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Abstract

Deformable convolution, originally proposed for the adapta-
tion to geometric variations of objects, has recently shown
compelling performance in aligning multiple frames and is
increasingly adopted for video super-resolution. Despite its
remarkable performance, its underlying mechanism for align-
ment remains unclear. In this study, we carefully investigate
the relation between deformable alignment and the classic
flow-based alignment. We show that deformable convolution
can be decomposed into a combination of spatial warping and
convolution. This decomposition reveals the commonality of
deformable alignment and flow-based alignment in formula-
tion, but with a key difference in their offset diversity. We
further demonstrate through experiments that the increased
diversity in deformable alignment yields better-aligned fea-
tures, and hence significantly improves the quality of video
super-resolution output. Based on our observations, we pro-
pose an offset-fidelity loss that guides the offset learning
with optical flow. Experiments show that our loss success-
fully avoids the overflow of offsets and alleviates the instabil-
ity problem of deformable alignment. Aside from the contri-
butions to deformable alignment, our formulation inspires a
more flexible approach to introduce offset diversity to flow-
based alignment, improving its performance.

Introduction

Video super-resolution (SR) aims at recovering high-
resolution consecutive frames from their low-resolution
counterparts. The key challenge of video SR lies in the ef-
fective use of complementary details from adjacent frames,
which can be misaligned due to camera and object motions.
To establish inter-frame correspondence, early methods (Ca-
ballero et al. 2017; Liu et al. 2017; Sajjadi, Vemulapalli,
and Brown 2018; Tao et al. 2017; Xue et al. 2019) em-
ploy optical flow for explicit frame alignment. They warp
neighboring frames to the reference one and pass these im-
ages to Convolutional Neural Networks (CNNs) for super-
resolution. Recent studies (Tian et al. 2020; Wang et al.
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2019a,b) perform alignment implicitly via deformable con-
volution and show superior performance. For instance, the
winner of NTIRE 2019 video restoration challenges (Nah
etal. 2019a,b), EDVR (Wang et al. 2019b), significantly out-
performs previous methods with coarse-to-fine deformable
convolutions.

These two kinds of methods are generally regarded as or-
thogonal approaches and are developed independently. It is
of great interest to know (1) the relationship between ex-
plicit and implicit alignments, and (2) the source of improve-
ment brought by implicit modeling. As there are no related
works, we bridge the gap by exploring the intrinsic con-
nections of two representative methods — flow-based align-
ment (explicit alignment with optical flow) and deformable
alignment (implicit alignment with deformable convolu-
tion). Studying their relation not only helps us understand
the working mechanism of deformable alignment, but also
inspires a more general design of video SR approaches.

Deformable convolution (Dai et al. 2017; Zhu et al. 2019)
(DCN) is originally designed for spatial adaption in object
detection. The key idea is to displace the sampling loca-
tions of standard convolution by some learned offsets. When
DCN is applied in temporal alignment, the displaced ker-
nels on neighboring frames will be used to align interme-
diate features. On the face of it, this procedure is differ-
ent from flow-based methods, which align adjacent frames
by flow-warping. To reveal their relationship, we show that
deformable alignment can be formulated as a combination
of feature-level flow-warping and convolution. This intu-
itive decomposition indicates that these two kinds of align-
ment intrinsically share the same formulation but differ in
their offset diversity. Specifically, flow-based alignment only
learns one offset at each feature location, while deformable
alignment introduces multiple offsets, the number of which
is in proportion to the kernel size of DCN.

Under this relation, we systematically investigate the ef-
fects of offset diversity and gain two interesting insights.
First, the learned offsets in deformable alignment have sim-
ilar patterns as optical flow, suggesting that deformable and
flow-based alignments are strongly correlated in both con-
cepts and behaviors. Second, diverse offsets achieve better
restoration quality than a single offset. As different offsets
are complementary to each other, they can effectively allevi-
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Figure 1: The learned offsets in both flow-based alignment (#1) and deformable alignment (#2, #4) have similar patterns as
optical flow obtained using a deep learning-based optical flow estimator (Sun et al. 2018) (#3). The offset diversity allows
deformable alignment to learn complementary offsets (#4), which effectively alleviate the occlusion problem and reduce warp-
ing errors. As a result, the warped feature after deformable alignment (#6) contains more details than that with flow-based

alignment (#5) (see details of the car wheel).

ate the occlusion problem and reduce warping errors caused
by large motions. Figure 1 depicts the comparisons of these
two methods in their learned offsets and feature patterns.

