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Abstract

Defect prediction, the task of predicting the presence of de-
fects in source code artifacts, has broad application in soft-
ware development. Defect prediction faces two major chal-
lenges, label scarcity, where only a small percentage of code
artifacts are labeled, and data imbalance, where the ma-
jority of labeled artifacts are non-defective. Moreover, cur-
rent defect prediction methods ignore the impact of informa-
tion propagation among code artifacts, and this negligence
leads to performance degradation. In this paper, we propose
DPCAG, a novel model to address the above three issues.
We treat code artifacts as nodes in a graph, and learn to
propagate influence among neighboring nodes iteratively in
an EM framework. DPCAG dynamically adjusts the contri-
butions of each node and selects high-confidence nodes for
data augmentation. Experimental results on real-world bench-
mark datasets show that DPCAG improves performance com-
pare to the state-of-the-art models. In particular, DPCAG
achieves substantial performance superiority when measured
by Matthews Correlation Coefficient (MCC), a metric that is
widely acknowledged to be the most suitable for imbalanced
data.

Introduction
The presence of undetected defects is a serious threat to
software quality and security. For instance, the Heartbleed
Bug was inadvertently introduced in OpenSSL in 2012 and
remained unpatched for more than two years. Heartbleed
can be exploited to steal confidential information in the
SSL/TLS protocol, including passwords and session cook-
ies. Consequently, a large number of users were forced to
modify their passwords on popular websites including Ama-
zon Web Services and GitHub.

Defect prediction aims at building classifiers to predict
whether code artifacts (e.g. classes, methods) are defective
or not (Bowes, Hall, and Petric 2018). Many defect predic-
tion models have been proposed over the years (Wang, Liu,
and Tan 2016; Fan et al. 2019; Li et al. 2017; Qu et al. 2018).
However, most of them do not effectively handle the fol-
lowing three main challenges that arise from the inherent
characteristics of source code: (1) information propagation
among code artifacts needs to be well represented; and (2)

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

label information (i.e. defective or not) for code artifacts is
lacking; and (3) the categories of data are severely imbal-
anced (i.e. non-defective artifacts are the vast majority).

Code artifacts communicate with each other via method
invocation and message passing, i.e. information propaga-
tion. The information propagated among code artifacts may
impact whether an artifact is defective or not. For instance,
a class containing a defective method is defective, but a sub-
class that overrides this method may not be defective. If
the information from this overridden method is not prop-
erly propagated, the subclass may be incorrectly classified as
defective by the classifier. Information propagation among
code artifacts is not well utilized by existing methods (Fan
et al. 2019; Wang, Liu, and Tan 2016). Instead, these mod-
els treat each code artifact as a separate data instance and
extract features of each instance to train a classifier. Some
models such as Node2defect (Qu et al. 2018) treat individ-
ual classes as nodes, and utilize Deepwalk in the node2vec
algorithm (Grover and Leskovec 2016) to propagate infor-
mation among nodes. However, none of them specifically
distinguishes the information propagation between different
code artifacts. Hence, a mechanism to precisely describes
the information propagation needs to be designed.

Label scarcity refers to the absence of labeled artifacts
within source code. For instance, in three of the ELFF
datasets (Shippey et al. 2016), DrJava, Genoviz and Jmol,
the proportions of code artifacts with label information are
4.53%, 5.57% and 7.18%, respectively. Other datasets in
ELFF also suffer from the label scarcity issue to a similar de-
gree. The lack of labeled data makes it more difficult to train
a defect prediction model with high accuracy. Recent works
such as DP-CNN (Li et al. 2017) use Convolutional Neural
Network (CNN) to extract features from the Abstract Syntax
Tree (AST) and train the classifier. Our experimental results
show that the performance of DP-CNN in larger datasets is
worse than in smaller datasets, as larger datasets are more
susceptible to label scarcity. Therefore, mechanisms need to
be investigated to address the label scarcity challenge.

