where
the wind speed in the profile is greater than 34, and, since
the distance between each point is 5 kilometers, multiply
the index by 5 to obtain the inferred R34 (in km) from the
profile.

FR(p) = max
i

(i× [pi ≥ 34])× 5 (2)

4.2 Training Objective
For a batch of the data X and our modelM, we first obtain
wind profiles using the model,

M(Xj) = Pj (3)

whereXj andPj stand for the j-th data and the j-th profile
prediction in the batch respectively.

Profile loss (lP ) We calculate point wise mean square er-
ror (MSE) between the output profile and the profile label
P , the loss will be:

lP =
∑
j

∑
i

(Pji − Pji)
2

i× j
(4)

Noted that only when the data have profile label will the
profile loss be optimized.

Intensity loss (lVmax ) We first inferred Vmax prediction
from the profile prediction using transformation FV , then
calculate MSE between the Vmax prediction and the Vmax

label V:

lVmax
=

∑
j

(FV (Pj)− Vj)2

j
(5)

Size loss (lR34
) We inferred R34 prediction from the pro-

file prediction using transformation FR before calculating
MSE between the R34 prediction and the R34 labelR:

lR34
=

∑
j

(FR(Pj)−Rj)
2

j
(6)

Finally, as mentioned in section 4.1, we are optimizing
lP , lVmax , and lR34 simultaneously. The loss functions are
formulated as below:

L = lP + α× lVmax
+ β × lR34

(7)

α and β are the factor of intensity loss and size loss, re-
spectively, The factors used for the experiments are provided
in table 2.

5 Experiments and Analysis
In this section, our attempts in convolution kernel sizes and
loss functions are provided first. After that, we look into sev-
eral actual cases before we compare our proposed model’s
performance to those of the competitive models.

All models are trained with 2004-2014 TCs, validated
with 2015-16 TCs and tested with 2017-2018 TCs.

5.1 Kernel Size Experiments
Since the proposed model is designed to be used in polar
coordinates, the shape of the convolution kernel has a more
specific meaning. We experimented with the performance of
convolution kernels of different shapes. For simplification,
in every model, we use the same strides and the same num-
ber of convolution layers. Moreover, each convolution layers
in a single model share one kernel shape. For better perfor-
mance, one can mix different kernel shapes and strides in
a model, but considering the simplicity, this is beyond the
scope of this work.

Table 1 shows the performance of different convolution
kernels. The experimental result also shows that images on
Cartesian coordinates provide decent Vmax estimates but fall
short of predicting profile and R34.

Meanwhile, we can observe that the performance on esti-
mating Vmax and R34 is related to the kernel’s coverage on
the radius. Experimental result shows that choosing a kernel
that covers 3 grids on the radius performs best. In contrast,
predicting the profile is more related to how large the angle
covered by the kernel is. As the angle covered is larger, the
performance of predicting profile will be better. However,
we also found that as the angle covered becomes larger, the
model is easier to over-fit and thus the accuracy of predict-
ing Vmax and R34 is damaged. In the end, we choose (4, 3)
as our kernel shape in the proposed model.

995



Coordinate (angle, radial) Profile RMSE (knots) Vmax RMSE (knots) R34 RMSE (km) Selected Epoch

(2, 2) 14.85 12.51 70.07 20
(3, 3) 14.71 10.66 70.55 35Cartasian
(4, 4) 14.89 11.32 69.27 20

(2, 2) 14.92 11.35 68.15 60
(2, 3) 14.88 10.78 66.33 60
(2, 4) 14.67 12.24 67.09 35
(3, 2) 14.53 12.08 69.33 30
(3, 3) 14.63 11.00 66.70 45
(3, 4) 14.82 11.21 68.79 55
(4, 2) 14.43 11.16 66.71 20
(4, 3) 14.28 11.07 66.48 40
(4, 4) 14.45 11.76 70.62 40
(6, 3) 14.21 11.22 69.49 55

Polar

(8, 3) 13.84 12.15 70.97 55

Table 1: The comparison between different kernel shapes. Since the scores vibrate, we select the epoch based on the profile
RMSE on the validation data. (4, 3) is selected as the shape of the convolution layers in the final model.

