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Abstract

In decision making tasks under uncertainty, humans dis-
play characteristic biases in seeking, integrating, and
acting upon information relevant to the task. Here, we
reexamine data from previous carefully designed exper-
iments, collected at scale, that measured and catalogued
these biases in aggregate form. We design deep learning
models that replicate these biases in aggregate, while
also capturing individual variation in behavior. A key
finding of our work is that paucity of data collected from
each individual subject can be overcome by sampling
large numbers of subjects from the population, while
still capturing individual differences. We predict human
behavior with high accuracy without making any as-
sumptions about task goals, reward structure, or individ-
ual biases, thus providing a model-agnostic fit to human
behavior in the task. Such an approach can sidestep po-
tential limitations in modeler-specified inductive biases,
and has implications for computational modeling of hu-
man cognitive function in general, and of human-AI in-
terfaces in particular.

Introduction
A rich tradition of interdisciplinary research in cognitive sci-
ence, economics, and computational modeling has studied
humans’ apparent suboptimality in decision-making tasks
of various kinds (see, for instance, Gilovich, Griffin, and
Kahneman (2002)). In particular, humans appear to devi-
ate significantly from task-optimal behavior in a fundamen-
tal aspect of decision-making under uncertainty: seeking
and integrating relevant information in service of decision
accuracy. For instance, research suggests that instinctive
“approach” and “avoidance” tendencies can interfere with
learning action-reward associations (Mkrtchian et al. 2017;
Huys et al. 2011), and prevent subjects from seeking bal-
anced information (Hunt et al. 2016); further, the integra-
tion of observed evidence and subsequent decision-making
also appear to be influenced by irrelevant variables such
as desired outcomes (Gesiarz, Cahill, and Sharot 2019) or
framing of the question (Hunt et al. 2016; Kahneman and
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Tversky 1979). Modeling and understanding the computa-
tional provenance of such behavior is fundamental to the
study of cognitive science; it may also underlie quintessen-
tially human qualities such as optimism bias (Sharot 2011).
The study of information seeking & integration is equally
relevant to a wide range of applications involving human-
computer or human-AI interactions – examples include pre-
venting “filter bubbles” and polarization in recommender
systems and media consumption (Pariser 2011), and efficacy
of digital assistants or health & wellness tracking software.

In addition to clever experimental design to empirically
demonstrate biases (Hunt et al. 2016), research also aims
to understand the underlying computations driving these bi-
ases. Typically, under the constraints of a specific task, hu-
man behavior is hypothesized to arise from carefully spec-
ified models, whether computational (Marr 1982) such as
reward maximizing using reinforcement learning, bayes-
optimal under a specific uncertainty model, etc., or algo-
rithmic, i.e., in terms of mechanism, such as drift-diffusion
processes (Ratcliff and McKoon 2008) or neuronal circuits
performing predefined computations (Ma et al. 2006).

A critical commonality in much of the literature is the
strong inductive bias implicit or explicit in proposed mod-
els, which are validated against each other in terms of qual-
ity of data fit, or via correlational analyses against task-
extrinsic data such as personality traits or diagnosis. Two
major challenges to this approach are (a) the extreme paucity
of data for subject-specific model fits to data, and (b) lim-
itations of modeler-specified inductive biases in capturing
the actual, underlying computations in humans. An increas-
ing trend towards large-scale experimentation in naturalistic
settings (Brown et al. 2014) partially alleviates data paucity
by enabling data collection from larger numbers of partic-
ipants. These trends present an opportunity for developing
new modeling & analysis techniques that can effectively
leverage the availability of large-population data.

In this paper, we propose a deep learning approach for fit-
ting human behavior, in very sparse data scenarios, by lever-
aging large subject populations and simultaneously learning
population- and individual- level model fits in a single learn-
ing process. We apply our methods to a recent large study
cataloguing biases in human information seeking, integra-
tion, and decision-making (Hunt et al. 2016), and demon-
strate the following results:
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Figure 1: Task structure & biases: Panel A shows the multi-step decision-making task studied in humans. Subjects at each step
choose between opening a card from an offered row, or deciding which row has the maximum product of cards (MaxProd,
similarly with minimum product, MinProd). The cost of sampling, and rewards/penalties for correctness, create a trade off
between reward and accuracy. Panel B shows the framing effect in human behavior and our model. The Y axis shows the
difference between Maxprod and MinProd, in the probability of guessing after seeing 1 card. This difference is nonzero (i.e.,
framing influences guess probability), and modulated by card value (guessing more likely in MaxProd with large first card).
Both the baseline & DNN models capture this broad trend. See text for details. (Panel A adapted from Hunt et al. (2016))

• model-agnostic fits to human behavior: By using a multi-
task DNN architecture that reflects the structure of the
behavioral task, but not the goals or rewards, we recover
subjects’ action policies purely by replicating behavior.