Class imbalance occurs when the vast majority of labeled
code artifacts are non-defective and it is a wide-spread phe-
nomenon. For instance, the proportions of defective code ar-
tifacts among all labeled code artifacts are 1.79%, 3.60%
and 5.13% respectively in the three ELFF datasets mention
above. If no measure is taken to handle the imbalance be-
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tween the two categories (i.e. defective and non-defective),
models will prefer to label code with the majority cate-
gory during the classification process. Over-sampling is one
of the common methods to handle this challenge. Models
such as NSGLP (Zhang, Jing, and Wang 2017) use Lapla-
cian Sampling and expand the minor category to solve this
challenge. These approaches bring up two new problems:
(1) classes and methods of the same category are not distin-
guished; and (2) additional noise may be introduced. How-
ever, different classes and methods have different features,
and the classifier may misjudge their labels, leading to poor
performance, while noise will further degrade performance.
Hence, a re-weighting method that adjusts weights for each
class and method may be more suitable.

In this paper, we propose a semi-supervised method,
named Defect Prediction on Code Artifact Graph (DPCAG),
for defect prediction task. We construct a Code Artifact
Graph and pre-train the embeddings of the code artifacts
as features. We further propose a novel propagation con-
trol mechanism to automatically learn an information prop-
agation matrix to indicate the intensity of information prop-
agation. Finally, we train a classifier in an Expectation-
Maximization (EM) framework (Dempster, Laird, and Ru-
bin 1977).

A key component of DPCAG is the EM-based classifier.
In the E-step, we combine embeddings with the propaga-
tion matrix to propagate on a GNN model to estimate the
label distribution and update the embeddings. During this
stage, a data augmentation mechanism is used to expand the
training set to handle label scarcity. In the M-step, we prop-
agate labels instead of embeddings on another GNN model,
and maximize the probability of the label distribution. We
employ a dynamic weighting loss function to overcome the
class imbalance.

Our contributions can be summarized as follows.

• We propose a novel semi-supervised method, named
DPCAG, utilize the information of code artifacts and the
structure information between code artifacts for the defect
prediction task while effectively addresses the three main
challenges described above.

• We employ a propagation matrix to adequately capture the
information transfer between code artifacts, and propose
a data augmentation mechanism to add high-similarity
samples to the training set while overcoming the label
scarcity, and we also design a loss function which dynam-
ically changes the weights of code artifacts to alleviate the
effect of class imbalance issue.

• Our method outperforms state-of-the-art models in the
Defect Prediction task through an extensive empirical
study. It is particularly noteworthy that our method
achieves substantial superiority when measured by
Matthews Correlation Coefficient (MCC), a metric that
has been widely recognized as the appropriate metric for
performance measurement on imbalanced data.

Related Work
Defect Prediction Models
Defect Prediction is a task to predict whether code arti-
facts are defective (Bowes, Hall, and Petric 2018). Most De-
fect Prediction models focus on extracting better features
from code artifacts. They use statistics of code artifacts and
process metrics as features (Nagappan and Ball 2005; Bibi
et al. 2006) to train the classifiers. Recent embedding-based
models prefer to use embeddings of Abstract Syntax Trees
(ASTs) as features while ASTs contain syntax and seman-
tic information. For instance, DP-CNN (Li et al. 2017) en-
codes the token vectors from ASTs and generates features
via CNN. DBN-CP (Wang, Liu, and Tan 2016) utilizes Deep
Belief Networks to extract semantic features from ASTs to
train the classifiers. DP-ARNN (Fan et al. 2019) utilizes
word embeddings from word2vec (Mikolov et al. 2013) and
employs attention mechanisms to generate features. How-
ever, these state-of-the-art models simply ignore class im-
balanced and information propagation.

Several models attempt to use propagate information
among code artifacts. For example, node2defect (Qu et al.
2018) uses the class dependency graph to encode the classes
in code, and uses node2vec (Grover and Leskovec 2016) to
randomly propagate to generate the embeddings of classes
as features. However, these methods construct graphs in
which adjacent nodes are of the same type (e.g. classes),
which limits their applicability to data that contains different
types of code artifacts (e.g. both classes and methods).

