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Abstract

Recent findings suggest that humans deploy cognitive mecha-
nism of physics simulation engines to simulate the physics of
objects. We propose a framework for bots to deploy probabilis-
tic programming tools for interacting with intuitive physics
environments. The framework employs a physics simulation
in a probabilistic way to infer about moves performed by an
agent in a setting governed by Newtonian laws of motion.
However, methods of probabilistic programs can be slow in
such setting due to their need to generate many samples. We
complement the model with a model-free approach to aid
the sampling procedures in becoming more efficient through
learning from experience during game playing. We present
an approach where combining model-free approaches (a con-
volutional neural network in our model) and model-based ap-
proaches (probabilistic physics simulation) is able to achieve
what neither could alone. This way the model outperforms
an all model-free or all model-based approach. We discuss a
case study showing empirical results of the performance of
the model on the game of Flappy Bird.

Introduction
The last few years have been marked with exceptional
progress in the field of Artificial Intelligence (AI). Much of
the progress has come from recent advances in deep learning.
Models employing deep neural networks achieved remark-
able performance in many areas including speech recognition,
object recognition and reinforcement learning (LeCun, Ben-
gio, and Hinton 2015; Mnih et al. 2016, 2015; Gu et al. 2016).
In reinforcement learning, Mnih et al. proposed a deep learn-
ing approach to estimate Q-learning function of state and
action tuples in Atari games to achieve human-level perfor-
mance (Mnih et al. 2015, 2013; Guo et al. 2014). Silver et al.
applied a similar approach of deep learning to learn policy
and value functions of states and action in the complex game
of AlphaGo (Silver et al. 2016, 2017).

Another front where AI is progressing exceptionally is
approaching AI through drawing inspiration from human
cognitive processes (Lake et al. 2016; Kim, Banks, and Shah
2017; Battaglia et al. 2016; Nguyen et al. 2020; Rempe et al.
2020; Lerer, Gross, and Fergus 2016; Baradel et al. 2019).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lake et al. developed a model for human-level concept learn-
ing through probabilistic induction (Lake, Salakhutdinov,
and Tenenbaum 2015). The approach deploys methods of
probabilistic programming (Ghahramani 2015) to construct
computational frameworks that capture human learning abili-
ties in forming concepts. The construction of computational
frameworks was used to draw insights on human cognition
in other areas, Battaglia et al. proposed a model based on an
intuitive physics engine as a cognitive mechanism humans
use to make robust inferences in complex natural scenes
(Battaglia, Hamrick, and Tenenbaum 2013; Battaglia et al.
2016).

In human development, infants have primitive concepts
of how objects move in their environments, this is observed
through their ability to track moving objects around them. It is
through these primitive concepts infants grow to learn faster
and make more accurate predictions (McCloskey, Washburn,
and Felch 1983; Lake et al. 2016). Experiments on humans
cognitive processes of intuitive physics inference show that
as tasks of inference are harder, the response time of humans
increases (Hamrick et al. 2015). This is due to a trade off
between response time and number of physics simulations
performed, and the harder the task gets, the more simulation
runs humans seem to perform.

Several attempts proposed models for agents to develop a
sense of intuitive physics that humans possess (Watters et al.
2017; Agrawal et al. 2016; Wu et al. 2016, 2015; Bakhtin
et al. 2019). Agrawal et al. approached the problem by reverse
engineering intuitive physics (Agrawal et al. 2016). Using
robot arms, the agent performed enormous number of actions
(i.e. pokes) on objects placed on a table to understand the
process by how objects move. The approach is inspired by
how infants develop their physics intuition. The model is then
tested by requiring an agent to move objects on a table to
match a given final state of object positions on the table. Wu
et al. proposed a model capable of predicting the movement
of objects placed on an inclined surface given image pixel
data (Wu et al. 2015). The model incorporates deep learning
methods to learn physical features of objects and a 3D physics
simulation to predict their trajectories and where an object
will most likely stop, the approach was capable of achieving
an accuracy comparable to human subjects.

