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Abstract

With the recent prevalence of Reinforcement Learning (RL),
there have been tremendous interests in utilizing RL for
online advertising in recommendation platforms (e.g., e-
commerce and news feed sites). However, most RL-based ad-
vertising algorithms focus on optimizing ads’ revenue while
ignoring the possible negative influence of ads on user expe-
rience of recommended items (products, articles and videos).
Developing an optimal advertising algorithm in recommen-
dations faces immense challenges because interpolating ads
improperly or too frequently may decrease user experience,
while interpolating fewer ads will reduce the advertising rev-
enue. Thus, in this paper, we propose a novel advertising
strategy for the rec/ads trade-off. To be specific, we develop
an RL-based framework that can continuously update its ad-
vertising strategies and maximize reward in the long run.
Given a recommendation list, we design a novel Deep Q-
network architecture that can determine three internally re-
lated tasks jointly, i.e., (i) whether to interpolate an ad or not
in the recommendation list, and if yes, (ii) the optimal ad and
(iii) the optimal location to interpolate. The experimental re-
sults based on real-world data demonstrate the effectiveness
of the proposed framework.

Introduction
Online advertising is a form of advertising that leverages the
Internet to deliver promotional marketing messages to con-
sumers. The goal of online advertising is to assign the right
ads to the right consumers so as to maximize the revenue,
click-through rate (CTR) or return on investment (ROI) of
the advertising campaign. The two main marketing strate-
gies in online advertising are guaranteed delivery (GD) and
real-time bidding (RTB). For guaranteed delivery, ad ex-
posures to consumers are guaranteed by contracts signed
between advertisers and publishers in advance (Jia et al.
2016). For real-time bidding, each ad impression is bid by
advertisers in real-time when an impression is just gener-
ated from a consumer visit (Cai et al. 2017). However, the
majority of online advertising techniques are based on of-
fline/static optimization algorithms that treat each impres-
sion independently and maximize the immediate revenue for
each impression, which is challenging in real-world busi-
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Figure 1: An example of online advertising impression

ness, especially when the environment is unstable. There-
fore, great efforts have been made on developing reinforce-
ment learning-based online advertising techniques (Cai et al.
2017; Wang et al. 2018a; Rohde et al. 2018; Wu et al. 2018b;
Jin et al. 2018), which can continuously update their adver-
tising strategies during the interactions with consumers, and
the optimal strategy is made by maximizing the expected
long-term cumulative revenue from consumers. However,
most existing works focus on maximizing the income of ads,
while ignoring the negative influence of ads on user experi-
ence for recommendations.

Designing an appropriate advertising strategy is a chal-
lenging problem, since (i) displaying too many ads or im-
proper ads will degrade user experience and engagement;
and (ii) displaying insufficient ads will reduce the adver-
tising revenue of the platforms. In real-world platforms, as
shown in Figure 1, ads are often displayed with normal rec-
ommended items, where recommendation and advertising
strategies are typically developed by different departments,
and optimized by different techniques with different met-
rics (Feng et al. 2018). Upon a user’s request, the recommen-
dation system generates a list of recommendations accord-
ing to user’s interests. Then, the advertising system needs
to make three decisions (sub-actions), i.e., whether to inter-
polate an ad in current recommendation list (rec-list); and
if yes, the advertising system also needs to choose the op-
timal ad and interpolate it into the optimal location (e.g., in
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Figure 2: Classic DQN architectures for online advertising.

Figure 1 the advertising agent (AA) interpolates an “ad of
toy” after the second movie of the rec-list). The first sub-
action maintains the frequency of ads, while the other two
sub-actions aim to control the appropriateness of ads. The
goal of advertising strategy is to simultaneously maximize
the income of ads and minimize the negative influence of
ads on user experience.