Other studies focus on class imbalance issues. For in-
stance, ORB (Cabral et al. 2019) proposed an over-sampling
mechanism to handle the class imbalance issue by scoring
different categories according to the bias and re-sample ac-
cording to the score. NSGLP (Zhang, Jing, and Wang 2017)
rates the artifacts by Laplacian Sampling and expands the
minor class to address the class imbalance. However, these
models are highly dependent on the quality of sampling and
sampling may introduce noises.

Graph Convolution Network-based Models
Graph Convolution Network (GCN) has been shown to
(1) graph structure is used to represent the relationship
among code artifacts (Atzeni and Atzori 2017), and (2) our
model modify to describe information propagation process.
GCN (Kipf and Welling 2017) is one of the Graph Neural
Network (GNN) architectures that classifies nodes in graphs.
The convolution operation in GCN computes the Laplacian
matrix for nodes in the graph and then multiplies the rep-
resentations of the nodes. Related models such as Graph-
SAGE (Hamilton, Ying, and Leskovec 2017) sample from
neighborhood nodes and aggregate the information to pre-
dict the label of unlabeled nodes. GAT (Velickovic et al.
2018) use the attention mechanism to learn the coefficient
weights between nodes in the propagation step. GMNN (Qu,
Bengio, and Tang 2019) uses conditional random fields to
model the joint distribution of target labels and utilizes the
EM algorithm for model optimization. However, none of
these models addresses the class imbalanced problem, which
is a key issue in the Defect Prediction task.
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Figure 1: The overall framework of DPCAG.

Problem Definition
We use parser (Atzeni and Atzori 2017) to convert the source
code of a given project to a graph G = (V,E), where V is
the set of nodes and represents the code artifacts, i.e. classes
and methods, and E is the set of edges that represents the
relationships between nodes, such as inheritance relation-
ship, association relationship, and invocation relationship.
Nodes can be separated into two disjoint subsets: labeled
nodes Vl and unlabeled nodes Vu, such that V = Vl ∪ Vu.
Furthermore, labeled nodes can also be separated into two
sub-categories: non-defect nodes and defect nodes, that is,
Vl = Vneg ∪ Vpos.

Each node vi ∈ V can be represented by its d-dimensional
embedding ei ∈ Rd. To simplify the notation, we use matrix
X ∈ R|V |×d to represent the embedding of all nodes in G.

Assuming a particular and consistent ordering of nodes in
sets V , Vl and Vu, we define p(Y), p(Yl), p(Yu) to be the
label distributions of these nodes respectively.

We treat the defect prediction task cast as a binary classi-
fication task. Our goal is to predict the label of every unla-
beled node. Hence, the defect prediction task is reduced to
maximize the likelihood of the labels of unlabeled nodes.

Formally, given the Graph G = (V,E) and the node
embedding X, our goal is to learn a defect prediction
model parameterized by θ to maximize the log likeli-
hood of label distribution of unlabeled nodes, i.e., θ∗ =
argmaxθ log p(Yu|Yl,X, G; θ). For convenience, we use
log pθ(Yu|Yl,X, G) to represent log p(Yu|Yl,X, G; θ)

Method
The overall framework of our method is shown in Figure 1.
Our method can be divided into three main steps.

1. Graph construction and embedding. To utilize the de-
pendency relationships in the source code, we convert the
source code into a graph G as described above, and com-
pute the embeddings X of nodes V to facilitate the train-
ing of the model.

2. Propagation matrix learning. To utilize propagate infor-
mation among nodes in the graph G, we use labels Yl to
construct and optimize the propagation matrix A∗, the el-
ements in which indicate the propagation intensity.

3. Classifier training. To classify nodes Vu (i.e. learn the
label distribution of Vu), we combine label information Yl

with the propagation matrix A∗ and features X to train an
EM-based classifier while employing data augmentation
and a dynamic weighted loss function to overcome the
label scarcity and class imbalance issues.

Graph Construction & Embedding
Given a project, we parse its source code by using CodeOn-
tology (Atzeni and Atzori 2017) and extract triples in Re-
source Description Framework, and construct the graph G.
Finally, we employ a graph representation learning method
to pre-train the embeddings X of nodes V .

