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Abstract

Depth estimation in real-world applications requires precise
responses to fast motion and challenging lighting conditions.
Event cameras use bio-inspired event-driven sensors that pro-
vide instantaneous and asynchronous information of pixel-
level log intensity changes, which makes them suitable for
depth estimation in such challenging conditions. However,
as the event cameras primarily provide asynchronous and
spatially sparse event data, it is hard to provide accurate
dense disparity maps in stereo event camera setups - espe-
cially in estimating disparities on local structures or edges. In
this study, we develop a deep event stereo network that re-
constructs spatial image features from embedded event data
and leverages the event features using the reconstructed im-
age features to compute dense disparity maps. To this end,
we propose a novel image reconstruction sub-network with
a cross-semantic attention mechanism. A feature aggrega-
tion sub-network is also developed for accurate disparity es-
timation, which modulates the event features with the recon-
structed image features by a stacked dilated spatially-adaptive
denormalization mechanism. Experimental results reveal that
our method outperforms the state-of-the-art methods by sig-
nificant margins both in quantitative and qualitative measures.

Introduction

Stereo matching or finding corresponding pixels from two
viewpoints for depth estimation has been regarded as one
of the core problems in computer vision. Most of the recent
deep learning-based stereo matching frameworks depend on
passive frame-based cameras that provide intensity images
at a fixed rate (e.g. 10ms latency). The traditional frame-
based cameras are prone to motion blur and sudden intensity
changes in high-speed scenarios. Thus, new camera sensors
such as event-based cameras are emerging as alternatives to
traditional frame-based cameras in stereo camera setups.
Event cameras use bio-inspired data-driven sensors that
provide asynchronous and instantaneous per-pixel intensity
change information and inherits several advantageous char-
acteristics over traditional cameras, such as low latency (
0.001ms), high dynamic range, high temporal resolution, no
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motion blur, and capability to handle different lighting con-
ditions (Gallego et al. 2019). However, most of the current
deep learning-based stereo models are not capable of tak-
ing full advantage of the temporally asynchronous and spa-
tially sparse nature of the event data provided by event cam-
eras. The main reasons behind this are difficulties in han-
dling asynchronous event data and lack of spatial structure
information.

Early pioneering studies have reported that event cameras
can be used for depth estimation (Zhou et al. 2018; Tulyakov
et al. 2019; Zhu, Chen, and Daniilidis 2018; Xie, Chen, and
Orchard 2017; Dikov et al. 2017; Schraml and Belbachir
2010; Schraml, Schon, and Milosevic 2007). Prior stud-
ies introduced event data representations using hand-crafted
methods (Sironi et al. 2018; Zhu et al. 2018b, 2019) to pro-
duce a dense event feature map from the sparse event data.
(Kogler et al. 2014; Xie, Chen, and Orchard 2017) employed
Belief Propagation on a Markov Random Field. (Xie, Zhang,
and Wang 2018) used a traditional semi-global matching ap-
proach (Hirschmuller 2007). (Dikov et al. 2017; Piatkowska,
Belbachir, and Gelautz 2013; Firouzi and Conradt 2016) ex-
tended the cooperative stereo algorithm using iterative non-
linear operations to extract disparities. (Zhou et al. 2018;
Zhu, Chen, and Daniilidis 2018) explicitly used camera mo-
tion information to improve depth estimation. (Zou et al.
2017) produced disparity at every location based on interpo-
lation while (Tulyakov et al. 2019; Gehrig et al. 2019; Chen
et al. 2020) focused on learning-based event representations
instead of hand-crafted or rule-based event accumulation for
deep learning-based stereo matching.

Nevertheless, though the existing representations encode
the asynchronous event stream to a dense event feature,
they do not contain any spatial intensity information of the
scenes. To our best knowledge, despite the fact that the spa-
tial structural information in intensity images is particularly
important for stereo matching, all of the existing deep event-
based stereo algorithms have used only event features di-
rectly extracted from the input event data without explicitly
reconstructing spatial image features.