The above-mentioned three decisions (sub-actions) are in-
ternally related, i.e., (only) when the AA decides to interpo-
late an ad, the locations and candidate ads together deter-
mine the rewards. Figure 2 illustrates the two conventional
Deep Q-network (DQN) architectures for online advertising.
Note that in this paper, we suppose (i) there are |A| candidate
ads for each request, and (ii) the length of the recommenda-
tion list (or rec-list) is L. The DQN in Figure 2(a) takes the
state space and outputs Q-values of all locations. This archi-
tecture can determine the optimal location but cannot choose
the specific ad to interpolate. The DQN in Figure 2(b) inputs
a state-action pair and outputs the Q-value corresponding to
a specific action (ad). This architecture can select a specific
ad but cannot decide the optimal location. Taking a repre-
sentation of location (e.g., one-hot vector) as the additional
input is an alternative way, but O(|A| · L) evaluations are
necessary to find the optimal action-value functionQ∗(s, a),
which prevents the DQN architecture from being adopted in
practical advertising systems. It is worth noting that both ar-
chitectures cannot determine whether to interpolate an ad
(or not) into a given rec-list. Thus, in this paper, we design
a new DEep reinforcement learning framework with a novel
DQN architecture for online Advertising in Recommender
systems (DEAR), which can determine the aforementioned
three tasks simultaneously with reasonable time complexity.
We summarize our major contributions as follows:

• We decompose online advertising with recommendations
into three related decisions and provide a principled ap-
proach to model it;

• We propose a deep reinforcement learning-based frame-
work DEAR and a novel Q-network architecture, which
can simultaneously determine whether to interpolate an

ad, the optimal location and which ad to interpolate;
• We demonstrate the effectiveness of the proposed frame-

work in real-world short video site.

Problem Statement
In this paper, we study the advertising problem within a
rec-list as a Markov Decision Process (MDP), in which an
Advertising-Agent (AA) interacts with environment E (or
users) by sequentially interpolating ads into a sequence of
rec-lists over time, so as to maximize the cumulative reward
from the environment. Formally, the MDP consists of a tuple
of five elements (S,A,P,R, γ):
• State space S: A state st ∈ S is defined as a user’s brows-

ing history before time t and the information of current
request at time t. More specifically, a state st consists of a
user’s recommendation and ad browsing history, the rec-
list, and contextual information of the current request.

• Action space A: The action at = (aadt , a
loc
t ) ∈ A of AA

is to determine three internally related tasks, i.e., whether
interpolate an ad in current rec-list (that is involved in aloct ,
more details are presented in following sections); if yes,
the AA needs to choose a specific ad aad∗t and interpolate
it into the optimal location aloc∗t in the rec-list. Without the
loss of generality, we assume that the AA could interpolate
at most one ad into a rec-list, but it is straightforward to
extend it with multiple ads.

• Reward R: After the AA taking action at at the state
st, i.e., (not) interpolating an ad into a rec-list, a user
browses this mixed rec-ad list and provides her feedback.
The AA will receive the immediate reward r(st, at) based
on user’s feedback. The reward r(st, at) is two-fold: (i)
the income of an ad that depends on the quality of the ad,
and (ii) the influence of an ad on the user experience.

• Transition probability P: Transition probability
p(st+1|st, at) defines the state transition from st to st+1

after taking action at. We assume that the MDP satisfies
p(st+1|st, at, ..., s1, a1) = p(st+1|st, at).

• Discount factor γ: Discount factor γ ∈ [0, 1] is intro-
duced to measure the present value of future reward. When
γ = 1, all future rewards will be fully counted into current
action; on the contrary, when γ = 0, only the immediate
reward will be considered.
With the above-mentioned notations and definitions, the

problem of ad interpolation into recommendation lists can
be formally defined as follows: Given the historical MDP,
i.e., (S,A,P,R, γ), the goal is to find an advertising policy
π : S → A, which can maximize the cumulative reward from
users, i.e., maximizing the income of ads and minimizing the
negative influence on user experience.