In this paper, we propose a framework for bots to deploy
tools for interacting with the physics of their environments.
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The bots employ a coupling of a probabilistic program with a
physics simulation engine to do inference of moving objects
in a setting governed by Newtonian laws of motion. How-
ever, methods of probabilistic programs can be slow in such
setting due to their need to generate many samples. Hence
we complement our approach with a model free component
to aid the sampling procedures in becoming more efficient
through learning from experience during game playing . We
present a case where a combination of model-free approaches
(CNN in our model) and model-based approaches (probabilis-
tic programming and physics simulation) is able to achieve
what neither could alone (Kansky et al. 2017; Schulman et al.
2015; Henderson et al. 2017). Existing research proposed
such ideas of combining model-free and model-based ap-
proaches in other contexts (Chebotar et al. 2017; Nagabandi
et al. 2018). The performance of the model outperforms an all
model-free or model-based approach (Evans and Grefenstette
2018). It has been evident that such approaches combine the
best of both worlds (Battaglia et al. 2018). The case study
shows empirical results of the performance of the model on
the game of Flappy Bird, a game of a bird in free fall and
required to avoid obstacles by jumping through openings.
Our model exhibits similar patterns in behavior of humans
when it comes to the trade off between sampling time versus
accuracy of decisions (Hamrick et al. 2015) and the ability to
learn through experience of game play.

In sections 2, 3 and 4 of the paper, we propose the frame-
work and discuss the process of inference and learning of
parameters. Sections 5 include empirical results of the model
performance while playing Flappy Bird and discussion.

Methods
Given the state of an agent in an environment governed by
Newtonian laws of physics, the goal is to have an agent that
predicts the desired behavior given a state. It does that by
probabilistically sampling actions most suitable to achieve
the desired behavior. To illustrate, given a bot in a state very
close to hit the floor, the agent first should be able to infer that
it needs to increase altitude and then probabilistically bias the
sampling process to actions that are in line with increasing
altitude to avoid collision.

The decision making pipeline of the agent includes two
main subparts; the first is a convolutional neural network
(CNN) and the second is a probabilistic framework for sam-
pling actions in an intuitive physics setting. The general archi-
tecture of the pipeline is included in figure 1. The CNN takes
pixel data as inputs and produces the parameter α correspond-
ing to prior probabilities for the probabilistic program. The
probabilistic program is parametrized by α the prior proba-
bilities for each action, θ the probabilities of each action, a
the sampled action, γa the velocity of the action and ch the
collision state at time h.

Convolutional Neural Network (CNN)
The objective of the CNN is to make the sampling procedure
of probabilistic programs more efficient, this is done through
estimate parameters of the prior probability distribution of
actions to be taken given a state of the agent. This helps

the probabilistic model in sampling more effectively through
skewing a Dirichlet distribution in a manner where actions
sampled are more likely to match a desired behavior. CNN
has a similar architecture to that developed by Mnih et al.
(Mnih et al. 2015).The CNN takes the last 4 frames as inputs
and outputs α parameterizing the prior for the distribution of
actions probabilities. The input of the neural network consists
of an 80 × 80 × 4 frames of pixel data for the past 4 time
steps after preprocessing. Preprocessing denoted φ includes
transforming the raw pixel data to grayscale then rescaling
frame size to a resolution of 80× 80. The first hidden layer
convolves 32 filter of size 8 × 8 with stride 4 on the input
frames and applies rectifier nonlinearity. The second hidden
layer convolves 64 filters with sizes of 4 × 4 with stride 2
then applies rectifier nonlinearity. The third hidden layer con-
volves 64 filters with sizes of 2× 2 with stride 1 then applies
rectifier nonlinearity. The fourth layer is a fully connected
512 nodes with rectifier nonlinearity. Then the output layer
is fully connected and has as many nodes as there are actions
in the game. The output of the CNN parametrizes a Dirichlet
distribution in the probabilistic framework.

Learning
The model learns from experience through the data generated
while game playing. Sources of the data include positions
information of objects in the environment, pixel data of the
state, actions taken by the agent and the rewards received at
every time step.

The CNN learns from the pixel data of past states and
actions; the inputs to the CNN are the pixel data and the
outputs are the frequencies of actions in subsequent time
steps of a predefined interval. αi is the frequency of making
decision i in the future ∆ time steps after state s. The training
sample of the model has (s, α) tuples after which the model
was negatively rewarded are not included in the training of
the CNN since the goal is to learn about values of parameter
α resulting in the bot being positively rewarded. The CNN
is fit through applying stochastic gradient descent on the
following cost function:

L(α, φ, s, κ) =
(
α−M(φ(s), κ)

)2
Where the parameters for the neural network are denoted by
κ .

Inference
We use probabilistic programming to perform the tasks of in-
ference in a fashion similar to the discussion by Gharmani et
al. in (Ghahramani 2015). This section discusses the process
by which the data for the world of the agent and its actions
are generated. We employ control flow to sample actions
resulting in no collisions.