Propagation Matrix Learning
As we mentioned before, information propagation among
code artifacts has an impact on whether an artifact is de-
fective. Thus, ignoring information propagation may lead to
sub-optimal performance of the classifier. For instance, in
Figure 1, node v6 may be a defect node as it utilizes the in-
formation of defect node v7. As shown in the graph in the
middle, the strength of information propagation for the edge
between nodes v6 and v7 is 0.8, indicating the strong influ-
ence of v7 has on v6.

Propagation matrices used in current methods are all ex-
clusively based on graph structure information, such as adja-
cency matrix and Laplacian matrix (Kipf and Welling 2017;
Qu, Bengio, and Tang 2019). These matrices do not utilize
feature information or label information and may affect pre-
diction performance. Hence, we use the graph structure in-
formation to construct a propagation matrix, and then com-
bine label information to automatically optimize it.

Formally, for the propagation matrix A ∈ R|V |×|V |, we
define the initial value of each element Aij as:

Aij =



0, vi is not connected with vj
1√

d(vi)×d(vj)
, vi, vj ∈ Vu

a√
d(vi)×d(vj)

, vi or vj ∈ Vneg & vi, vj 6∈ Vpos
b√

d(vi)×d(vj)
, vi or vj ∈ Vpos

(1)
where d(i) represents the degree of node vi in graph G, and
a, b are hyperparameters.

After initializing matrix A, we use LPA (Zhu and Ghahra-
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Algorithm 1: training DPCAG classifier
Input:

node embedding X; propagation matrix A∗;
The labels of labeled nodes Yl

Output:
The label distribution qθ

1 while not converged do
2 (E-step):
3 Use X and A∗ to estimate a distribution qθ.
4 Use dynamic weighted loss to optimize qθ, let

qθ approach pθ and update X (addressing class
imbalance)

5 Use X for data augmentation to expand Yl
(address label scarcity)

6 (M-step):
7 Get label distribution Y by using qθ and X
8 Use Y, Yl and A∗ to update distribution pθ
9 Use dynamic weighted loss to optimize pθ and

maximize Eqθpθ
10 end

mani 2002) to optimize it automatically.

A∗ = argmin
A

Llpa(A) = argmin
A

∑
vi∈Vl

J(ŷlpai , yi) (2)

where the J() is the cross-entropy loss and ŷlpai is the label
predicted by LPA.

As a result, A∗ contains both graph structure information
and label information, and we use A∗ in the classifier to con-
trol the propagation of information.

The EM-based Defect Prediction Model
In the defect prediction task, defects could occur internally
within an artifact and at the interface between artifacts.
Thus, whether a node is defective is determined by its fea-
tures and the labels from nodes which have dependency re-
lationships with it. However, current methods do not effec-
tively utilize these dependency relationships as the labels of
the majority of nodes Yu are unknown.

To make full use of features from each node and labels
from their neighboring nodes, we propose an EM-based
semi-supervised classifier by considering Yu as hidden vari-
ables. In the Expectation step, we use the node embeddings
X to learn the distribution log qθ to obtain labels of unlabeled
nodes. In the Maximization step, we use labels of neighbor-
ing nodes and the dependency relations A∗ to learn distribu-
tion log pθ and maximize the expectation Elog qθ log pθ.

Specifically, in our classifier, we optimize the evidence
lower bound (ELBO) of log-likelihood instead of optimizing
the log-likelihood directly, as follows.

log pθ(Yu|Yl,X,A∗) ≥ (3)
Elog qθ(Yl|X,A∗)[log pθ(Y|Yl,X,A

∗)− log qθ(Yl|X,A∗)]

The main steps of the classifier are summarized in Algo-
rithm 1. In the E-step, we fix log pθ and update log qθ. We

use dynamic weighted loss and data augmentation to address
the class imbalance and label scarcity issues respectively. In
the M-step, we fix log qθ and update log qθ, and again use
the dynamic weighted loss to address the class imbalance is-
sue. We will show the detail of the E-step M-step in the next
sub-section and the last sub-section.

Expectation Step
In the Expectation step, our goal is to estimate the label dis-
tribution log qθ(Y|X,A∗). We employ a two-layer GNN to
predict the label distribution log qθ(Y|X,A∗) while updating
X, θ and expanding the training set. Specifically, the Expec-
tation step has the following three main steps.