The Proposed Framework
In this section, we will propose a deep reinforcement learn-
ing framework for online advertising in recommender sys-
tems. To be more specific, we will first propose a novel DQN
architecture, which could simultaneously tackle the afore-
mentioned three tasks. Then, we discuss how to train the
framework via offline users’ behavior logs.
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The DQN Architecture for Online Advertising
As aforementioned, the online advertising in recommender
system problem is challenging because (i) the action of the
advertising agent (AA) is complex, which consists of three
sub-actions, i.e., whether interpolate an ad into the current
rec-list, if yes, which ad is optimal and where is the best lo-
cation; (ii) the three sub-actions are internally related, i.e.,
when the AA decides to interpolate an ad, the candidate
ads and locations are interactive to maximize the reward,
which prevents traditional DQN architectures from being
employed in online advertising systems; and (iii) the AA
should simultaneously maximize the income of ads and min-
imize the negative influence of ads on user experience. To
address these challenges, we propose a deep reinforcement
learning framework with a novel Deep Q-network architec-
ture. In the following, we first introduce the processing of
state and action features, and then we illustrate the proposed
DQN architecture with an optimization algorithm.

The Processing of State and Action Features The state
st consists of a user’s rec/ads browsing history, the contex-
tual information and rec-list of current request. The recom-
mendation (or ad) browsing history is a sequence of rec-
ommendations (or ads) the user has browsed. We leverage
two RNNs with Gated Recurrent Units (GRU) to capture
users’ sequential preference of recommendations and ads
separately. The inputs of RNN are the features of user’s
recently browsed recommendations (or ads), while we use
the final hidden state of RNN as the representation of user’s
dynamic preference of recommendations prect (or ads padt ).
Here we leverage GRU rather than Long Short-Term Mem-
ory (LSTM) because of GRU’s simpler architecture and
fewer parameters.

The contextual information feature ct of current user re-
quest consists of information such as the OS (ios or an-
droid), app version and feed type (swiping up/down the
screen) of user’s current request. Next, we represent the rec-
list of current request by the concatenated features of L rec-
ommended items that will be displayed in current request,
and we transform them into a low-dimensional dense vector
rect = tanh(Wrecconcat(rec1, · · · , recL) + brec). Note
that other architectures like CNN for NLP (Kim 2014) can
also be leveraged. Finally, we get a low-dimensional repre-
sentation of state st by concatenating prect , padt , ct and rect:

st = concat(prect , padt , ct, rect) (1)

For the transition from st to st+1, the recommendations and
ads browsed at time t will be added into browsing history to
generate prect+1 and padt+1, ct+1 depends on user’s behavior at
time t+1, and rect+1 comes from the recommendation sys-
tem. For the action at = (aadt , a

loc
t ) ∈ A, aadt is the feature

of a candidate ad, and aloct ∈ RL+1 is the location to inter-
polate the selected ad (given a list of L recommendations,
there exist L+1 possible locations). Next, we will elaborate
the architecture of the proposed DQN architecture.

The Proposed DQN Architecture Given the state st, the
action at of AA consists of three sub-actions, i.e., whether
to interpolate an ad, if yes, (ii) where is the optimal location
and (iii) which ad is optimal.

· · ·

· · ·
· · ·

Q(s
t , a ad

t ) L+1

Q(s
t , a ad

t ) 0

Q(s
t , a ad

t ) 1

prect ct rect aadtpadt

V (st) A(st, a
ad
t )

state st

Figure 3: The detailed architecture of the proposed DQN.

We first consider simultaneously tackle the sub-action (ii)
and (iii). In other words, we aim to estimate the Q-values
of all possible locations aloct for any given candidate ad aadt .
To incorporate these two sub-actions into one framework,
we proposed a novel DQN architecture, as illustrated in Fig-
ure 4, which is on the top of the two conventional Deep Q-
network architectures shown in Figure 2. The inputs are the
representations of state st and any candidate ad aadt , while
the output is the action-value (Q-value) corresponding to
L + 1 locations. In this way, the proposed DQN architec-
ture could take advantage of both traditional DQN architec-
tures, which could simultaneously evaluate the Q-values of
two types of internally related sub-actions, i.e., evaluating
the Q-values of all possible locations for an ad.