In this study, we propose a novel end-to-end deep event
stereo architecture to generate spatial image features from
input event data and use them as a guidance for the accurate
stereo event matching. Inspired by the recent studies (Kalia,
Navab, and Salcudean 2019; Rebecq et al. 2019; Scheerlinck
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Figure 1: Overall architecture of the proposed deep event stereo network. The network consists of four sub-networks: event
embedding, image reconstruction, feature aggregation, and stereo matching sub-networks. The proposed network takes event
streams as input and embeds them to features, which are then fed to the image reconstruction sub-network for event-to-image
translation. The reconstructed image features along with embedded event features are then fused and aggregated by the feature
aggregation sub-network. The aggregated feature is then fed to the stereo matching sub-network for accurate dense depth

estimation.

et al. 2020; VidalMata et al. 2019; Wang et al. 2019; Watkins
et al. 2018), we explicitly reconstruct intensity images from
the input event streams and use them as a guidance for event
features. By doing so, we can use not only asynchronous
event information but also spatial intensity image informa-
tion. Our approach does not require additional input stereo
images along with event streams for dense disparity esti-
mation. Moreover, instead of directly fusing event streams
and intensity images, we fuse the event features and recon-
structed image features via a convolutional neural network
(CNN) model. Specifically, an effective modulation mech-
anism for two different types of features is learned by the
proposed feature aggregation sub-network.

In summary, the contributions of this work are as follows:

* We propose a deep event stereo network that extracts the
event features leveraged by the reconstructed image fea-
tures for dense disparity map estimation. To that end, the
proposed network is trained with ground-truth disparity
maps and intensity images in a supervised manner. In test-
ing, the network outputs dense disparity maps using the
spatio-temporal features extracted from the event features
and the reconstructed image features.

* Inspired by recent studies in event-to-image translation,
a novel image reconstruction sub-network is proposed to
extract the image features reconstructed from the event
features. The image reconstruction sub-network is based
on a dual-path encoder-decoder network with a semantic
attention mechanism.

* A feature aggregation sub-network is proposed to incor-
porate the reconstructed image features into the event fea-
tures in a spatially adaptive modulation concept. The sub-
network uses a stacked dilated SPatially-Adaptive DEnor-
malization (stacked dilated SPADE) mechanism (Schus-
ter et al. 2019; Park et al. 2019) that modulates the event
features using the reconstructed image features.

The proposed deep event stereo network has been evalu-
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ated using the public open dataset: the multi vehicle stereo
event camera (MVSEC) dataset (Zhu et al. 2018a). The ex-
perimental results reveal that the proposed method outper-
forms the state-of-the-art methods in terms of the perfor-
mance of depth estimation.

Deep Event Stereo Network

We construct our proposed architecture by adopting the
stereo framework of (Tulyakov et al. 2019) as the base-
line with several major architectural modifications. Our pro-
posed network consists of four inter-linked sub-networks:
event embedding sub-networks, novel image reconstruction
sub-networks for event-to-image reconstruction, feature ag-
gregation to fuse event features and image features, and a
stereo matching sub-network, as shown in Figure 1.

The event embedding sub-network contains a kernel net-
work with continuous fully connected layers, following
(Tulyakov et al. 2019), for left/right event-to-feature em-
bedding. The embedded event features are then fed to both
the image reconstruction sub-network and feature aggrega-
tion sub-network as inputs. The proposed image reconstruc-
tion sub-network takes event features as input and uses a
dual-path encoder-decoder network with a novel attention
mechanism to reconstruct corresponding left and right im-
ages and also to obtain image features of the same shape
of event features. The proposed feature aggregation sub-
network takes embedded event features and reconstructed
image features as inputs and fuses the features with a stacked
dilated SPADE mechanism to obtain a final fused and ag-
gregated feature, which is then fed into a stereo matching
sub-network to obtain dense disparity maps. Note that the
event embedding and stereo matching sub-networks are ap-
plied using the same methods as used in the previous study.
Thus, the following subsections introduce the proposed sub-
networks in detail (i.e., image reconstruction sub-network
and feature aggregation sub-network).
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Figure 2: Architecture of the image reconstruction sub-network. It takes embedded event features as input and processes them
with a dual-path encoder-decoder architecture with a semantic attention mechanism to generate a corresponding intensity image

along with image feature.