With a more profound understanding of their relationship,
we decided to use the widely-adopted optical flow technique
to benefit the training of deformable convolution. It is known
that the training of deformable alignment is unstable and
the overflow of offsets could severely degrade the perfor-
mance (Wang et al. 2019b). We propose an offset-fidelity
loss that adopts optical flows to guide the offset learning
of DCN while preserving offset diversity. Our experiments
show that the proposed strategy successfully stabilizes the
training process of deformable alignment.

Apart from the contributions to deformable alignment,
our decomposition of DCN is also beneficial to flow-based
alignment approaches. Specifically, in our formulation, the
number of offsets is not necessarily equal to the square of
kernel size. Compared to deformable convolution, our for-
mulation provides a more flexible means for increasing off-
set diversity in flow-based alignment approaches.

Our contributions are summarized as follows: (1) While
deformable alignment has been shown a compelling alter-
native to the conventional flow-based alignment for motion
compensation, its link with flow-based alignment is only su-
perficially discussed in the literature. This paper is the first
study that establishes the relationship between the two im-
portant concepts formally. (2) We systematically investigate
the benefits of offset diversity. We show that offset diversity
is the key factor for improving both the alignment accuracy
and SR performance. (3) Based on our studies, we propose
an offset-fidelity loss in deformable alignment to stabilize
training while preserving offset diversity. An improvement
of up to 1.7 dB is observed with our loss. (4) Our formu-
lation inspires a more flexible approach to increase offset
diversity in flow-based alignment methods.

Related Work

Different from single image SR (Chan et al. 2020a; Dai et al.
2019; Dong et al. 2014; Haris, Shakhnarovich, and Ukita

974

2018; He et al. 2019; Ledig et al. 2017; Lim et al. 2017;
Liu et al. 2020; Mei et al. 2020; Wang et al. 2018b,a; Zhang
et al. 2018; Zhang, Gool, and Timofte 2020), an additional
challenge of video SR (Chan et al. 2020b; Dai et al. 2015;
Huang, Wang, and Wang 2015; Liu and Sun 2014; Yi et al.
2019; Li et al. 2020; Isobe et al. 2020a,b) is to align multi-
ple frames for the construction of accurate correspondences.
Based on whether optical flow is explicitly estimated, ex-
isting motion compensation approaches in video SR can be
mainly divided into two branches — explicit methods and im-
plicit methods.

Most existing methods adopt an explicit motion compen-
sation approach. Earlier works of this approach (Kappeler
et al. 2016; Liao et al. 2015) first use a fixed and external
optical flow estimator to estimate the flow fields between
the reference and its neighboring frames, and then learn a
mapping from the flow-warped inputs to the high-resolution
output. Such two-stage methods are time-consuming and
tend to fail when the flow estimation is not accurate. Sev-
eral follow-up studies (Caballero et al. 2017; Liu et al. 2017;
Sajjadi, Vemulapalli, and Brown 2018; Tao et al. 2017; Xue
et al. 2019) incorporate the flow-estimation component into
the SR pipeline. For instance, TOFlow (Xue et al. 2019)
points out that the optimal flow is task-specific in video en-
hancement including video SR, and thus a trainable motion
estimation component is more effective than a fixed one.
Nevertheless, all these methods explicitly perform flow esti-
mation and warping in the image domain, which may intro-
duce artifacts around image structures (Tian et al. 2020).