To incorporate the first sub-action (whether to interpolate
an ad or not) into the above DQN architecture, we con-
sider not interpolating an ad as a special location 0, and
extend the length of output layer from L + 1 to L + 2,
where Q(st, a

ad
t )0 corresponds to the Q-value of not in-

corporating an ad into current rec-list. Therefore, the pro-
posed DQN architecture could take the three sub-actions
simultaneously, where the Q-value depends on the combi-
nation of ad-location pair; and when Q(st, a

ad
t )0 of any

candidate ads corresponds to the maximal Q-value, the AA
will not interpolate an ad into current rec-list. It worth not-
ing that, compared with the classical DQN in Figure 2 (b)
that requires |A| · L times of value-function evaluations for-
ward through the whole neural network, our proposed model
reduces the temporal complexity of forward propagations
from O(|A| · L) to O(|A|).

The detailed DQN architecture is illustrated in Figure 3.
On one hand, whether to interpolate an ad into current rec-
list is mainly impacted by the state st (the browsing history,
the contextual information and especially the quality of cur-
rent rec-list), e.g., if a user has good experience for current
rec-list, the advertising agent may prefer to interpolate an
ad into the current rec-list; while if a user has bad expe-
rience for current rec-list, the user has high possibility to
leave, then the AA will not insert an ad to increase this pos-
sibility. On the other hand, the reward for choosing an ad
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Figure 4: The novel DQN architecture for online advertising.

and location is closely related to all the features (both cur-
rent rec-list and the ads). According to this observation, we
divide the Q-function into value function V (st), which is
determined by the state features, and the advantage function
A(st, at), which is determined by the features of both state
and action (Wang, Freitas, and Lanctot 2015).

Discussion There exist two classic DQN architectures as
illustrated in Figure 2, where (i) the left one takes state as
input and outputs Q-values of all action candidates, and (ii)
the right one takes a state-action pair and outputs the Q-
value of this pair. Typically, these two conventional archi-
tectures can only evaluate Q-values for one level of actions,
e.g., the agent in Maze environment can only choose to go
up, down, left, or right (Brockman et al. 2016). Compared
with these two traditional architectures, the proposed DEAR
takes a state-action pair of one level of actions, and out-
puts the Q-values corresponding to the combination of this
state-action pair and another level of actions. Hierarchical
reinforcement learning (HRL) architectures like (Kulkarni
et al. 2016) can also handle multiple levels of tasks. How-
ever, HRL frameworks suffer from the instability problem
when training multiple levels jointly (Nachum et al. 2018).
To the best of our knowledge, the proposed DEAR architec-
ture is the first individual DQN architecture that can eval-
uate the Q-values of multiple levels of internally related ac-
tions simultaneously with reasonable time complexity, i.e.,
our model decreases the temporal complexity of forward
propagations from O(|A| ·L) to O(|A|). This design is gen-
eral which has many other possible applications. For exam-
ple, in Maze environment the input of DEAR can be the pair
of agent’s location (state) and the direction to go (action),
then the DEAR can output the Q-values corresponding to
the location, direction and how many steps to go in this di-
rection (another level of related actions).

Algorithm 1 Off-policy Training of DEAR Framework.
1: Initialize the capacity of replay buffer D
2: Initialize action-value function Q with random weights
3: for session = 1,M do
4: Initialize state s0 from previous sessions
5: for t = 1, T do
6: Observe state st = concat(prect , padt , ct, rect)
7: Execute action at following off-policy b(st)
8: Calculate reward rt = radt + αrext from offline log
9: Update state st to st+1

10: Store transition (st, at, rt, st+1) into D
11: Sample mini-batch of transitions (s, a, r, s′) from D
12: Set

y =

{
r terminal s′

r+γmaxa′ Q(s′,a′;θ) non−terminal s′

13: Minimize
(
y −Q(s, a; θ)

)2 according to Eq.(6)
14: end for
15: end for

The Reward Function
After the AA executing an action at at the state st, i.e., in-
terpolating an ad into a rec-list (or not), a user browses this
mixed rec-ad list and provides her feedback. In online ad-
vertising with normal recommendations, the AA aims to si-
multaneously maximize the income of ads and minimize the
negative influence of ads on user experience (i.e., to opti-
mize user experience). Thus the immediate reward rt(st, at)
is two-fold: (i) the income of ad radt , and (ii) the user expe-
rience rext .