Image Reconstruction Sub-Network

As shown in Figure 2, the image reconstruction sub-network
consists of two separate branches, namely, a regular branch
and an attention branch, in the encoder segment (Uddin and
Jung 2020). The sub-network takes embedded event feature
of shape Rexhxw g9 input, where ¢, h and w represent chan-
nels, height and width, respectively. The input is fed to both
regular and attention branches, each of which consists of
a set of convolutions and down-sampling layers in the en-
coder. The corresponding features from both branches are
fed to the proposed semantic attention module, which calcu-
lates global context information.

The proposed semantic attention module consists of two
separate attention mechanisms - spatial context attention and
cross-semantic attention, as shown in Figure 3. For the spa-
tial context, the features are fed to 1 x 1 convolutions fol-
lowed by an element-wise addition and ReLU operation,
which is then fed to another 1 x 1 convolution. Let f,, and
for, be features from regular and attention branch respec-
tively, then the operation can be expressed as

fspatial - wS(ReLU(wl(fbrl) + w2(fbr2)))7 (1)

where w1, wo and w3 denote 1 X 1 convolutions.
For the cross-semantic attention, we modify the Squeeze
and Excitation Network (Hu, Shen, and Sun 2018) to per-
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Figure 3: Semantic attention module. The module takes the
input from the dual-path encoder in the image reconstruction
sub-network and calculates both spatial context and cross-
semantic context among the features.
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Figure 4: Cross-semantic attention. The module takes two
features from the dual-path encoder and calculates respec-
tive channel descriptors. Then it reweighs the features in re-
ciprocal and gated manners to integrate the cross-semantic
global context.

form a re-calibration of the global context between the fea-
tures in a reciprocal manner, as shown in Figure 4. More
specifically, first, we perform a global average pooling sim-
ilar to the SE to squeeze spatial information into a channel
descriptor which generates channel-wise statistics. For fp,,
with height H and width W, we obtain the channel descrip-
tors z., as

1 AW

2 :S(W;;(fbn(z,y))), @)
where S denotes the sigmoid function. To obtain z,, for fi.,,
we follow the same process as z., . After obtaining the chan-
nel descriptors, we perform a feature re-calibration in a cross
manner by multiplying 2., with f,, and z., with fy,, . This
re-calibration facilitates the fusion of the global context of
the features. We then perform a gating mechanism (Dauphin
et al. 2017) for normalizing and learning semantic corre-
spondences. Specifically, the final feature f.opierr from the
cross-semantic attention can be expressed as

feontext = S(ch © fbrz) O] ReLU(ZC2 © fbrl)a 3)

where © denotes an element-wise product. The final output
fattention from the attention module is obtained by multi-
plying the spatially attended fspatiar and feontest, Which can
be expressed as

fattention = fspatial O] fconteact- (4)



The regular branch of the encoder uses 3 x 3 convolu-
tion layers with dilated convolution layers with a kernel size
of 3 x 3 and rates of 2, 4, 8, and 16 to achieve large re-
ceptive fields that contribute to better feature extraction. The
output from both the regular and attention branches are con-
catenated channel-wise and fed into a single decoder. The
decoder consists of several convolutions and up-sampling
layers (i.e., up-sampling operation followed by a convolu-
tion operation) which outputs a reconstructed intensity im-
age and associated image features.

Feature Aggregation Sub-Network

The feature aggregation sub-network takes the embedded
event feature feyen: and the reconstructed image feature
fimage as inputs, as shown in Figure 5. fimage has more
structure information due to the influence of the recon-
structed image feature. The goal of this aggregation sub-
network is to map the structure information of fj,qge to
fevent. To this end, we use a conditional denormalization
method based on the stacked dilated convolution depicted in
Figure 6.