• computational fits to human biases: Our models capture
empirical biases in the task at population level, and, to a
substantial degree, at individual level.

• subject-specific fits in sparse data scenarios: We capture
behavioral variation across subjects in the task, using as
few as 6 trials per subject, by pooling together data from
a large number of subjects. We show through experiments
that increasing the subject pool directly improves the abil-
ity to fit policies to any one subject’s data, without any
additional data from that subject.
We believe our approach is broadly applicable to a

range of experimental paradigms in cognitive- and neuro-
sciences, opening up the possibility of new scientific discov-
ery through large-scale data modeling techniques. Although
our models are purely predictive in nature, i.e., they are not
intended as an explanation of underlying cognitive processes
in the task, we hope to establish a compelling upper bound
on predictive power in the task, to serve as a benchmark for
other, more cognitively inspired, inductive biases. Further-
more, decision policies implicit in our networks can be ex-
plicated using a host of recent techniques for interpreting
learned models–see for example (Verma et al. 2018; Cran-
mer et al. 2020)–this is an active area of future work. Fi-
nally, for a range of applications in human-AI interactions,
predictive power and ability to capture biases are valuable
properties independent of interpretability.

The rest of the paper is organized as follows: We first
describe the behavioral task from Hunt et al. (2016), in-
cluding their empirical findings of biased decision-making.
We describe our modeling approach, and show that it re-
covers population-level biases from the empirical findings.
We show that our model captures individual variation in the

task, and achieves this result via learning compact, subject-
specific embeddings. We show that increasing the number
of subjects indeed improves ability to model individual sub-
jects’ behavioral policies. We conclude with a brief summa-
rization of the related work in cognitive science & machine
learning, and a discussion on future work.

Task & Empirical Results
Information-Seeking and Decision Making
We model data from a cognitive experiment conducted
on a large-scale mobile-phone-based experimental plat-
form (Brown et al. 2014) to probe decision-making under
uncertainty (Hunt et al. 2016)1. Briefly, subjects played a
multi-stage guessing game starting with 4 cards of value 1-
10, face-down in a 2x2 configuration. In some games, the
objective was to guess the row with the maximum product
(MaxProd); in other games, to guess the minimum product
(MinProd). Note that given only two rows, these tasks are
opposites of each other; this allowed for probing the effect
of task framing on decision-making. At each stage, the sub-
ject could choose whether to sample from a pre-specified
row, or to guess the answer and terminate the game. By con-
trolling which row the subject could sample from, the ex-
perimenters could check for biases in information seeking
based on current information and task framing. Each stage
had an increasing cost of sampling (0,10,15,20 points), and
the final answer was awarded +50/-60 points based on cor-
rectness. The task workflow is presented in Figure 1A.

The dataset contains data from 13915 subjects who’ve
played the “MaxProd” game and 13242 subjects who’ve
played the “MinProd” game, containing an overlap of 3230
subjects who’ve played both games2. Typically, subjects

1All data were released by authors as part of the publica-
tion (Hunt et al. 2017) under the CC0-1.0 license.

2The asymmetry is due to the design of the original experiment,
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Figure 2: DNN Model Architecture. We propose a multi-
stage multi-task network with learned embeddings to model
human behavior. The two parallel networks represent al-
ternate framings of the task (MinProd vs MaxProd), while
each stage represents a within-trial stage of decision mak-
ing (sample vs guess). Both networks share a single, learned
embedding for each subject in the data. See text for more
details.

complete at least 1 block (11 trials) of each condition, al-
though a small number of subjects have completed more
blocks of trials with an average of 14.5 trials per subject.