1. Learning the distribution. It has been shown that the
representations of nodes (i.e. X) are influenced by their
neighboring nodes (Qu, Bengio, and Tang 2019). Hence,
we employ a GNN to propagate influence from neighboring
nodes, through the propagation matrix A∗. Specifically, we
use a two-layers GNN, named GNNq, to update node em-
beddings from neighboring nodes and learn the distribution
log qθ(Y|X,A∗). Nodes in GNNq are node embeddings X,
and edge weights are given by the propagation matrix A∗.

log qθ(Yt+1|Xt+1,A∗) = σ′(A∗σ(A∗XtWq1)Wq2), (4)

where Wq1 ∈ Rd×h and Wq2 ∈ Rh×2 are the weight matri-
ces of the first layer and second layer of GNNq respectively,
where h denotes the dimension, σ and σ′ are the activation
functions ReLU and softmax, and Xt denotes the t-th it-
eration of X.

Every row in log qθ(Yt+1|Xt+1,A∗), denoted predi ∈
R2, represents a two-dimensional array for node vi, where
two values represent the predicted probability of whether the
node is defective or not.

2. Optimization by dynamic weighted loss function.
We design the dynamic weighted loss function to alle-
viate the impact of class imbalance. Specifically, we use
predi ∈ R2 to represent the probability of vi ∈ Vl from
log qθ(Yt+1|Xt+1,A∗), and reali ∈ R2 represents the prob-
ability of vi ∈ Vl in log pθ(Y|Yl,X,A∗) where Yt denotes
the t-th iteration of Y. Let gapi = predi − reali, the loss
function can be defined as follows, where ◦ is element-wise
product:

L = L(log qθ(Yt+1|Xt+1,A∗, log pθ(Y|Yl,X,A∗)

=
∑
vi∈Vl

|| − log(predi) ◦ reali ◦ (1 + gapi)||1. (5)

We multiply − log(predi) in the loss function as it can
dynamically adjust the contribution of vi to the loss func-
tion. We multiply 1+(gapi) as it amplifies the penalty when
the classifier misclassifies. In contrast, the loss is almost un-
changed when vi is correctly classified.

3. Data Augmentation. After computing the loss in the
previous step by backpropagation, we use the updated em-
bedding Xt+1 to select highly reliable nodes and add them
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to the training set. For each unlabeled node v ∈ Vu, let
s′ = maxv′∈Vneg Sim(ev, ev′) be the highest non-defect
confidence score, and let s′′ = maxv′∈Vpos Sim(ev, ev′)
be the highest defect confidence score. Given a pre-defined
threshold t, node v is added to Vneg if s′ > max(s′′, t).
Otherwise, node v is added to Vpos if s′′ > max(s′, t).

In our model, we use Cosine Similarity as the similarity
function. The expanded training set is then used for the sub-
sequent training process.

Maximization Step
In the Maximization steps, we fix the distribution log pθ, and
use the label information of neighboring nodes to learn the
distribution log pθ and maximizing Elog qθ log pθ. Similar to
node embedding, the label of each node in V is also influ-
enced by the labels of its neighboring nodes (Qu, Bengio,
and Tang 2019). Hence, we employ another GNN, named
GNNp, to propagate this information. The nodes in GNNp
represent updated node labels and edge weights are given
by the propagation matrix A∗. For convenience, we use
log pθ(Yt+1|Yt,A∗) instead of log pθ(Yt+1|Ytl ,Xt+1,A∗)
because X is an irrelevant variable to log pθ and Ytl ≈ Yt

before propagation where Yt denotes the t-th iteration of Y.

log pθ(Yt+1|Yt,A∗) = σ′(A∗σ(A∗YtWp1)Wp2), (6)

where Wp1 ∈ Rd×h and Wp2 ∈ Rh×2 are the weight matri-
ces of the first layer and second layer of GNNq, hyperparam-
eter h denotes the dimension, σ() and σ′() are the activation
functions ReLU and softmax.