Several recent methods perform motion compensation
implicitly and show superior performance. For instance,
DUF (Jo et al. 2018) learns an upsampling filter for each
pixel location, and a few other methods (Tian et al. 2020;
Wang et al. 2019a,b) incorporate deformable convolution
into motion compensation. Deformable convolution (Dai
et al. 2017) is capable of predicting additional offsets that
offer spatial flexibilities to a convolution kernel. This differs
from a standard convolution, which is restricted to a regular
neighborhood. TDAN (Tian et al. 2020) applies deformable
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Figure 2: Deformable convolution with a 33 kernel can be
decomposed into nine spatial warpings and one 3D convolu-
tion. Kernel weights are represented as w.

convolutions for temporal alignment in video SR. Following
the structure design in flow-estimation methods (Dosovit-
skiy et al. 2015; Ranjan and Black 2017; Sun et al. 2018),
EDVR (Wang et al. 2019b) adopts deformable alignment
in a pyramid and cascading architecture, achieving state-of-
the-art performance in video SR.

Although deformable alignment and the classic flow-
based alignment look unconnected at first glance, they are
indeed highly related. In this study, we delve deep into the
connections between them. Based on our analyses, we pro-
pose an offset-fidelity loss to stabilize the training and im-
prove the performance of deformable alignment.

Unifying Deformable and Flow-Based
Alignments
Deformable Convolution Revisited

We start with a brief review of deformable convolution
(DCN) (Dai et al. 2017), which was originally proposed
to accommodate geometric variations of objects in the
tasks of object detection (Bertasius, Torresani, and Shi
2018) and image segmentation (Dai et al. 2017). Let pj
be the k-th sampling offset in a standard convolution
with kernel size nxn. For example, when n=3, we have
pre{(—1,-1),(-1,0),---,(1,1)}. We denote the k-th
additional learned offset at location p + pi by Apy. A de-
formable convolution can be formulated as:

2
n

Zw(pk-) z(p + P + Apy),
k=1

y(p) ey

where x and y represent the input and output features, re-
spectively. The kernel weights are denoted by w. As illus-
trated in Fig. 2(a), unlike standard convolution, a deformable
convolution has more flexible sampling locations. In prac-
tice, one can divide the C' channel features into G groups of
features with C'/G channels, and n2x@G offsets are learned
for each spatial location. In DCNv2 (Zhu et al. 2019) a mod-
ulation mask is introduced to further strengthen the capabil-
ity in manipulating spatial support regions. A detailed anal-
ysis of the mask is included in the supplementary material'.

"Please refer to https://arxiv.org/abs/2009.07265
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Figure 3: Deformable alignment applies deformable convo-
lution to align neighboring features to the reference feature.
The offsets are predicted by a few convolutions with both the
reference and neighboring features as the inputs. The refer-
ence feature is used only to predict the offsets, and is not
directly involved in the convolution.

Deformable Alignment

In video SR, it is crucial to establish correspondences be-
tween consecutive frames for detail extraction and fusion.
Recent studies (Tian et al. 2020; Wang et al. 2019a,b) go
beyond the traditional way of flow-warping and apply de-
formable convolution for feature alignment, as shown in
Fig. 3.

Let F; and F}; be the intermediate features of the ref-
erence and neighboring frames, respectively. In deformable
alignment, a deformable convolution is used to align F}; to
F;. Mathematically, we have:

'VL2

Fyi(p) = ) w(pr) - Frri(p + pr + Apy),
k=1

2

where FtH represents the aligned feature. The offsets Apy,
are predicted by a few convolutions with both F} and F},;
as the inputs. The reference feature F; is used only to predict
the offsets and is not directly involved in the convolution.

Relation between Deformable Alignment and
Flow-Based Alignment

There is an intuitive yet less obvious connection between
deformable and flow-based alignments. The connection is
rarely discussed in previous works. Instead of treating them
as orthogonal approaches, we unify these two important con-
cepts in this paper. Now, we discuss the connection between
deformable alignment and flow-based alignment by show-
ing that DCN can be decomposed into spatial warping and
standard convolution.