In practical platforms, the major risk of interpolating ads
improperly or too frequently is that the user will leave the
platforms. Thus, user experience is measured by whether
she/he will leave the platform after browsing the current rec-
ad list, and we have:

rext =

{
1 continue
−1 leave

(2)

In other words, the AA will receive a positive reward if the
user continues to browse the next list, otherwise negative
reward. Then, we design the reward function as follows:

rt(st, at) = radt + α · rext (3)

where the radt is the income of ad, which is a positive value
if interpolating an ad, otherwise 0. The hyper-parameter α
controls the importance of the second term, which measures
the influence of an ad on user experience. Based on the re-
ward function, the optimal action-value function Q∗(st, at),
which has the maximum expected return achievable by the
optimal policy, should follow the Bellman equation (Bell-
man 2013):

Q∗(st, at) = Est+1

[
rt+γmax

at+1

Q∗(st+1, at+1)|st, at
]

(4)

where the operation maxat+1
needs to look through all can-

didate ads {aadt+1} (input) and all locations {aloct+1} (output),
including the location that represents not inserting an ad.
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Algorithm 2 Online Test of the DEAR Framework.
1: Initialize the proposed DQN with well trained weights
2: for session = 1,M do
3: Initialize state s0
4: for t = 1, T do
5: Observe state st = concat(prect , padt , ct, rect)
6: Execute action at following Q∗(st, at)
7: Observe rewards rt(st, at) from user
8: Update the state from st to st+1

9: end for
10: end for

The Optimization Task
The Deep Q-network, i.e., action-value function Q(st, at),
can be optimized by minimizing a sequence of loss functions
L(θ) as:

L(θ) = Est,at,rt,st+1

(
yt −Q(st, at; θ)

)2
(5)

where yt = Est+1
[rt+γmaxat+1

Q(st+1, at+1; θ
T )|st, at]

is the target for the current iteration. We introduce separated
evaluation and target networks (Mnih et al. 2013) to help
smooth the learning and avoid the divergence of parameters,
where θ represents all parameters of the evaluation network,
and the parameters of the target network θT are fixed when
optimizing the loss function L(θ). The derivatives of loss
function L(θ) with respective to parameters θ:
∇θL(θ) = Est,at,rt,st+1

(
yt−Q(st, at; θ)

)
∇θQ(st, at;θ)

(6)
where yt = Est+1 [rt+γmaxat+1 Q(st+1, at+1; θ

T )|st, at],
and maxat+1

will look through the candidate ad set {aadt+1}
and all locations {aloct+1} (including the location that repre-
sents not interpolating an ad). Note that a recall mechanism
is employed by the platform to select a subset of ads that
may generate maximal revenue, and filter out ads that run
out of their budget (RTB) or have fulfilled the guaranteed
delivery amount (GD). In this paper, we mainly focus on the
income of platform and user experience.

Off-policy Training Task
We train the proposed framework based on users’ offline log,
which records the interaction history between behavior pol-
icy b(st) (the advertising strategy in use) and users’ feed-
back. Our AA takes action based on the off-policy b(st) and
obtains the feedback from the offline log. We present our
off-policy training algorithm in detail in Algorithm 1.

In each iteration of a training session, there are two stages.
For storing transitions stage: given the state st (line 6), the
AA takes action at according to the behavior policy b(st)
(line 7), which follows a standard off-policy way (Degris,
White, and Sutton 2012); then the AA observes the reward
rt from offline log (line 8) and updates the state to st+1

(line 9); and finally the AA stores transition (st, at, rt, st+1)
into replay buffer D (line 10). For model training stage: the
AA samples minibatch of transitions (s, a, r, s′) from replay
buffer D (line 11), and then updates the parameters accord-
ing to Equation (6) (lines 13). Note that in line 7, when the
behavior policy b(st) decides not to interpolate an ad, we
use an all-zero vector as aadt .

session user normal video ad video
1,000,000 188,409 17,820,066 10,806,778

session
time

session
length

session
ad revenue

rec-list
with ad

∼ 18 min ∼ 55 videos 0.667 55.23%

Table 1: Statistics of the Douyin video dataset.