The proposed aggregation sub-network is based on the
spatially-adaptive denormalization (SPADE) method (Park
et al. 2019) that modulates the existing feature using the
conditional feature with learned scale and shift parameters.
Let X¢*"X® be the input feature and Y ¢*"** be the con-
ditional feature, then the SPADE is performed in a channel-
wise manner as follows:

X — pu(X)

)+ B(Y), &)
where £4(X) and o(X) are the mean and standard devia-
tion calculated from the spatial dimension of each feature
and y(Y") and B(Y") are the learned modulation parameters
(i.e. mean scale and shift) of the denormalization layer, re-
spectively. In our case, X is the event feature and Y is the
reconstructed image feature. Note that, in the SPADE, ~ and
(3 are tensors, not scalar values. That is, it denormalizes the
normalized feature with the spatially varying learned scale
and shift modulation parameters. The v and 3 values are ob-
tained through the convolution layers.
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Figure 5: Feature aggregation sub-network. The sub-
network takes both embedded event features and image fea-
tures as inputs and processes them with a stacked dilated
SPADE module to generate a fused and aggregated feature.
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Figure 6: Stacked dilated SPADE block. The event features
are conditionally denormalized by the scale v and shift 3.
These scale and shift values are modulation parameters and
extracted from the reconstructed image features through the
stacked dilated convolutions.

Notably, the SPADE was proposed as a conditional denor-
malization method for image synthesis tasks. However, in
this paper, we modify the SPADE to fit the stereo matching
task. Specifically, to compensate for the insufficient struc-
tural information of the event feature, the proposed condi-
tional denormalization uses the stacked dilated convolution.

As shown in Figure 6, the modulation parameters v and (3
are computed with four different dilated convolutions (i.e.,
with the dilation factors d as 1, 2, 3, and 4). The stacked
dilated convolution uses large receptive fields and hence
provides discriminative spatial features in the dense stereo
matching field. Increasing the receptive field of the condi-
tional feature (i.e., reconstructed image feature) results in
more accurate matching results, comparing with a single di-
lated convolution-based denormalization.

Stereo Matching Sub-Network

After obtaining the left and right aggregated features from
the reconstructed image features and embedded event fea-
tures, the aggregated features are fed to a stereo matching
sub-network, following (Tulyakov et al. 2019). Note that,
for the stereo matching sub-network, we applied the exist-
ing model used for the event stereo matching framework
(Tulyakov, Ivanov, and Fleuret 2018). It should be further
noted that any stereo matching sub-network (even for frame-
based stereo models) can be independently combined with
our proposed image reconstruction and feature aggregation
sub-networks by simply modifying the interface between the
sub-networks (as verified in the ablation studies).

In the stereo matching sub-network, after matching all
features for all disparities, a resultant 4D feature of size
% X d"j% X % X % is constructed, where ¢, h and w and
dmaz denote channels, height and width and maximum dis-
parity to be computed, respectively. Then, a matching cost

feature C of size % X h X w is constructed, which is then

fed to a sub-pixel estimator. Then, an estimated disparity D
is calculated as

Dya=_d(j) - softmin(Cjy.), (6)
j Jii—il<é



where j = argmin;(C; ), d is an estimator support, and
d(j) = 2 - j is a disparity corresponding to index j in the
matching cost tensor.

Objective Function

For training the image reconstruction sub-network, we adopt
the [; +5S1M loss. Specifically, let the reconstructed image
be I,.ccon and respective ground truth intensity image be I,
then the reconstruction loss [r can be expressed as

ZR = ll(Igt;Irecon) +SSIM(IgtaIrecon>- (7)

For training the stereo matching sub-network, we adopt
sub-pixel cross entropy loss, following (Tulyakov, Ivanov,
and Fleuret 2018). Specifically, the sub-pixel cross entropy
loss lg can be expressed as

1 : t
lg = oW ;;Laplace(d(])m = ngwb) x ¢, (8)