Similar to the loss function in the Expectation step,
let predi ∈ R2 represent the probability of vi ∈ Vl
in log pθ(Yt+1|Yt,A∗), reali ∈ R2 represent the prob-
ability of vi ∈ Vl in log qθ(Y|X,A∗), and gapi =
predi − reali. We directly calculate the distance between
the two distributions instead of calculate their KL divergence
Eqθ(Y|X,A∗)[log pθ(Yt+1|Yt,A∗)]:

L = L(Eqθ(Y|X,A∗)[log pθ(Yt+1|Yt,A∗)])
= L(log qθ(Y|X,A∗), log pθ(Yt+1|Yt,A∗))

=
∑
vi∈Vl

|| − log(predi) ◦ reali ◦ (1 + gapi)||1
(7)

In this way, we have used embedding X, label Y and
propagation matrix A∗ in one iteration. The training process
stops when the loss of E-step and M-step stops decreasing
and we regard log qθ as the final label distribution.

Experiments
Datasets and Metrics
We use three datasets from ELFF (Shippey et al. 2016),
namely DrJava, Genoviz and Jmol, to evaluate model per-
formance. Among all datasets in ELFF, DrJava is the largest
datasets; Jmol is the most commonly used small-scale
dataset; and Genoviz is also a commonly used dataset which
it is between DrJava and Jmol in terms of size. Their brief
statistics information is shown in Table 1. It can be clearly

observed that all three datasets exhibit significant issues of
label scarcity and class imbalance. Among all nodes, labeled
nodes account for 4.53%, 5.57% and 7.12% in the three
datasets respectively. Furthermore, defect nodes make up
only 1.8%, 3.6% and 4.9% of labeled nodes respectively. For
each dataset, the set of labeled nodes is divided into training,
validation and test sets with the ratio of 90-5-5.

We use Matthews Correlation Coefficient (MCC) as the
main evaluation metric, along with accuracy (ACC), F1-
score. It has been widely acknowledged in the literature that
MCC is a more appropriate metric for measuring classifica-
tion performance on imbalanced datasets (Boughorbel, Jar-
ray, and El-Anbari 2017; Song, Guo, and Shepperd 2019;
Shepperd, Bowes, and Hall 2014), making it especially suit-
able for defect prediction. MCC is computed from the four
elements in the confusion matrix, namely true positive (tp),
true negative (tn), false positive (fp), and false negative (fn).

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
. (8)

Baselines
We compare our model to a number of state-of-the-art defect
prediction models: an influential traditional model DBN-
CP (Wang, Liu, and Tan 2016), the CNN-based model DP-
CNN (Li et al. 2017), the Transformer-based model DP-
ARNN (Fan et al. 2019), and the network embedding-
based model Node2defect (Qu et al. 2018). Furthermore, we
evaluate our model against Graph Markov Neural Network
(GMNN) (Qu, Bengio, and Tang 2019). GMNN is a state-of-
the-art semi-supervised classification model that combines
Markov networks and graph neural networks.

Note that DBN-CP, DP-CNN and DP-ARNN are not end-
to-end models, and an additional classifiers needs to be em-
ployed to make defect prediction on test data. We employ
Random Forest (RF) and Logistic Regression (LR) for these
models.

Experimental Settings
For our model, the learning rate lr is set to 0.006 and the
dropout rate p set to 0.5. The hyperparameter a is set to 25
for all three datasets. The hyperparameter b is set to 1300
in DrJava and 2000 in both Genoviz and Jmol. The dimen-
sion of hidden layer is h = 20. We use RMSProp (Tieleman
and Hinton 2012) as the optimizer. The confidence thresh-
old for adding nodes to the training set is t = 0.8. In every
iteration, the epoch for the Expectation step and the Maxi-
mization step is set to 200. We select the values of hyperpa-
rameters according to the result of validation set.

Results
The main results of the defect prediction task are shown in
Table 2. A number of important observations can be made.

1. In general, our model outperforms all the state-of-the-art
baselines on all three datasets in all but one case (ACC on
Jmol), especially prominently in MCC and F1.