Empirical Findings of Approach Biases
Some key findings in the experiment were as follows:

1. Framing bias: The framing of the problem influenced
subject behavior (Figure 1B). Subjects showed differ-
ential likelihood of guessing, modulated by card value,
based on whether the goal was to find maximum product,
or to find minimum product, even though these goals are
conceptually identical in a 2-choice game,

2. Approaching the positive: Subjects were more likely to
accept a sampling option if it was from the row they were
eventually going to select; this suggests a tendency to look
for confirmation of choice, rather than to maximize infor-
mation content, in sampling decisions (Figure 4).

3. Rejecting the unsampled: Subjects were less likely to
choose a row as answer if they had passed on the option
to sample from it (Figure 5); this strengthens the obser-
vation from the previous bias that sampling decisions are
correlated with the current hypothesis / final choice.

Hunt et al. (2016) fit a softmax choice model to subjects’
behavior at each stage, at population-level (i.e., pooling
data from all subjects), with the following inputs a) mean-
subtracted card value of open cards, b) a free parameter for
each kind of observed bias. They show that the population-
level model captures behavior in the task, as well as the ob-
served approach-related biases, at population level.

Model-Agnostic DNN Fits to Behavior
We propose a multi-task DNN architecture with shared
subject-specific parameters (see Figure 2), with a separate
network for each of the two symmetric tasks “MaxProd”
and “MinProd”. Each task network has separate layers per

in which each participant played 2 games from a large set (e.g.,
MaxSum, MinSum, etc.; here, we focus for simplicity on only the
MaxProd and MinProd games, and can therefore use only part of
the original data.
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Figure 3: Log Likelihood of proposed models. The figure
shows that our proposed models (*-DNN) better model the
likelihood of data overall, compared to baseline; further, the
subject parametrization and multi-task architecture cumula-
tively improve model fit. See text and Figure 1 for details.

task stage, with inputs corresponding to the newly seen card
value and its position, and outputs corresponding to the three
choices: sample/guess, row to sample (if sampling), and row
to guess (if guessing). A shared embedding layer represents
each subject by a learned embedding, and can help capture
individual differences in the task. We use the multi-task ap-
proach to integrate behavior from alternate framings of the
task (MaxProd/MinProd), and capture behavioral asymme-
try at an individual level using the subject parameters.

Our goal is to predict human behavior in a model agnos-
tic manner, i.e., without assuming specific functional forms
or policy family. Indeed, our results show that the network
can accurately capture human behavior, and its biases, with-
out explicit encoding of task goals anywhere in the net-
work or training. We believe that providing a lightweight
parametrization for subjects can capture individual variabil-
ity, while sharing the policy family (i.e., the multi-task DNN)
allows leveraging of pooled data across subjects. Results
show that this simple parametrization does capture variation
in individual behavior to a great degree, while still reflecting
the population-level biases observed in the data.

Model Architectures & Training
Each stage of a task network takes as input the following:
sampled card value (normalized numeric), offered sample
row for the next card (binary), latent state from previous
stage (dimension 10, for stages 2-4), and subject embedding
(dimension 2, for stage 1). The stage network transforms
these inputs in the following manner: a) 2 fully connected
layers of dimension 10 to produce the next hidden state, b)
2 additional single fully connected layers on top of this hid-
den state, one each for producing the decision outputs of
that state. The decision variables are, respectively, whether
to guess or sample, and which row to select as final answer.
Hidden state from previous layers are also passed to the out-
put layers, alongside hidden state from current layer. All ac-
tivation functions are tanh(). Inputs and outputs irrelevant
to the stage are dropped from the architecture. Training is
only performed on portions of the network corresponding to
activated decision pathways in behavior.
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Figure 4: Approaching the positive: After having seen one card in each row, the probability of sampling a particular row
should be independent of whether the task is MaxProd, or MinProd. However, subjects (Figures B, D) show markedly different
sampling patterns, preferring to sample from the row likely to be the answer. The Multi-DNN model reproduces these biases
(A, C). See text for details.