¢ = log(softmin(Cjy..)),
J

where Laplace(d(j)|u = DJ',,b) is a discretized and nor-

malized Laplace probability density function over dispari-

ties with a mean equal to the ground truth disparity and di-

versity b. In our setup, we set b as 2, following the baseline.
Our final objective function of the proposed model, [ t;7,41

is given by

©))

ltinal = lr + 5. (10)

Experiments and Results
Experimental Setup

We evaluate our proposed method on the Multi Vehicle
Stereo Event Camera Dataset (IMVSEC) (Zhu et al. 2018a).
The MVSEC consists of precise depth information recorded
form Lidar sensors along with event streams from two event
cameras and corresponding intensity images with a resolu-
tion of 346 x 260 pixels. We use the Indoor Flying dataset
from the MVSEC and divide them into three split, following
(Tulyakov et al. 2019; Zhu, Chen, and Daniilidis 2018). In
the split one, we train the model using 3110 samples from
the Indoor Flying 2-3 and for the validation and test, we use
200 and 861 samples from the Indoor Flying 1 sequence, re-
spectively. In the split three, we train the model with 2600
samples from the Indoor Flying 1-2 and for the validation
and test, we use 200 and 1343 samples from the Indoor Fly-
ing 3, respectively. We do not use the split two due to the dif-
ference in dynamic characteristics in the training and testing
events, as mentioned in (Tulyakov et al. 2019).

We have evaluated our proposed model with the state-of-
the-art methods for event-stereo matching. Specifically, we
compare our method with the Semi-Dense 3D (Zhou et al.
2018), FCVF* (Hosni et al. 2012; Zhou et al. 2018), SGM*
(Hirschmuller 2007; Zhou et al. 2018), TSES (Zhu, Chen,
and Daniilidis 2018), CopNet (Piatkowska et al. 2017) and
DDES (Tulyakov et al. 2019). We use the same evaluation
protocol as (Tulyakov et al. 2019; Zhu, Chen, and Daniilidis
2018) and compute mean depth error, median depth error
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and mean disparity error for the sparse disparity ground
truth and additional one-pixel accuracy (1 PA) for the dense
disparity ground truth.

The proposed deep event stereo network was imple-
mented using PyTorch. The model was trained in an end-to-
end manner with the RMSprop optimizer using default set-
tings. We used the default event queue length and kernel ini-
tialization procedure for the event embedding sub-network,
following the baseline. A single NVIDIA TITAN XP GPU
was used for the training. We trained the model up to 15
epoch and chose the best checkpoint based on the validation
results for the testing.

Qualitative Results

Visual results for disparity estimation are shown in Figure
7 for the split 1 and split 3. For the proposed method, like
the existing methods, the inference was performed with only
event data.

It can be seen from Figure 7 that our proposed model can
provide better estimates in edges and structures than the ex-
isting methods. In the case of the TSES (Zhu, Chen, and
Daniilidis 2018), the events are accumulated via a hand-
crafted manner (i.e. stack and sum) which are then processed
into event disparity volumes for calculating the matching
cost. However, due to the hand-crafted event accumulation
and blurring-based volume generation, the TSES fails to
preserve event information and hence fails to generate ac-
curate disparity maps. Although the Semi-Dense 3D (Zhou
et al. 2018) uses additional information such as known cam-
era motion and works with continuous depth values, it fails
to map the disparity in a dense manner due to relying on
only temporal coherence among events via the forward-
projection approach without any event matching mecha-
nism. The DDES (Tulyakov et al. 2019) works well for
the dense disparity estimation due to the learning-based
event accumulation with a kernel network and explicit stereo
matching framework. However, it fails to calculate plausible
disparity maps in the cases of edges and texture-less areas.

Our method explicitly reconstructs intensity images from
the event features and uses the reconstructed image fea-
tures as a guidance for the embedded events. Moreover, our
method uses the stacked dilated SPADE to aggregate the re-
constructed image features and embedded event features to
generate comparatively better dense disparity maps. In our
case, due to the additional guidance, our method can pre-
dict more plausible structures and refined edges in the dense
disparity maps.