Online Test Task
The online test algorithm is presented in Algorithm 2, which
is similar to the transition generating stage in Algorithm 1. In
each iteration of the session, given the current state st (line
5), the AA decides to interpolate an ad into the rec-list (or
not) by the well-trained advertising policy Q∗(st, at) (line
6), then the target user browses the mixed rec-ad list and
provides her/his feedback (line 7). Finally, the AA updates
the state to st+1 (line 8) and goes to the next iteration.

Experiments
In this section, we conduct extensive experiments on a real
short video site to evaluate the effectiveness of the proposed
framework. We mainly focus on three questions: (i) how
the DEAR performs compared to representative baselines;
(ii) how the components in the framework contribute to the
performance; and (iii) how the hyper-parameters impact the
performance. We first introduce experimental settings. Then
we seek answers to these questions.

Dataset
We train our model on the dataset of March 1-30, 2019 col-
lected in a short video site Douyin. There are two types
of videos, i.e., normal videos (recommended items) and ad
videos (advertised items). The features for a normal video
contain: id, like score, finish score, comment score, follow
score and group score, where the scores are predicted by the
platform. The features for an ad video consist of: id, im-
age size, bid-price, hidden-cost, predicted-ctr and predicted-
recall, where the last four are predicted by the platform. Note
that (i) the predicted features are successfully used in many
applications such as recommendation and advertising in the
platform, (ii) we discretize each feature as a one-hot vec-
tor, and (iii) the same features are used by baselines for a
fair comparison. We collect 1,000,000 sessions in temporal
order, and use first 70% as training/validation set and other
30% as test set. The statistics of the dataset are in Table ??.

Implementation Details
The dimensions of prect , padt , ct, rect, aadt are 64, 64, 13,
360, 60. We leverage two 2-layer neural network to generate
V (st) and A(st, aadt ), respectively. The length of the output
layer is L + 2 = 8, i.e., there are 8 possible locations, in-
cluding the one representing not to interpolate an ad. We set
the discounted factor γ = 0.95, and the replay buffer size
is 10,000. For the hyper-parameters of the proposed frame-
work such as α, we select them via cross-validation. Corre-
spondingly, we also do parameter-tuning for baselines for a
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Figure 5: Model performance with training data.

fair comparison. We will discuss more details about hyper-
parameter selection for the DEAR framework in the follow-
ing subsections. Reward radt is the revenue of ad videos, and
rext is 1 if user continue to browse next list and 0 otherwise.

Metrics
To measure the online performance, we leverage the accu-
mulated rewards in the session R =

∑T
1 rt as the metric,

where rt is defined in Equation (3). To describe the signifi-
cance of the results, we also use the improvement of DEAR
over each baseline and corresponding p−value (Ioannidis
2018) as metrics. Note that our task is to determine whether,
which and where to insert an ad into a given rec-list, and our
goal is to optimize long-term user experience and advertis-
ing revenue, which is different from ad click prediction task.

Baselines
The experiment is based on a simulated online environment,
which can simulate the rewards radt and rext according to
a given state-action pair and a location. We compare the
proposed framework with the following representative base-
line methods: W&D (Cheng et al. 2016): This baseline is
a wide & deep model for jointly training feed-forward neu-
ral networks with embeddings and linear model with fea-
ture transformations for generic recommender systems with
sparse inputs. We further augment its output layer to pre-
dict whether interpolate an ad and estimate the CTR of ads.
W&D is the behavior policy b(st) in use of the video plat-
form; DFM (Guo et al. 2017): DeepFM is a deep neural net-
work model that integrates the architectures of factorization-
machine (FM) and wide & deep model. It models low-
order feature interactions like FM and models high-order
feature interactions like W&D; GRU (Hidasi et al. 2015):
GRU4Rec utilizes RNN with Gated Recurrent Units (GRU)
to predict what users will click/order next based on the click-
ing/ordering histories. We also augment its output layer for
ads interpolation; HDQN (Kulkarni et al. 2016): This base-
line is a hierarchical DQN framework where the high-level
DQN determines the locations, and the low-level DQN se-
lects a specific ad.

method reward improvement p−value

W&D 9.12 20.17% 0.000
DFM 9.23 18.75% 0.000
GRU 9.87 11.05% 0.000

HDQN 10.27 6.712% 0.002
DEAR 10.96 - -

Table 2: Overall performance comparison.