Data were split into 60/40 per subject for training and
validation–6-7 trials of training data per subject per task (2x
for Multi-DNN). Training used Adam optimizer with learn-
ing rate 0.003 and batch size 256, for 30 epochs with early
stopping. We varied the width and number of hidden layers
in our experiments, but found no significant variation in the
results. We experimented with the following models:
Baseline: Population-level model proposed by Hunt et al.
(2016), who fit a separate softmax model, for each decision
stage, for each task, at population grain.
Population DNN: We train a single DNN model (one col-
umn of Figure 2) for each of the tasks MaxProd and Min-
Prod, using data pooled across all subjects.
Subject-specific DNN: Similar to Population DNN; how-
ever, we also learn subject-specific 2-d embeddings.
Multitask DNN: We train the full model shown in Figure 2,
which includes behavioral data from both tasks, and a shared
subject embedding learned from that data.

We call the DNN models Pop-DNN, Subj-DNN and
Multi-DNN respectively in the following sections.

Decision-Making Biases at Population Level
Figure 3 shows the average negative log-likelihood of all
choice data in the validation trials, under each of the pro-
posed models, for the MaxProd task. The data show that
each of the DNN models provide significantly better fit than
the Baseline model; this is precisely because our model
does not presuppose a specific computational objective, but
instead attempts to faithfully reproduce observed behav-
ior. Further, the Subj-DNN shows substantial additional im-
provement, suggesting that modeling individual variation is
important in providing an accurate account of the data. Fi-
nally, the Multi-DNN model shows modest further improve-
ments – we note here that although the Multi-DNN benefits
from additional variety of data (behavior from two different
tasks), it is trained on far fewer subjects, 3230 opposed to
13915, since fewer subjects have performed both tasks.

In addition to log likelihood, our model faithfully captures
population-level biases in information seeking in the data, as
observed by Hunt et al. (2016). In Figure 1B, we see that the
model captures the framing effect bias: there is a difference,
between MinProd and MaxProd tasks, in the likelihood of

making a final choice after seeing only one card. This dif-
ference is suboptimal in the particular setting since finding
the maximum product among two rows is equivalent to find-
ing the minimum product. The figure shows that both the
Baseline model and our Multi-DNN model capture this bias
in human behavior. (Pop-DNN and Subj-DNN also capture
this aggregate trend; data not shown).

Figure 4 shows the approaching the positive bias. Pan-
els B, D contrast the behavior of human subjects on Max-
Prod & MinProd tasks respectively, after one card from each
row has been shown. The intensity shows the likelihood of
sampling from the first row, as a function of the two card
values seen so far (y & x axes, respectively). From an opti-
mal decision-making perspective, the two figures should be
identical; however, from the patterns it is apparent that sub-
jects are more likely to select from the row that they already
expect will be the final answer. Panels A, C show that our
Multi-DNN model faithfully captures this asymmetry.

In Figure 5, we show that the model captures the rejecting
the unsampled bias: in the MaxProd game, after choosing
to not sample, the subjects showed different probabilities
of selecting row 1 as final answer, when comparing trials
where samples were offered from row 1 vs from row 2. This
demonstrates a correlation between whether to sample from
a particular row, and whether that row is the current hypoth-
esis; in particular, subjects appear to sample more from cur-
rent hypothesis (confirmatory behavior) than from the other
row, even when the latter could be more informative.

Capturing Individual Variation in the Task

We trained the Multi-DNN model, along with subject em-
beddings, on pooled training data from all subjects, and
simulated the model’s choices on the validation data for
each subject. We calculated performance metrics at a sub-
ject grain (# moves, accuracy, and total score) from model
simulations, as well as from human behavior.

Figure 6A-C shows that our model simulations capture
significant variation in the observed human behavior (sam-
ple size = 3230 subjects, all correlations p < 1e-10, i.e.,
highly statistically significant). Average steps are highly cor-
related (r=0.80), while accuracy and scores show lower cor-
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Figure 5: Rejecting unsampled options: Panel A shows prob-
ability of guessing “row A” as answer, on trials where sub-
jects guessed immediately after the first card. Trials were
split by whether the next offered sample was from the same
row, versus from the different row. Although these two
curves should be identical in an optimal model (i.e., which
row was offered for sampling should not correlate with one’s
decision), we see a clear difference; more readily apparent in
the difference between the curves (panel B). The model cap-
tures this bias. See text for details.

relation values.3 This result demonstrates that the subject
embeddings in Multi-DNN effectively parametrize individ-
ual behavior, using very small amounts of data.