2. More importantly, the most substantial performance dis-
parity can be observed in the values of MCC, where
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Dataset Nodes Edges Labeled Nodes Defect Nodes Training Validation Test

DrJava 255,512 1,281,752 11,575 (4.5%) 208 (1.8%) 10,417 579 579
Genoviz 81,591 355,133 4,548 (5.6%) 164 (3.6%) 4,093 228 227
Jmol 32,792 134,303 2,355 (7.2%) 115 (4.9%) 2,119 118 118

Table 1: Brief statistics of the three datasets. Percentage values of labeled nodes are measured against all nodes, and the
percentage values of defect nodes are measured against labeled nodes.

MCC is more faithfully to measure a model’s perfor-
mance on imbalanced data. Compared to the second-best
method for each dataset, our model outperforms them
by 48.2%, 44.6%, and 24.6% respectively. These results
clearly demonstrate the superiority of our model, espe-
cially on imbalanced and large datasets.

3. In comparison, accuracy values for different models are
all high and close to each other, reflecting ACC’s insensi-
tivity to the class imbalance issue. In other words, a model
only needs to classify unlabeled nodes as the majority
class (non-defect) to achieve high accuracy values. For
nodes that need to be classified as defect nodes, our model
outperforms the second-best method for each dataset by
46.1%, 16.7%, and 9.1%. This shows that our model can
correctly classify the defect nodes and help us find the
code with defects in real tasks.

In conclusion, these observations clearly demonstrate that
our model is effective in dealing with issues of label scarcity
and class imbalance while making full use of information
propagation in the defect prediction task. In the next sec-
tion, we further analyze the effect of the main components
on model performance.

Model Analysis

In this section, we present ablation studies and additional
analyses of our model. DrJava is chosen as the dataset for
analysis as it is the largest dataset in ELFF, and also the
one with the most label scarcity and class imbalance issues
among the three. Therefore, it can reflect the performance of
our model most appropriately.

Why Does DPDAG Use EM FrameWork

In our model, we use the EM-based classifier to utilize em-
beddings X and labels Y of the nodes and their neighbor-
hood. We examine the necessity of using the EM framework
by building a supervised classifier with embeddings X as
features, which have been propagated, and with node labels
Yl as ground-truth. In other words, GNNq in the Expectation
step is used to build this classifier with all the hypermeters
kept the same.

The comparison shows that our model significantly out-
performs the GNNq-based classifier by 19.2%, 8.8%, and
7.6% on MCC in the three datasets. It demonstrates that our
EM-based classifier can effectively utilize label information
from neighboring nodes.

Analysis of Information Propagation
We design this analysis to verify the impact of the propaga-
tion matrix on model performance. The propagation matrix
can be regarded as the key to the propagation process on
GNNs, where the elements of these matrices represent the
intensity of information propagation between nodes.

In this experiment, we compare our automatically op-
timized propagation matrix A∗, defined in Formula ( 2)
with three different propagation matrices: adjacency matrix
AD ∈ R|V |×|V |, propagation matrix of GMNN (Qu, Bengio,
and Tang 2019) GM ∈ R|V |×|V |, and a propagation matrix
A fixed at the initial values as defined in Formula (1). For
vi, vj ∈ V , if vi is not connected with vj , ADij = GMij =
0; otherwise ADij = 1 and GMij = 1√

d(vi)×d(vj)
, where

d(vi) is the degree of vi.
The result is presented in Table 3. It shows that our prop-

agation matrix has the best performance. The performance
difference can be attributed to the following main reasons.
(1) The adjacency matrix AD only contains coarse-grained
information about whether the nodes in the graph are related.
(2) The propagation matrix of GMNN GM adds degree in-
formation of nodes to the adjacency matrix, but ignores the
different impact of different categories of nodes (unlabeled,
defect or non-defect). (3) Propagation matrix A considers
different categories of nodes based on GM but fixes their in-
fluences. (4) In contrast, our automatically optimized propa-
gation matrix A∗ makes full use of label information to fine-
tune the matrix to further improve performance.
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Figure 2: Three examples of correct classification by distin-
guishing different weight

To further demonstrate our case, we present three rep-
resentative nodes in DrJava in Figure 2, which shows pre-
dictions of the center nodes by color-coding and the edge
weights as learned by our propagation matrix A∗. In all
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Model DrJava Genoviz Jmol