Let z be the input feature, and py, +Apy (k = 1,--- ,n?)
be the k-th offset for location p. Next, denote the feature
warped by the k-th offset by zx(p) = x(p + pr + Apk).
From Eqn. (1), we have:

TL2

y(p) =Y w(ps) - wx(p),
k

=1

3)



which is equivalent to a 1x1xn? standard 3D convolu-

tion. Hence, we see that a deformable convolution with ker-
nel size nxn is equivalent to n? individual spatial warp-
ings followed by a standard 3D convolution with kernel size
1x1xn?2. The illustration is shown in Fig. 2(b).

Remarks:

1. By replacing n? with Ne N in Eqn. (3) , this decompo-
sition generalizes DCN by removing the constraint that
the number of offsets within each group must be equal to
n2. Therefore, in the remaining sections, we denote the
number of offsets per group by V.

2. By stacking the N warped features in the channel dimen-
sion, the 1x1x N 3D convolution can be implemented as
a 1x1 2D convolution. In other words, DCN is equiva-
lent to IV separate spatial warpings followed by a 1x1 2D
convolution.

From Eqn. (3), we see that the special case of n=1 is
equivalent to a spatial warping followed by a 1x1 con-
volution. In the context of motion compensation, this
special case corresponds to a flow-based alignment. In other
words, deformable and flow-based alignments share the
same formulation but with a difference in the offset diversity.

Discussion. The aforementioned analysis leads to a few in-
teresting explorations:

1. Where does deformable alignment gain the extra perfor-
mance in comparison to flow-based alignment? The anal-
ysis points to offset diversity, and we verify this hypothe-
sis in our experiments.

2. Is higher offset diversity always better? We demonstrate
that although the output quality increases with offset di-
versity in general, a performance plateau is observed
when the number of offsets gets larger. Hence, indefi-
nitely increasing the number of offsets could lower the
efficiency of the model without significant performance
gain. In practice, one should balance the performance and
computational efficiency by choosing a suitable number
of offsets.

3. Can we increase the offset diversity of flow-based align-
ment? Unlike deformable alignment, where the number
of offsets must be equal to the square of kernel size,
our formulation generalizes deformable alignment with
an arbitrary number of offsets. As a result, it provides
a more flexible approach to introduce offset diversity to
flow-based alignment. We show in the experiments that
increasing offset diversity helps a flow-based network to
achieve better SR performance.

Offset-fidelity Loss

In this section, motivated by our decomposition, we demon-
strate how optical flow can benefit deformable alignment
through the our proposed offset fidelity loss.

Due to its unclear offset interpretability, deformable align-
ment is usually trained from scratch with random initializa-
tions. With increased network capacities, the training of de-
formable alignment becomes unstable, and the overflow of
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offsets severely degrades the model performance?. In con-
trast, in flow-based alignment, various training strategies
are developed to improve alignment accuracy and speed of
convergence, such as the adoption of flow network struc-
ture (Haris, Shakhnarovich, and Ukita 2019; Xue et al.
2019), flow guidance loss (Liu et al. 2017), and flow pre-
training (Caballero et al. 2017; Tao et al. 2017; Xue et al.
2019).

Given the relation between spatial warping and de-
formable convolution, we propose to use optical flow to
guide the training of offsets. Specifically, we propose an
offset-fidelity loss to constrain the offsets so that they do not
deviate much from the optical flow. Furthermore, to facili-
tate the learning of optimal and diverse offsets for video SR,
Heaviside step function is incorporated. More specifically,
we augment the data-fitting loss as follows:

N
L=L+X) Ly,

n=1

“4)

where L is the data-fitting loss (e.g., Charbonnier loss
in (Wang et al. 2019b)) and

L, = ZZHWUW —Yij| =) - |znijg — vizl, )
i

where y and x,, ;; denote the optical flow (computed by an
off-the-shelf optical flow method) and the n-th learned off-
sets at location (4, j), respectively. H (-) represents the Heav-
iside step function. Here A and ¢ are hyper-parameters con-
trolling the diversity of the offsets. The quantities are robust
to changes, and A=1, t=10 is a reasonable setting. As shown
in our experiments, our loss is able to stabilize the training
and avoid the offset overflow in large models.