In order to further rule out the possibility of this result be-
ing simply due to noise, e.g., stochasticity in the specific tri-
als included in each subject’s validation data, we simulated
Pop-DNN on the same validation data. Figure 6D shows that
Pop-DNN predictions are uncorrelated (r=0.022, n.s.) with
human behavior (data shown only for average # moves); this
further underscores the role of the subject embedding in cap-
turing the range of individual variation.

Subject Embeddings as Parametrizations of
Decision Policy
As seen in the model architecture (Figure 2), the key to our
model’s ability to personalize the decision policy to each
individual subject, is the subject embedding; in our case, a
learned vector of dimension 2. As secondary evidence that
the embeddings capture variance in behavior, we correlated
the value of the learned parameters against the same behav-
ioral measures (Figure 7A-C).4 Figure 7 shows that, indeed,
the learned embeddings do contain information about sub-
jects’ performance, since the average embedding values are
statistically different across buckets of #moves (A), and sim-

3We note briefly that the latter two measures suffer from severe
estimation issues – 4-8 validation trials per subject are not suffi-
cient to accurately calculate a subject’s average behavior, due to
the substantial variation introduced by the specific card layouts in
the trials. As a consequence, the correlation between model and
human are also systematically under-estimated

4This and subsequent analyses focus on dimension 1 of the 2-
d embeddings, for simplicity and space; results are qualitatively
similar for dimension 2. We found that 2-d embeddings performed
marginally better than 1; additional dimensions did not further im-
prove performance.

ilarly, choice accuracy (B), as well as decision time (C). The
latter is an interesting result, suggesting that decision time,
typically related to subjective uncertainty about choice, is
also captured by the Multi-DNN model, despite having no
access to response time data during training. Further, since
the collected data included demographic information (age,
gender, education) which were extrinsic to the experimental
setup, we tested whether the learned embeddings contained
information regarding demographic data. In Figure 7D-F,
we see that the subject embeddings show statistically sig-
nificant differences in value across age groups, and across
educational levels. As noted in Hunt et al. (2016), these de-
mographic dimensions are already associated with behav-
ioral differences in the task; hence it is not surprising that
the embeddings (which are predictive of individual task per-
formance, see Figure 6) also show differences across these
dimensions. Still, it is additional validation that the learned
subject embeddings capture some aspects of individual traits
both within the task and beyond.

Empirical Tradeoffs in Sample Complexity
We examined the relationship between quality of fit for each
individual subject, and the number of subjects in our training
pool, to check whether larger subject pools indeed help learn
better predictive models. In this experiment, we measured
simulation accuracy on held-out trials for a fixed cohort of
subjects designated as “test-subjects”. For training, we used
data from these test-subjects, plus an increasing number of
additional subjects. For validation, we only calculated met-
rics on the test-subjects. In this manner, we can examine the
influence of adding extrinsic data (i.e., data from other sub-
jects) to the quality of fit, and thereby the capturing of indi-
vidual variation, of a fixed set of test-subjects.

For each instance of the training subject pool, we trained
the Subj-DNN model on subjects’ behavior in the Max-
Prod task5. Each subject in this experiment had 6-7 trials
of training data and 4 trials of validation data. We simu-
lated the trained model on the validation trials for the 100
test-subjects alone, and calculated per-subject behavioral
metrics as above. We calculated the correlation at subject-
grain between model simulations and actual human behav-
ior from the validation data. This calculation was performed
for each training pool, and repeated 50 times to identify av-
erage trends if any. Figure 8 shows the results of this ex-
periment; each panel shows the correlation (mean ± SEM
over 50 runs) between human and model behavior at sub-
ject grain over the test-subjects. As the number of subjects
in the training data pool increases, the correlations steadily
increased. Note that the only manipulation is the addition
of subjects into the training pool; for the test-subjects, the
available data for training and validation is unchanged.