Overall Performance Comparison
The overall performances are shown in Table ??. We make
the following observations: Figure ?? illustrates the training
process of the proposed model. It can be observed that Read
converges with around 600,000 training sessions; The DFM
achieves better performance than W&D, where DeepFM can
be trained end-to-end without any feature engineering, and
its wide part and deep part share the same input and also
the embedding vector; GRU outperforms W&D and DFM,
since GRU can capture the temporal sequence of user be-
haviors within one session, while W&D and DFM neglect it;
HDQN performs better than GRU, since GRU is designed to
maximize each request’s immediate reward, while HDQN
aims to maximize the rewards in the long run. This result
suggests that introducing reinforcement learning can im-
prove the long-term performance of online recommendation
and advertising; Our proposed model DEAR outperforms
HDQN, since HRL frameworks like HDQN are not stable
when multiple levels are jointly trained in an off-policy man-
ner (Nachum et al. 2018). To sum up, DEAR outperforms
representative baselines with significant margin (p−value <
0.01) (Ioannidis 2018), which demonstrates its effectiveness
in online advertising.

Component Study
To answer the second question, we systematically eliminate
the corresponding components of DEAR by defining the
following variants: DEAR-1: This variant shares the same
architectures with the proposed model while training the
framework through a supervised learning manner. DEAR-
2: This variant is to evaluate the effectiveness of RNNs,
hence we replace each RNN with two fully-connected layers
(FCNs), concatenate recommended or advertised items as
one vector and feed it into the corresponding FCN. DEAR-
3: This baseline leverages the DQN architecture in Fig-
ure 2(b) with an additional input, which represents the loca-
tion by a one-hot vector. DEAR-4: The architecture of this
variant does not divide the Q-function into the value func-
tion V (s) and the advantage function A(s, a) for the AA.
DEAR-5: In this variant, we replace the selected ad with a
random ad from all candidate ads. DEAR-6: In this variant,
we insert the selected ad into a random slot.

The results are shown in Table ??. It can be observed:
DEAR-1 validates the effectiveness of introducing rein-
forcement learning for online advertising. DEAR-2 demon-
strates that capture user’s sequential preferences over rec-
ommended and advertised items can boost performance.
DEAR-3 validates the effectiveness of the proposed DEAR
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variant reward improvement p−value

DEAR-1 9.936 10.32% 0.000
DEAR-2 10.02 9.056% 0.000
DEAR-3 10.39 5.495% 0.001
DEAR-4 10.57 3.689% 0.006
DEAR-5 9.735 12.58% 0.000
DEAR-6 9.963 10.01% 0.000
DEAR 10.96 - -

Table 3: Component study results.

architecture over conventional DQN architecture that takes
an ad aadt as input while outputs the Q-value corresponding
to all possible locations {aloct } for the given ad aadt . DEAR-
4 proves that whether interpolate an ad into rec-list is mainly
dependent on state (especially the quality of rec-list), while
the reward for selecting an ad and location depends on both
st and at (ad). Thus dividing Q(st, at) into the value func-
tion V (st) and the advantage functionA(st, at) can improve
the performance. DEAR-5 and DEAR-6 demonstrate that
the ads and slot influence the performance, and DEAR in-
deed selects a proper ad and inserts it into a proper slot. In
summary, introducing RL and appropriately designing neu-
ral network architecture can boost performance.