Analysis

We conduct experiments to reveal the connections and dif-
ferences between deformable and flow-based alignments in
video SR. Unless specified, EDVR-M? is adopted for anal-
yses as it maintains a good balance between training effi-
ciency and performance. Moreover, to decouple the complex
relation among different components in deformable align-
ment, we use the non-modulated DCN. The experimental
details are provided in the supplementary material.

Deformable Alignment vs. Optical Flow

By setting G=N=1 (i.e., group=1 and the number of offsets
per group=1), the offset learned by deformable alignment
resembles the optical flow as in a flow-based alignment ap-
proach. Specifically, when there is only one offset to learn,
the model automatically learns to align features based on
the motions between frames. As shown in Fig. 4, the offsets
are highly similar to the optical flows estimated by PWC-
Net (Sun et al. 2018).

The instability of EDVR is observed in (Wang et al. 2019b) and
also in our experiments.

SEDVR-M is a moderate version of EDVR provided by the official
implementation (Wang et al. 2019b).
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Figure 4: While the learned offsets are highly similar to op-
tical flows, their disparity is non-negligible because optical
flow may not be optimal for video SR. Dark borders and
ghosting regions appear in the images warped by optical
flow. In contrast, those warped by learned offsets are clearer.
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Figure 5: Over 80% of the estimations have a difference
to optical flow smaller than one pixel (orange dot). This
demonstrates that in the case of G=N=1, deformable align-
ment is indeed equivalent to flow-based alignment.

Despite their high similarity, the disparity between
learned offsets and optical flows is non-negligible due to the
fundamental difference of the task nature (Xue et al. 2019).
Specifically, while PWC-Net is trained to describe the mo-
tions between frames, our baseline is trained for video SR, in
which optical flow may not be the optimal representation of
frame correspondences. From Fig. 4, we see that the image
warped by the learned offsets clearly preserves more scene
contents. In contrast, a dark region and a ghosting region
are seen in the images warped by optical flow. Note that the
offsets are learned for warping the features, and the warped
images in Fig. 4 are solely for illustrative purposes.

We quantitatively study the correlation between the off-
sets and optical flows, by computing their pixelwise differ-
ence. As shown in Fig. 5, over 80% of the estimations have
a difference smaller than one pixel from the optical flow.
This demonstrates that in the case of G=N=1, deformable
alignment is indeed highly similar to flow-based alignment.
In the following analyses, we will adopt this model as our
approximation to the flow-based alignment baseline.

Feature Warping. The aforementioned flow-based align-
ment baseline performs feature warping. This differs from a
majority of flow-based methods that learn flows for image
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G=1,k=1|G=1,k=3|G=8,k=1|G=8,k=3
DCN| 29.979 30.199 30.183 30.264
Our Decomp. | 29.992 30.240 30.179 30.231
Difference | +0.013 +0.041 -0.004 -0.033

Table 1: PSNR of two instantiations of EDVR-M on REDS4.
The similar performance verifies our claim that DCN can be
decomposed into spatial warping and convolution. G and k
represent the number of groups and the kernel size used in
DCN, respectively.

warping (Liu et al. 2017; Xue et al. 2019). In those meth-
ods, the flows contain fractional values and hence interpola-
tion is required during warping. This inevitably introduces
information loss, particularly high-frequency details. Con-
sequently, the blurry aligned images yield suboptimal SR
results. Recent deformable alignment methods (Tian et al.
2020; Wang et al. 2019a,b) attempt to perform alignment at
the feature level and achieve remarkable results. We inspect
the contribution of feature-level warping by replacing the
feature alignment module in our flow-based baseline with
an image alignment module. Surprisingly, despite the close-
ness of the architecture, image alignment leads to a drop of
0.84 dB. This indicates that feature-level warping is bene-
ficial to flow-based alignment. More comparisons are pro-
vided in the supplementary material.