At every iteration, the agent will use a probabilistic pro-
gram coupled with the physics engine algorithm illustrated
in Algorithm 1 to do inference about the physics of its future.
The Algorithm takes as inputs the state of the world defined
by the past 4 frames of pixel data and past positions data of
objects in the environment. The CNN estimates the direc-
tion the agent should be moving towards through estimating
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Figure 1: The decision making pipeline, it starts with the CNN having the objective of improving the sampling process through
estimating α, then a probabilistic program together with an intuitive physics engine samples decisions according probabilities
estimated by CNN and simulates samples in a physics simulation. The physics simulations returns the state of the agent after a
period of time ch (ch = False if unwanted collision was not observed). Flappy bird is used as an example here to demonstrate
the structure of the model, the results and discussion section include an implementation of the model.

Dirichlet parameters α. An alternative approach is to is to
provide a α for a uniform Dirichlet on probabilities of actions
which can be computationally cumbersome under tight time
constraints to make a decision.

The agent proceeds with an iterative process between a
probabilistic program and a physics engine simulation. The
process starts with sampling probabilities for each action
denoted θ from a Dirichlet distribution. The agent samples h
actions from a categorical distribution parametrized with θ.
To account for the possible stochasticity of actions, a Gaus-
sian distribution is fitted overs the observed change in veloci-
ties for every action type, the model learns the distributions
through the history of its position data and the actions taken
in the past. For every move the agent sampled, γai

is sampled
from a Gaussian corresponding to action type ai.

After an action plan is sampled from the probabilistic
program, the simulation engine will simulate the plan. The
physics simulation returns the status of the agent after h time
steps. The process continues to sample then simulate in an
iterative manner for an ε milliseconds. The physics engine
estimates physics characteristics of the environment (for ex-
ample the gravitational acceleration) through the application
of Newtonian laws of motion to the historical positions data
it observed.

Upon the end of the iterative sampling and simulation
process, the bot is to estimate the distribution p(at|ch =
False) through the set of simulations of actions called m.
Given the samples it generated in m, the conditional density
is given by:

p(at = x|ch = False) ∝ p̃(at = x|ch = False)

=

|m|∑
i=1

1(mi,t=x)

The decision on which action to take at the current time step
denoted ãt is then given by:

ãt ∼ argmaxat
p̃(at|ch = False)

Before starting a new iteration of sampling new actions
then simulating, the parameters α are updated with the ac-
tions at, ..., at+(h−1) if a simulation results in no collision
(i.e. ch = False). If so, the process increments the simula-
tion horizon h with δ time steps, the strategy is to contin-
uously expand the simulation horizon as no collisions are
observed for the bot to detect potential further away obsta-
cles in its direction. The process of sampling and simulation
loops until ε milliseconds pass. The Algorithm returns the
action providing the highest probability for the bot to survive
unwanted collisions in h time steps.

Experiments and Results
The approach was tested on the game of Flappy Bird, a game
of inference about the physics of the bird and its environment
towards avoiding collision with obstacles. Several replica
implementations of the game is available on github along
with an implementation of DQN and A3C proposed by Mnih
et al. (Mnih et al. 2015, 2016). The game is available for play
at http://flappybird.io. During the game, bird is required to
chose from flapping or doing nothing to avoid collisions and
pass through the openings.

Figure 2 demonstrates how CNNs aid probabilistic pro-
grams in sample more efficiently, the task for the agent is
to infer about actions with highest probability in terms of
passing through openings facing Flappy Bird. The agent is
to sample action θ from a prior parametrized by α, the α
is given by the CNN to help reduce the number of samples
needed to pass through the opening. Given actions of flap
and do nothing, with θ∗flap = 0.072 the agent is more likely
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Figure 2: This figure demonstrates how CNN helps making the process of sampling more efficient. Frames from the game are
inputs to the CNN which outputs α parameters for the Dirichlet distribution illustrated in the figure for the case of Flappy Bird.
The dashed line of θ∗flap = 0.072 corresponds to the probability of flap where bird maintains the same height. In (a) bird is
descending and is faced with a gap that is higher than its current altitude, a trained CNN outputs α = (3.6, 16.8) biasing the
sampling procedure to generate actions that will more likely result in its ascending towards the opening. In (b) bird is descending
where a flap will result in its collision, the CNN outputs α = (0.7, 19.7) corresponding to values of θ that will more likely result
in its descending towards the opening.

to sample flaps in its plan as to maintain its current height
moving towards an opening. Figure 2(a) illustrates the frames
of pixel data used as inputs to estimate the Dirichlet (i.e. Beta
since two actions are offered for bird to pick from), the prob-
ability of θ > θ∗flap is larger resulting in simulating more
samples with ascending altitude. On the contrary, in (b) the
sampling distribution is skewed towards values less than θ∗
resulting in the sampling process halting from flapping in
most of its samples. Hence, the CNN skews the Dirichlet
distribution in a manner where actions sampled match the
desired change in altitude.