Parameter Sensitivity Analysis
In this section, we investigate how the proposed framework
DEAR performs with the changes of α in Equation (3),
while fixing other parameters. We select the accumulated
rewards Rad =

∑T
1 r

ad
t , Rex =

∑T
1 r

ex
t , and R = Rad +

αRex of the whole session as the metrics. In Figure 6 (a)-
(b) we find that with the increase of α, Rex improves while
Rad decreases. On the one hand, when we increase the im-
portance of the second term in Equation (3), the AA tends to
insert fewer ads or select the ads that will not decrease user’s
experience, although they may generate suboptimal revenue.
On the other hand, when we decrease the importance of the
second term, the AA prefers to insert more ads or choose
the ads that will lead to maximal revenue, while ignoring
the negative impact of ads on user’s experience. Therefore,
online platforms should carefully select α according to their
business demands (in our setting, the overall R achieves the
peak at α = 1 as shown in Figure 6 (c)).

Related Work
In this section, we briefly review works related to our study.
In general, the related work can be mainly grouped into the
following categories.

The first category related to this paper is RL-based online
advertising, including guaranteed delivery (GD) and real-
time bidding (RTB). GD charges ads on a pay-per-campaign
basis for the pre-specified number of deliveries (Salomatin,
Liu, and Yang 2012). In (Wu et al. 2018a), a multi-agent re-
inforcement learning (MARL) approach is proposed to de-
rive cooperative policies for the publisher to maximize its
target in an unstable environment. RTB allows an advertiser

0.95 1.00 1.050.0

1.5 (a) Rad

0.95 1.00 1.0510.00

10.25 (b) Rex

0.95 1.00 1.0510.5

11.2 (c) R

Figure 6: Parameter sensitivity analysis.

to submit a bid for each impression in a very short time
frame under the multi-armed bandits setting (Yang and Lu
2016; Nuara et al. 2018; Gasparini et al. 2018; Tang et al.
2013; Xu, Qin, and Liu 2013; Yuan, Wang, and van der Meer
2013; Schwartz, Bradlow, and Fader 2017). Thus, the MDP
setting has also been studied to tackle that a given ad cam-
paign would repeatedly happen during its life span before
the budget running out (Cai et al. 2017; Wang et al. 2018a;
Rohde et al. 2018; Wu et al. 2018b; Jin et al. 2018).

The second category related to this paper is RL-based rec-
ommender systems (Zhao et al. 2019b; Zhang et al. 2020).
Users’ positive and negative feedback, i.e., purchase/click
and skip behaviors, are jointly considered in one frame-
work to boost recommendations, since both types of feed-
back can represent part of users’ preference (Zhao et al.
2018b). A page-wise recommendation framework is pro-
posed to jointly recommend a page of items and display
them within a 2-D page (Zhao et al. 2017, 2018a). A
multi-agent model-based reinforcement learning framework
(DeepChain) is proposed for the whole-chain recommenda-
tion problem (Zhao et al. 2020a). A user simulator RecSimu
base on Generative Adversarial Network (GAN) framework
is presented for RL-based recommender systems (Zhao et al.
2019a). Other related work in this category include (Zhao
et al. 2020b; Fan et al. 2020; Zou et al. 2020; Dulac-Arnold
et al. 2015; Chen et al. 2018a; Choi et al. 2018; Zheng et al.
2018; Wang et al. 2018b; Chen et al. 2018b; Liu et al. 2020;
Ge et al. 2021)

Conclusion
In this paper, we propose a deep reinforcement learning
framework DEAR with a novel Deep Q-network architec-
ture for online advertising in recommender systems. It is
able to (i) determine three internally related actions at the
same time, i.e., whether to interpolate an ad in a rec-list or
not, if yes, which is the optimal ad and location to interpo-
late; and (ii) simultaneously maximize the revenue of ads
and minimize the negative influence of ads on user experi-
ence. It is worth noting that the proposed DQN architecture
can take advantage of two conventional DQN architectures,
which can evaluate the Q-value of two or more kinds of
related actions simultaneously. We evaluate our framework
with extensive experiments based on a short video site. The
results show that our framework can significantly improve
online advertising performance in recommender systems.
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