This result provides strong support for our main hypothe-
sis: we compensate for the lack of per subject data through
the use of (a) a parametrized, shared model across subjects,

5We used MaxProd task / Subj-DNN alone, since the data con-
tained a greater number of subjects who had performed this task.
The Multi-DNN uses subjects who have performed both MaxProd
and MinProd tasks, a significantly smaller pool.
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Figure 6: Individual variation in behavior. We simulated the learned model, with subject embeddings, on each subject’s held-out
data, and compared task measures on simulated data against actual behavior. Results show that variations in average # moves
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all figures sample size=3230 subjects).

1.00 1.50 1.88 2.50
avg_moves

−0.5

0.0

0.5

1.0

su
be

m
b1

0.50 0.75 0.75 1.00
success

−0.25

0.00

0.25

0.50

-0.96 -0.45 -0.05 0.60
avg_dectime

0.1

0.2

0.3

0.4

GCSE ALev Grad PhD
education

0.1

0.2

0.3

18-25 30-39 50-59
age

0.0

0.1

0.2

0.3

0.4

Male Female
gender

0.15

0.20

0.25

0.30
A B C D E F

Figure 7: Subject Embeddings capture behavior & demographics. Panels A,B,C bucket subjects by decile of average # moves,
success rates, and (log) decision times respectively, and plot the mean±SEM of the subject embeddings for subjects in each
bucket. We see that subject embedding values are significantly different across buckets, and are the source of the model’s ability
to capture behavioral variation. Panels D-F show distinguishable differences in embedding values across subject education
levels, age buckets, and gender. (Data shown for embedding dimension 1 only, for space; dimension 2 qualitatively similar.)

and (b) a large pool of subjects in the training data. By adopt-
ing this approach, we show not only improved fits to individ-
ual behavior, but also the ability to better capture individual
variation in the task (the correlations measured in Figure 8).

Multi-DNN Captures Biases at Subject Grain
Finally, although Figure 6 demonstrates that gross mea-
sures of human performance at the task can be recovered
at per-subject grain, the question remains whether the sub-
tler behavioral idiosyncrasies in information-seeking (Fig-
ures 1, 4, 5) are also captured at an individual level by our
model, or if the model lacks sufficient sensitivity to capture
such biases. Clearly, as seen in Figure 5, the behavioral dif-
ferences are so slight that mere 4-8 trials of validation data
we have per subject are not enough to even get an empirical
measure of individual bias, for validating our model.

Instead, we follow Hunt et al. (2016) and use data extrin-
sic to the task in order to establish validity. The data from
Hunt et al. (2017) includes, for each subject, a parameter
estimate of “approach” and “avoidance” tendencies calcu-
lated on a different, gambling-based task (Rutledge et al.
2015). Figure 9 shows the average subject embedding value
for each of these extrinsic parameters, split into “low” and
“high” buckets via the median value. The bars represent
mean±SEM for each bucket. As can be seen, the subject em-
beddings show clear differences in the low and high buckets
for both the approach and avoid parameters, suggesting that

embeddings capture a more general subject-specific aspect
of approach behavior than reflected by the specific task.

Related Work
Uncertainty & Information Seeking
Since our focus here is on developing general-purpose mod-
eling tools & methodology, we do not provide a compre-
hensive review of the cognitive science literature on uncer-
tainty in decision-making, and biases in information sam-
pling tasks; instead, we provide a brief sketch of the related
work to round out the understanding of the experiments dis-
cussed here.

A rich literature deals with humans handling uncertainty
in the form of risk (stochasticity of outcome (Ellsberg
1961)) and ambiguity (uncertainty with respect to world
models / estimates of probabilities, or “second order uncer-
tainty” (Bach et al. 2011; Yu and Dayan 2005)), showing that
both play a role in human decision-making. In particular, hu-
mans appear to be ambiguity-averse (Bach et al. 2011), even
if the ambiguity does not affect expected value of outcomes.
In terms of information-seeking, well-documented behav-
ioral tics such as confirmation bias (Nickerson 1998) and op-
timism (Sharot 2011), suggest that in certain situations, hu-
mans are prone to selectively choosing information on which
to make decisions, rather than integrating all available infor-
mation in a “fair” or unbiased manner. In other related work,
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Figure 8: Empirical sample complexity. The figure shows
the correlation between model-predicted behavioral mea-
sures, and actual behavior, for the Subj-DNN model on the
MaxProd task. The correlations are calculated over a fixed
set of 100 subjects included in both training & validation
data, as we add additional subjects to the training data alone.
Curves represent mean±SEM of correlation over 50 runs of
the evaluation. Panels A-C show correlations for average #
moves, accuracy, and average scores, respectively.