Offset Diversity

Decomposition Equivalence. In this section, we use
our decomposition in this paper in place of DCN since it
provides a more flexible choice of the number of offsets.
To verify their equivalence, we train two instantiations —
original DCN and our decomposition. As shown in Table 1,
our experiments show that the two instantiations achieve
similar performance, corroborating our hypothesis.

Learned Offsets. Given that the primary difference between
flow-based alignment and deformable alignment is the num-
ber of offsets IV, it is natural to question the roles and char-
acteristics of the additional offsets in deformable alignment
(i.e. N>1). To answer this, we fix G=1 and compare the
performance in the cases of N=1 and N=15.

We sort the 15 offsets according to their /;-distance to
the optical flow, and an example is shown in Fig. 6. On the
one hand, there exists offsets that closely resemble the op-
tical flow. On the other hand, some offsets have different
estimated directions compared to the optical flows; although
these offsets are also able to separate the motions of differ-
ent objects, as the optical flow does, their directions do not
correspond to the actual camera and object motions.

We further visualize the diversity of the offsets, which is
measured by the pixelwise standard deviation of the offsets.
We observe that the offsets tend to have a larger diversity in
regions that optical flows do not work well for alignment.
For instance, as shown in the heatmap of Fig. 6, the standard
deviation tends to be larger in image boundaries, where un-
seen regions are common. Although diverse offsets with dif-
ferent estimated directions are obtained, they are analogous
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Figure 6: While the closest offsets are highly similar to op-
tical flow with slight differences (top row), the most dissim-
ilar offsets have different estimated directions (bottom row).
Moreover, the offsets tend to have a larger diversity in re-
gions that optical flows do not work well for alignment (see
the diversity heatmap and regions marked by red arrows).
(Zoom-in for best view)

TDAN
N=1 | N=9 | N=25

Flow-based
N=1 N=2 \ N=3

33313 | 33.483 | 33.540 32.835 | 32.973 | 33.017

Table 2: PSNR on Vimeo-90K-T (Xue et al. 2019) using
two additional models. For both models, the performance
increases with increased number of offsets.

to optical flow in terms of their overall shape. This suggests
that the motion between frames is still an important clue
in deformable alignment, as in flow-based alignment. More
qualitative results are shown in the supplementary material.
Contributions of Diversity. We are also interested in
whether the diverse flow-like offsets are beneficial to video
SR. This motivates us to inspect the aligned features and the
corresponding performance. With a single offset, the aligned
features suffer from the warping error induced by unseen
regions and inaccurate motion estimation. The inaccurately
aligned features inevitably hinder the aggregation of infor-
mation and therefore harm the subsequent restoration. In
contrast, with multiple offsets, the independently warped
features are reciprocal and provide better-aligned features
during fusion, hence alleviating the inaccurate alignment by
a single offset. An example of the aligned features are visu-
alized in Fig. 7. It is observed that with a single offset, the
aligned features are less coherent. For instance, in the image
boundaries, which correspond to the regions that do not ex-
ist in the neighboring frame, the feature warped by a single
offset contains a large area of dark regions. Contrarily, with
15 offsets, the complementary warped features provide ad-
ditional information for fusion, resulting in features that are
more coherent and preserve more details.

Increasing Offset Diversity. We then examine the perfor-
mance gain by gradually increasing the number of offsets
and attempt to examine if more offsets will always lead to a
better performance.

The qualitative and quantitative comparison with different
N are shown in Fig. 8 and Fig. 9, respectively. In particular,
as the number of offsets increases from 1 to 5, the PSNR
increases rapidly. When NV further increases, the PSNR sat-
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Reference feature Aligned feature

2ol

Figure 7: Aligned features with N=1 and N=15. With a sin-
gle offset, the model lacks the ability to handle occlusion and
inaccurate motion estimation (red arrows). With increased
number of offsets, the features are better aligned, and more
details are better preserved. (Zoom-in for best view)

urates at about 30.23 dB. This result indicates that the per-
formance reaches a plateau when the number of offsets gets
larger. As a result, simply increasing the number of off-
sets could lower the computational efficiency without sig-
nificant performance gain. It is noteworthy that it is infeasi-
ble to balance the performance and computational efficiency
in deformable alignment since the number of offsets must
be equal to the square of kernel size. Our formulation, con-
trarily, generalizes deformable alignment with an arbitrary
number of offsets, thus providing a more flexible approach
to introducing offset diversity.