Quantitative Results

We have compared our proposed method in two setups -
sparse disparity estimation and dense disparity estimation.
The performance on disparity estimation has been measured
with respective sparse or dense ground truth data.

Table 1 shows the comparison of our method with the
DDES in dense disparity map estimation. Note that, among
the recent event stereo methods, only the DDES performs
dense disparity estimation. It can be seen from the table that
our method outperforms the DDES in mean depth error, me-
dian depth error, mean disparity error and one-pixel accu-
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Figure 7: Visual comparison results for event stereo methods. Note that the results for TSES (Zhu, Chen, and Daniilidis 2018),
Semi-Dense 3D (Zhou et al. 2018), and DDES (Tulyakov et al. 2019) are borrowed from the original papers. For visual com-
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frame #340 from split 1, the third row is frame #1700 from split 3, and the fourth row is frame #980 from split 1, respectively.
In (a), the most recent 15, 000 events from the left camera are overlaid in an intensity image for easier visualization (red color
represents positive events and blue color represents negative events).

Methods Mean depth error [cm] | | Median depth error [cm] | | Mean disparity error [pix] | | One-pixel accuracy [%] T
Split 1 Split 3 Split T Split 3 Split 1 Split 3 Split T Split 3

Baseline 16.6 23.5 6.8 14.7 0.59 0.94 89.8 82.5

Proposed 14.2 19.4 5.9 10.4 0.55 0.75 92.1 89.6

Table 1: Results for dense disparity estimation. Note that the baseline method is DDES (Tulyakov et al. 2019).

racy. This is mainly due to the additional guidance from the
reconstructed image features and stacked dilated feature ag-
gregation mechanism which contributes to estimating better
disparities on local structures or edges than those of the ex-
isting method (as seen from Figure 7).

Moreover, we have evaluated our method in sparse dis-
parity estimation. Table 2 shows the comparison results be-
tween our method and recent event stereo methods in sparse
disparity estimation. Note that the FCVF* and SGM* meth-
ods are the frame-based methods but works on event images,
implemented in (Zhou et al. 2018). To generate the event
images, the FCVF* and SGM* use temporal event aggre-
gation for feature accumulation, as used in Semi-Dense 3D
(Zhou et al. 2018). However, the Semi-Dense 3D relies only
on temporal information of the events and fails to preserve
spatial information in events which leads to poor results in
the FCVF* and SGM*. The CopNet and TSES relies only
on spatial information of the events and fails to preserve
the temporal information of the events, which is essential
for finding event correspondence in time and leads to poor
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disparity estimation. The Semi-Dense 3D and DDES show
a better tendency in disparity estimation due to the inherent
ability to work with sparse disparity. However, it can be seen
from the table that our method outperforms all the existing
methods in terms of mean depth error, median depth error,
and mean disparity error by large margins. Our method is
capable of handling both sparse and dense disparity scenar-
ios and performs comparatively better than all the existing
event stereo methods.

Ablation Studies

We perform the ablation studies on the effectiveness of the
proposed sub-networks. Table 3 summarizes the effective-
ness of the proposed sub-networks and modules. For the ab-
lation study, we have trained four variants of our proposed
model. Model 1 is only trained with the reconstruction sub-
network and the feature aggregation sub-network is replaced
with a simple concatenation and convolution (i.e. the event
features and the image features are concatenated, followed
by a convolution). Model 2 is trained with the reconstruction



Methods Mean depth error [cm] | | Median depth error [cm] | | Mean disp. error [pix]{

split I split 3 split I split 3 split 1 split 3
FCVF* (Hosni et al. 2012) 99 103 25.0 11 - -
SGM* (Hirschmuller 2007) 93 119 31.0 20 - -

CopNet (Piatkowska et al. 2017) 61 64 - - 1.03 1.01

TSES (Zhu, Chen, and Daniilidis 2018) 36 36 - - 0.89 0.88

DDES (Tulyakov et al. 2019) 13.6 18.4 5.9 9.9 0.54 0.69
Semi-Dense 3D (Zhou et al. 2018) 13 33 5.0 11 - -

Proposed 11.3 15.2 4.6 7 0.49 0.63

Table 2: Results for sparse disparity estimation. Note that the blank entries in the table denote the unavailability of the respective

values from the associated papers.