there is substantial evidence of “approach”/“avoidance” be-
haviors in humans, where certain scenarios engender an au-
tomatic approach or avoidance action, even when the re-
ward structure punishes such automatic behavior (Huys et al.
2011; Mkrtchian et al. 2017). From a modeling perspective,
much of the literature starts with these idiosyncrasies as a
fact of human behavior (i.e., an inductive bias), and explores
variants of reinforcement learning models incorporating free
parameters for some of these tendencies (Hunt et al. 2016;
Huys et al. 2011; Mkrtchian et al. 2017). In our work, we
show better model fits to data by using black-box architec-
tures (i.e., by side-stepping any inductive bias); further, the
behavioral policies (and individual variation) are distilled
into a small number of subject specific parameters that could
be used in downstream applications, e.g., for demographic
analysis or diagnosis (Dezfouli et al. 2019a). The question
of explaining the subject’s policies is still open, however,
and an interesting modeling challenge for interpretable ma-
chine learning, one we hope to explore in future work.

Modeling
Recent literature in cognitive science (Dezfouli et al.
2019b,a) has examined the use of DNNs for model-agnostic
fits to human behavior. Dezfouli et al. (2019b) model a sim-
ple probability tracking task using LSTMs, instead of the
classical reinforcement learning models popular in the lit-
erature. They show that LSTMs, being model agnostic, can
capture arbitrary policies like deterministic switching irre-
spective of historical value, policies that are actually seen
in behavior but not captureable by simple value-based mod-
els such as Q learning. In subsequent work (Dezfouli et al.
2019a), they learned disentangled embeddings for each sub-
ject using behavioral data. We build substantially on these
promising initial drections with the following additional
contributions: (1) application to a multi-stage sequential
decision-making task, and recovery of idiosyncratic biases
(“suboptimalities”) from behavior, and critically, (2) demon-
stration that pooling together large numbers of subjects can
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Figure 9: Capturing biases at individual grain: The figure
shows subject embeddings split into buckets by median
value of “approach” and “avoidance” subjective parameters
estimated on a separate task (see text for details). The bars
represent mean±SEM of subject embedding values within
each bucket. As seen in Panels A,B, both embedding values
show clear difference across the low- and high-value buckets
of the approach and avoid parameters respectively.

enable learning individual behavior from very small sample
sizes (5-10 trials per subject).

From the machine learning perspective, several ap-
proaches overlap in spirit with our goal here: work in meta-
learning (Finn, Abbeel, and Levine 2017; Garnelo et al.
2018) is interested in separating out the learning of a class
of functions from the learning of instances of that class, and
may broadly be applicable to tasks such as the one studied
here. Our work is a key proof-of-concept that meta-learning
is a useful tool in cognitive science; in future work, we will
examine whether specific ideas from the meta-learning liter-
ature can be used to push our results further ahead.

Discussion
We presented a model-agnostic, multi-task approach for
modeling human behavior in an information-seeking task.
Our model recovered broad behavioral trends, including
well-documented biases in the task (Hunt et al. 2016), with-
out access to task objective or reward structure during train-
ing. Crucially, we capture individual variation in the task us-
ing as little as 6-8 trials per subject for training, by leverag-
ing data from a large pool of subjects. These results have sig-
nificant implications for cognitive modeling efforts in gen-
eral: (a) meta-learning approaches, such as our proposal,
can sidestep the typical challenge of extreme data paucity
in learning individual subject traits, (b) model-agnostic ap-
proaches can avoid limitations of inductive bias introduced
by modelers, and capture data and action policies more faith-
fully. Some natural next steps in this line of research: first,
using other, more powerful meta-learning approaches for
strengthening the predictive power of models, and second,
developing explainable policy approximations to learned
DNNs as a collaboration between machine learning and cog-
nitive science experts. We hope to use such policy interpre-
tations to better situate our findings in the context of theories
of approach & avoidance that form the bedrock of seemingly
biased behavior in these tasks, and may help shed more light
on the computational provenance of ubiquitous human ten-
dencies such as confirmation bias & optimism.
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