Loss α β Profile RMSE (knots) Vmax RMSE (knots) R34 RMSE (km) Selected Epoch

Profile 0 0 15.93 13.55 76.95 15
Profile+R34 0 0.1 15.87 13.19 72.74 35
Profile+Vmax 0.3 0 14.18 11.32 70.60 65
Profile+Vmax+R34 0.3 0.1 14.37 11.31 69.68 30

Table 2: The comparison between different factor combinations in the loss function. While adding R34 loss into loss function
provide limited improvement, optimizing Vmax at the same time help the model learn much better. α and β stand for the
coefficients mentioned in eq. (7). The performance is calculated with the validation data.

5.2 Loss Function Combinations

We then compare the performance of various combinations
of loss functions. As mentioned in section 4.1, we hope that
the proposed model can provide high-quality profile, Vmax,
and R34 predictions at the same time. Table 2 lists the per-
formance of various combinations of the above three goals
in the loss function. The alpha and beta here correspond to
the coefficients mentioned in eq. (7).

We can observe that, compare to the model only optimiz-
ing lP , the model with additional lVmax in the loss function
received a decent improvement. In other words, guiding the
model to draw the highest point in the curve at the correct
height provides a clear direction for the model to do better
in fitting the whole line, thus greatly enhanced the perfor-
mance of the model to predict not only the Vmax but also
the profile and R34.

In contrast, adding R34 to the loss function hardly im-
proves the model. Our explanation is that for the CNN
model, the point where velocity equals 34 in the curve, com-
pare to the highest point in the curve, is very difficult to
grasp. Therefore, it is just better to concentrate on fitting the
profile curve and let the R34 fit naturally.

According to the above results, we combine lP and lVmax

into our loss function of the proposed model.

5.3 Case Study
Figure 6 shows a representative case in which we compare
the profile label with the prediction of (1) our best model, (2)
a model optimized profile loss only, and (3) the ASCAT ob-
servation. From the line chart, we can found that by adding
the lVmax into the loss function, the model did better fitting
the peak (Vmax) of the predicted profile.

On the other hand, the ASCAT observations are restricted
by the device limitation. Therefore, when the wind speed
is very high (i.e., in the TC inner-core), the ASCAT tend
to under-estimate the wind speed. In this case (Figure 6),
our model (green line) did a good job in both accurately es-
timating the high winds in the inner-core compared to the
best-track Vmax (i.e., the max of the red line) and adequately
estimating the TC outer wind comparing the ASCAT profile
within 100-300 km radius.

More cases and interesting observations are provided in
our official GitHub repository.

5.4 Performance
Table 3 shows the comparison between our proposed model
and the state-of-the-art models in TC intensity and size esti-
mation, respectively.

In estimating intensity, the model proposed by (Chen
et al. 2019) is the state-of-the-art in our best knowledge.
By smoothing the output, its performance can be further
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Figure 6: Comparing the predicted profiles based on different loss functions (green and blue lines) to the profile label (red line)
and the ASCAT observation (gold line, corresponding to the right panel). This figure is generate with the testing data.

Table 3: Comparing our model to the state-of-the-art methods in both intensity and size estimation.

improved. For the sake of fairness, we compare the perfor-
mance without smoothing the output. If necessary, smooth-
ing techniques can also be applied to our proposed CNN
model for better performance.

In estimating TC size, the model of (Sampson et al. 2018)
obtained the best results by blending six independent mod-
els. These six models have their pros and cons and are not
always available. However, simply blending the available es-
timates of these models with an equally-weighted average
leads to better performance. On the other hand, our model
not only can systematically estimate the TC size, but also be
comparable in performance to the best single model (Samp-
son et al. 2018) used for blending.

The comparison results suggest that our proposed model
can simultaneously predict Vmax and R34 and has compa-
rable performance to state-of-the-art techniques. Moreover,
our model provides the radial wind profile, giving us a more
concrete concept of TC structure that no other model can
provide.

6 Conclusion
This paper focuses on an influential but undeveloped task:
systematically analyzing the TC structure in terms of its en-

tire radial wind profile. An organized new dataset with valu-
able labels for this task is published to facilitate data scien-
tists in the following researches. By developing on polar co-
ordinates instead of ordinary Cartesian coordinates, we pro-
posed a specialized CNN model that uses rectangular con-
volution kernels instead of standard square kernels. We also
discovered that optimizing the loss of both intensity estima-
tion and structure estimation at the same time improved our
model decently.

With a properly designed model structure and a delicate-
composed loss function, our proposed model provides com-
parable predictions of a TC’s size, intensity, and wind profile
simultaneously. Most importantly, the prediction is achieved
systematically and objectively by using high-availability
data, which leads to a more reliable and timely (every 3 h
compared to longer than 6 h before) TC forecasting system.
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