Figure 3 demonstrates the performance of the model
against alternative approaches and state of the art techniques.
Average scores are calculated after running each trained
model for 10 times and observing the final score. PB-CNN is
the proposed methodology and PB-Uniform is an alternative
approach where a CNN is not present, instead the Dirichlet
distribution is parametrized with all one parameter resulting
in a uniform distribution over the parameter θ. A3C is an
implementation of Mnih et al. (Mnih et al. 2016) on Flappy
Bird. Human data are gathered through players on the web
page in flappy.io.

Figure 3 (a) shows the average accuracy of PB-CNN and
PB-Uniform for different ε milliseconds of time allowed for
iterative sampling and simulation process. The advantage
CNN brings to the model is significant, this is because CNN
narrows down the sampling space significantly allowing the
model to explore the conditional distribution of samples given
no collisions much faster (i.e. higher frequency of samples
resulting in ch = False). In figure 3 (b) we show the average
score per training epoch of the A3C approach. In figure 3 (c),

the average score of humans play is close to PB-Uniform with
ε = 30ms and ε = 40ms. After training the CNN part of PB-
CNN of the model on 10000 frames of game play, the model’s
performance improves significantly. The performance of PB-
CNN with ε = 1.5ms is similar to A3C in average score. The
average score is calculated for 10 times of game play.

The average score for humans was 11.27 in 47 million
games played, 95% of them had a score of 6 points or lower
according to flappybird.io. One possible reason why
humans under-perform could be explained by their signif-
icantly large delay in response time compared to methods
discussed in the paper here. Under a task of inference about
the physics of the world, research suggested that humans
response rate was in between 500 and 2000 milliseconds de-
pending on the hardness of the inference task at hand (Ham-
rick et al. 2015). The urgency of making a decision leaves no
ample time for sampling and simulating the physics of the
game that could be enough for humans to perform as well as
bots.

Conclusion and Future Work
We propose a framework for bots to maneuver games with
intuitive physics inspired by cognitive processes of humans.
The approach draws inspiration from recent approaches of
modeling concept learning where the framework includes a
coupling of a probabilistic program with a physics simulation
engine. The model was tested on the game of Flappy Bird
and compared to state of the art techniques of model-free
approaches. Advantages of our model over model-free ap-
proaches namely A3C is the ability to learn from very few
examples relative to the number of examples A3C requires.
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Figure 3: Results of models trained to play Flappy Bird. PB-CNN is the proposed model, PB-Uniform is composed of the model
proposed without the CNN where the probabilistic program starts with an all-ones α parameter. A3C is the model proposed by
(Mnih et al. 2016), human data for game play are reported by the web page flappybird.io

Algorithm 1 Probabilistic Intuitive Physics Process

procedure GETACTION(s, t,m)
Inputs are the state s, current time t and previously

sampled actions m
Initialize the simulation horizon h to constant c
α←M(φ(s)) . estimate the starting α from the

CNN
while elapsed time < ε do . keep sampling for a

duration of ε seconds
a, ch ← SAMPLEACTIONS(s, t, α, h)
if ch is False then . observe when unwanted

collision didn’t occur
add a to m . store samples resulting in no

unwanted collisions

αi ← αi +
h∑

j=1

1aj=i . update α parameters

h← h+ δ . expand the horizon of the
simulation

end if
end while
p̃(at = x|ch = False)←∑|m|

i=1 1mi,t=x .
estimating the conditional from samples in m

ãt ← arg maxat(p̃(at|ch = False))
return ãt

end procedure
procedure SAMPLEACTIONS(s, t, α, h)

θ ← Dirichlet(α) . sample θ, the probability of
actions

at, ..., at+(h−1) ← Categorical(θ) . sample actions
for timesteps t to t+ (h− 1)

γai
← Gaussian(µai

, σai
) . sample impact on the

velocity
ch ← PHYSICSSIMULATION(s, [γat

, ..., γat+(h−1)
], h)

. simulate sampled plan for next h steps
return a, ch

end procedure

Advantages of our model over model-based approaches is its
ability to learn from experience.

Potential future work include investigating approaches to
learn about rewards structures in games of physics intuition.
This will enable bots to perform more complex moves be-
yond simpler tasks such as the ones in the illustrated game of
Flappy Bird where the objective is to avoid unwanted colli-
sion. Other games such as Space Invaders involve learning
strategies of shooting and hiding that are beyond the capabili-
ties of the model in its existing state. Another potential future
direction is to deploy neural network to detect objects in the
frames of the game rather than explicitly having access to po-
sition data of the objects in the game. This would potentially
help the framework better generalizes over other games.
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