We also inspect the correlation between offset diversity
and PSNR performance. We measure the offset diversity by
the pixelwise standard deviation of all offsets. As shown
in Fig. 9, the performance of the model positively corre-
lates with the offset diversity (Pearson Correlation Coeffi-
cient=0.9418 based on these six data points). This result im-
plies that offset diversity indeed contributes to the perfor-
mance gain.

To further support our conclusion, we additionally test the
improvement brought by offset diversity using TDAN (Tian
et al. 2020) and a flow-based network®*. As shown in Table 2,
the PSNR of the two models improves by up to 0.23 dB.
Besides, an improvement of 0.18 dB is observed in the flow-
based network, suggesting that the offset diversity not only
improves feature alignment but is also constructive in image
alignment.

Besides increasing the number of offsets, diversity can
also be achieved by increasing the number of deformable
groups G. Interestingly, the above conclusions are also ap-
plicable to G. A more detailed analysis is included in the
supplementary material.

4We use an architecture similar to TOFlow (Xue et al. 2019) except
that spatial warping is done on LR space instead of HR space for
computational efficiency. We increase the number of offsets by
using multiple SPyNet (Ranjan and Black 2017).



Figure 8: While the quality improves markedly when N increases from 1 to 3, further improvement at N=25 is relatively small.
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Figure 9: The performance of the models positively corre-
lates with the offset diversity. When N increases from 1 to
5, both the PSNR and standard deviation of the offsets in-
crease rapidly. When NN further increases, both the PSNR
and the standard deviation of the offsets saturate.

REDS4 | Vimeo-90K-T
without offset-fidelity loss | 28.753 33.632
with offset-fidelity loss | 30.480 35.223
Difference | +1.727 +1.591

Table 3: Quantitative comparison (PSNR) on REDS4 and
Vimeo-90K-T for 4x video super-resolution. Results are
evaluated on RGB channels.

Offset-fidelity Loss

We train EDVR-L with the official training scheme. As the
network capacity increases, the training of deformable align-
ment becomes unstable. Without the offset-fidelity loss, the
overflow of offsets produces a zero feature map after de-
formable alignment. As a result, EDVR essentially becomes
a single image SR model. On the contrary, our loss penalizes
the offsets when they deviate from the optical flow, resulting
in much more interpretable offsets and better performance.
As shown in Fig. 10, EDVR converges with a lower training
loss with our offset-fidelity loss. Note that in Fig. 10(a), the
training loss increases at about 300K, which is the time when
offsets overflow. In Table 3 we see that our loss introduces
an additional improvement of up to 1.73 dB. The qualitative
results are provided in the supplementary material.
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Figure 10: (a) When training on REDS, the model trained
without the offset-fidelity loss becomes unstable at about
300K, where the loss increases and is consistently greater
than that trained with our loss thereafter. (b) When training
on Vimeo-90K, the model trained with offset-fidelity loss is
able to reach a lower training loss.

Conclusion

The success of deformable alignment in video super-
resolution has aroused great attention. In this study, we un-
cover the intrinsic connection in both concepts and behav-
iors between deformable alignment and flow-based align-
ment. For flow-based alignment, our work relaxes the con-
straint of deformable convolution on the number of offsets.
It allows a more flexible way to increase the offset diversity
in flow-based alignment approaches, improving the output
quality. As for deformable alignment, our investigation em-
powers us to understand its underlying mechanism, poten-
tially inspiring new alignment approaches. Motivated by our
analysis, we propose an offset-fidelity loss to mitigate the
stability problem during training.
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