Ablation Recoin- Cross-. Spatial Featurft SFacked Mean Median Meap
settings struction semantic | context | aggregation dilated depth depth dlspaqty
sub-network | attention | attention | sub-network conv. error [cm]| | error [cm]] | error [pix])
Baseline (DDES) X X X X X 13.6 5.9 0.54
Model 1 v v v X X 11.8 5.0 0.51
Model 2 v v v v X 11.7 49 0.51
Model 3 v v X v v 12.4 54 0.52
Model 4 v X v v v 12.2 5.1 0.53
Proposed v v v v v 11.3 4.6 0.49

Table 3: Ablation studies of the proposed sub-networks and attention mechanisms.

and feature aggregation sub-network without the stacked di-
lated convolution. Model 3 is trained with cross-semantic
attention only (i.e., without spatial context attention), and
model 4 is trained with spatial context attention only (i.e.,
without cross-semantic attention). In model 3 and 4, the fea-
ture aggregation sub-network is kept unchanged.

From Table 3, it can be seen that model 1 shows lower
depth and disparity errors by significant margins from the
baseline. This is due to the additional structure informa-
tion obtained from the reconstructed image features. Model
2 shows slightly better performance than model 1 due to
the reconstruction and feature aggregation sub-networks
and also shows the effectiveness of the dilated convolu-
tion in the feature aggregation sub-network. Models 3 and
4 show the effectiveness of the proposed attention mech-
anisms (i.e., cross-semantic attention and spatial context
attention, respectively) in the reconstruction sub-network.
However, though each individual proposed sub-network and
module contributes to the improvement of the depth and dis-
parity estimation, the best performance is obtained when all
the proposed sub-networks and blocks are present. It can be
concluded that the image reconstruction with the semantic
attention module and feature aggregation with a stacked di-
lated convolution improves the overall performance on dis-
parity estimation. Moreover, an additional experiment was
performed to validate the effectiveness of the proposed re-
construction mechanism. We removed the reconstruction
loss and used the reconstruction sub-network only as a fea-
ture extractor. The model trained without the reconstruction
loss was worse than the proposed method (12.9 vs 11.3 for
mean depth error). This result reveals that the explicit recon-
struction mechanism is required for better depth estimation.

In addition, we have validated the effect of using a dif-
ferent stereo matching sub-network in our architecture. We
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replaced the current stereo matching sub-network with a
frame-based stereo matching framework, PSMNet (Chang
and Chen 2018). We found that the frame-based stereo
matching method show worse results than the current
method (i.e. 12.2 vs 11.3 for mean depth error). This is
due to the frame-based methods generally require compar-
atively larger datasets and consist of more training parame-
ters, which lead to requiring more training for convergence.
The ablation models are trained with the sparse disparity
ground truth of split 1 (Indoor Flying 1).

Conclusion

We proposed a novel end-to-end deep event stereo archi-
tecture to generate spatial image features from the embed-
ded event data using a novel image reconstruction sub-
network and fuse the embedded event features and recon-
structed intensity image features with a novel feature aggre-
gation sub-network to perform accurate stereo event match-
ing. For this, we proposed a dual-path encoder-based image
reconstruction sub-network with a semantic attention mech-
anism. In addition, we proposed a novel feature aggregation
sub-network based on a stacked dilated convolution-based
SPADE module that modulates the event features with the
reconstructed image features to be used as guidance for the
accurate event stereo matching. We evaluated the proposed
method with the state-of-the-art methods in both sparse and
dense disparity estimation scenarios. The results show that
our method performs comparatively better in both scenarios
and improves the existing event stereo methods by signifi-
cant margins. Ablation studies also validate the effectiveness
of the proposed architecture in the event stereo matching.
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