Metrics MCC F1 ACC MCC F1 ACC MCC F1 ACC

DBN-CP (LR) 0.075 0.091 0.965 0.162 0.182 0.960 0.324 0.353 0.907
DBN-CP (RF) 0.476 0.375 0.982 0.395 0.400 0.973 0.584 0.533 0.940
DP-CNN (LR) 0.196 0.200 0.972 0.278 0.242 0.889 0.493 0.533 0.881
DP-CNN (RF) 0.388 0.266 0.981 0.403 0.285 0.977 0.584 0.533 0.941
DP-ARNN (LR) 0.163 0.174 0.934 0.212 0.173 0.832 0.445 0.485 0.855
DP-ARNN (RF) 0.389 0.267 0.981 0.572 0.500 0.982 0.526 0.533 0.923
Node2defect 0.363 0.333 0.979 0.461 0.444 0.977 0.598 0.636 0.932
GMNN 0.431 0.444 0.974 0.403 0.285 0.978 0.377 0.421 0.906

Ours 0.958 0.857 0.993 0.907 0.667 0.997 0.844 0.695 0.940

Table 2: Results of the defect prediction task. Best results are bolded and second best results are underlined

Propagation matrix MCC F1 ACC

Adjacency Matrix AD 0.102 0.125 0.951
GMNN GM 0.355 0.370 0.941
Fixed A 0.810 0.814 0.991

Ours A∗ 0.958 0.857 0.993

Table 3: Performance on different propagation matrices.

three cases, the label of the center node is correctly predicted
by our method and misclassified by other methods (such as
GMNN). As we can see, each center node is connected with
the same-label node with the highest edge weight.

Analysis of Label Scarcity
To demonstrate data augmentation’s effectiveness in over-
coming the label scarcity issue, we experiment with the node
similarity threshold t to control the number of nodes that are
added to the training set. When t decreases, the number of
nodes added to the training set increases.

Training data MCC F1 ACC

Original training set (100%) 0.918 0.758 0.987
t=0.9 (117.56%) 0.920 0.814 0.991
t=0.8 (129.08%) 0.958 0.857 0.993
t=0.7 (153.18%) 0.957 0.799 0.989

Table 4: Effect of the data augmentation.

The result is presented in Table 4, which shows that, as
t decreases, model performance first increases and then de-
creases. The main reason is that during the propagation pro-
cess, every node in the training set spreads information to
adjacent nodes as a source. The more sources of propaga-
tion, the more information each node convolves to adjacent
nodes through GNNs, and the more accurate the classifica-
tion result is. However, adding too many nodes may intro-
duce noise and cause performance degradation. As a result,
we chose t = 0.8 as the final parameter value.

Analysis of Class Imbalance
In this experiment, we examine whether our loss function
can effectively alleviate the impact of categories imbal-
ance. We compare our loss function, defined in Formulas (5)
and (7) with three other loss functions: Cross-Entropy loss
(CEL) , Mean square error (MSE) and the loss function of
GMNN (Qu, Bengio, and Tang 2019), which maximizes the
sum of the probability that each node is correctly classified.
We define the imbalance rate of a node as the number of
nodes in the majority category in its neighboring nodes di-
vided by the number of nodes in the minority category.

Ours  CEL MSE GMNN
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Figure 3: The MCC performance of loss functions on differ-
ent imbalance rates.

The result is presented in Figure 3. It shows that as the
imbalance rate increases from < 2 to > 4, our loss func-
tion consistently and increasingly outperforms the other loss
functions. Compared with other loss functions, our loss
function can dynamically adjust the contribution weight for
loss and embedding of each node, which helps the model to
overcome the impact of class imbalance.

Conclusion
In this paper, we proposed a novel semi-supervised model
named DPCAG for the defect prediction task. DPCAG
combined propagation control, data augmentation and dy-
namic weighted loss to represent the information propaga-
tion among code artifacts, solve lacking label information
and class imbalance. Results showed that DPCAG achieved
performance boost compared with SOTA methods.

For future work, we will use the semantic information to
further optimize the propagation matrix to improve the per-
formance in the Defect Prediction task.
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